
1

Lecture 8:
Control

COS / ELE 375

Computer Architecture and Organization

Princeton University
Fall 2015

Prof. David August

2

Datapath and Control

Datapath
 The collection of state elements, computation elements,
and interconnections that together provide a conduit for
the flow and transformation of data in the processor
during execution. - DIA

Control

 The component of the processor that commands the
datapath, memory, and I/O devices according to the
instructions of the program. – P&H

3

A Real MIPS Datapath

4

Datapath with Control

5

Datapath with Control

•  Memory reference: lw, sw
•  Arithmetic/logical: add, sub, and, or, slt
•  Control flow: beq, j (see book)

6

The Control Unit

•  Generates Control Signals
 RegDst, Branch, MemRead,
MemtoReg, ALUOp, MemWrite,
ALUSrc, RegWrite

7

The Control Unit

•  Generates Control Signals
•  Uses Op Field [31-26]

8

Control Signals

PCSrc
•  True: PC = SignExt(Imm16) << 2 + PC + 4
•  False: PC = PC + 4
•  PCSrc = Branch & Zero

 (Branch from Control, Zero from ALU)

9

Control Signals

RegDst
•  True: WriteReg = Inst[15-11]
•  False: WriteReg = Inst[20-16]

10

Control Signals

ALUSrc
•  True: SignExt(Imm16)
•  False: RegisterData2

11

Control Signals

ALUControl
•  Values: And, Or, Add, Sub
•  Uses Funct Field

ALUControl Function
000 AND
001 OR
010 add
110 subtract
111 set on less than

12

ALUControl

ALUOp Funct field Operation
ALUOp1 ALUOp0 F5 F4 F3 F2 F1 F0

0 0 X X X X X X 010
X 1 X X X X X X 110
1 X X X 0 0 0 0 010
1 X X X 0 0 1 0 110
1 X X X 0 1 0 0 000
1 X X X 0 1 0 1 001
1 X X X 1 0 1 0 111

ALUControl Function
000 AND
001 OR
010 add
110 subtract
111 set on less than

R-Type

lw/sw
beq

13

ALU Control Combinational Implementation

14

Control Signals

MemtoReg
•  True: RegisterWriteData = MemReadData
•  False: RegisterWriteData = ALUResult

15

Control Signals

MemRead
MemWrite
RegWrite

16

The Control Unit

•  Generates Control Signals
•  Uses Op Field [31-26]

17

Control Design: Inputs

Opcode op5 op4 op3 op2 op1 op0 Value
R-Format 0 0 0 0 0 0 010

lw 1 0 0 0 1 1 3510

sw 1 0 1 0 1 1 4310

beq 0 0 0 1 0 0 410

Where were these values chosen?

18

Control Design: Outputs

Signal R-Format lw sw beq
RegDst
ALUSrc

MemtoReg
RegWrite
MemRead
MemWrite

Branch
ALUOp1
ALUOp2

You fill it out with: 0, 1, X (don’t care) - check with book

19

Datapath with Control

20

Combinational Implementation

21

 Single Cycle Implementation

•  All of the logic is combinational
•  We wait for everything to settle down

•  ALU might not produce “right answer” right away
•  Use write signals along with clock to determine when to write

•  Cycle time determined by length of the longest path

Single Cycle Implementation

Calculate cycle time assuming negligible delays except:
memory (2ns), ALU/adders (2ns), register file access (1ns)

2ns
2ns

1ns
2ns

1ns

Single Cycle Implementation

Load Word is longest running instruction
(prove to yourself by computing time for sw, br, R-type)

memory (2ns), ALU/adders (2ns), register file access (1ns)
2ns + 1ns + 2ns + 2ns + 1ns = 8ns

25

Magic Moment!

At this point, you should be able to design a computer!

1.  Analyze instruction set for datapath requirements
2.  Select set of datapath components
3.  Assemble datapath meeting the requirements
4.  Analyze implementation of each instruction to

determine setting of control signals
5.  Assemble the control logic
6.  Set clock rate

What’s Wrong with Single Cycle?

Calculate cycle time assuming negligible delays except:
memory (2ns), ALU/adders (2ns), register file access (1ns)

27

What’s Wrong with Single Cycle?

memory (2ns), ALU/adders (2ns), register file access (1ns)

Inst. Inst. Mem Reg. Read ALU Data Mem Reg. Write Total
ALU 2 1 2 1 6
lw 2 1 2 2 1 8
sw 2 1 2 2 7
br 2 1 2 5

28

What’s Wrong with Single Cycle?

•  Long Cycle Time
•  All instructions take as much time as the slowest
•  Real memory is not so nice as our idealized memory

(cannot always get the job done in fixed amount of time)

PC Inst Memory mux ALU Data Mem mux

PC Reg File Inst Memory mux ALU mux

PC Inst Memory mux ALU Data Mem

PC Inst Memory cmp mux

Reg File

Reg File

Reg File

Arithmetic & Logical

Load

Store

Branch

Critical Path

setup

setup

29

How Bad?

•  Assume: 100 instructions executed
•  25% of instructions are loads (8ns),
•  10% of instructions are stores (7ns),
•  45% of instructions are adds (6ns), and
•  20% of instructions are branches (5ns).

•  Single-cycle execution:
 100 * 8ns = 800 ns

•  Optimal execution:
 25*8ns + 10*7ns + 45*6ns + 20*5ns = 640 ns

Speedup = 800/640 = 1.25

30

Other Problems

•  Instruction and Data Memory are the same
•  Some units hold value long after job is complete

•  Could reuse ALU for example
•  Underutilized resources (wasteful of area/power)

31

Other Problems

•  What about floating point or other VERY LONG

instructions?

32

Multicycle Approach

•  Break up the instructions into steps, one per cycle
•  balance the amount of work to be done
•  restrict each cycle to use only one major functional unit

•  At the end of a cycle
•  store values for use in later cycles (easiest thing to do)
•  introduce additional “internal” registers to hold values between

cycles

Multicycle Approach

Architectural vs. Microarchitectural State?
Register File?

Multicycle Control
More Mux Magic

•  Reuse datapath components
•  ALU used to compute address and to increment PC
•  Memory used for instruction and data

•  Control signals not determined solely by instruction
•  What should the ALU do for a “subtract” instruction?

Multicycle Control

37

Multicycle Control

•  Set of states
•  Next state function (determined by current state and the input)
•  Output function (determined by current state and possibly input)

•  We’ll use a Moore machine (output based only on current state)
•  To derive FSM, need steps of the instruction!

Use Finite State Machine For Control

39

1.  Instruction Fetch

2.  Instruction Decode and Register Fetch

3.  Execution, Memory Address Computation, or Branch Completion

4.  Memory Access or R-type instruction completion

5.  Write-Back Step

INSTRUCTIONS TAKE FROM 3 - 5 STEPS/CYCLES!

Five Execution Steps

Step 1: Instruction Fetch

•  Use PC to get instruction and put it in the Instruction
Register.

•  Increment the PC by 4 and put result back in the PC.
•  Can be described succinctly using RTL "Register-

Transfer Language"

 IR = Memory[PC];
 PC = PC + 4;

Can we figure out the values of the control signals?

 ALU? IR?

What is the advantage of updating the PC now?

Step 1: Instruction Fetch

IR = Memory[PC];

PC = PC + 4;

Step 2:
Instruction Decode & Register Fetch

•  Read registers rs and rt in case we need them
•  Compute the branch address in case the instruction is a

branch
•  RTL:

 A = Reg[IR[25-21]];
 B = Reg[IR[20-16]];
 ALUOut = PC + (SgnExt(IR[15-0]) << 2);

Note: Again, no control lines based on the instruction type
(busy "decoding" it in control logic)

 Reg? ALU? What if not branch instruction?

Step 2:

A = Reg[IR[25-21]];
B = Reg[IR[20-16]];

ALUOut = PC + (SgnExt(IR[15-0]) << 2);

Step 3: (Instruction Dependent)

ALU performs a function based on instruction type:
•  Memory Reference:

 ALUOut = A + sign-extend(IR[15-0]);

•  R-type:
 ALUOut = A op B;

•  Branch:
 if (A==B) PC = ALUOut;

ALU Utilization rate to step 3?

Step 4: (R-type or memory-access)

•  Loads and stores access memory

 MDR = Memory[ALUOut];
 or
 Memory[ALUOut] = B;

•  R-type instructions finish

 Reg[IR[15-11]] = ALUOut;

 Writes takes place at the end of the cycle on the edge

Step 5:
Write-Back

 Reg[IR[20-16]]= MDR;

 What about all the other instructions?

Summary Of Steps

Step name
Action for R-type

instructions
Action for memory-reference

instructions
Action for
branches

Action for
jumps

Instruction fetch IR = Memory[PC]
PC = PC + 4

Instruction A = Reg [IR[25-21]]
decode/register fetch B = Reg [IR[20-16]]

ALUOut = PC + (sign-extend (IR[15-0]) << 2)
Execution, address ALUOut = A op B ALUOut = A + sign-extend if (A ==B) then PC = PC [31-28] II
computation, branch/ (IR[15-0]) PC = ALUOut (IR[25-0]<<2)
jump completion
Memory access or R-type Reg [IR[15-11]] = Load: MDR = Memory[ALUOut]
completion ALUOut or

Store: Memory [ALUOut] = B

Memory read completion Load: Reg[IR[20-16]] = MDR

Implementing the Control

•  Values of control signals are dependent upon:
1.  instruction is being executed
2.  step is being performed

•  Using steps, specify a finite state machine
•  specify the finite state machine graphically, or
•  use “microprogramming” (more on this next time)

•  Implementation can be derived from specification

Graphical
Specification
of FSM

Graphical
Specification
of FSM

Add r1, r2, r3

sw r1, 100(r2)

jr r31

52

Performance Evaluation

•  What is the average CPI?
•  state diagram gives CPI for each instruction type
•  workload gives frequency of each type

Type CPIi for type Frequency CPIi x freqIi

Arith/Logic 4 40% 1.6

Load 5 30% 1.5

Store 4 10% 0.4

branch 3 20% 0.6

 Average CPI: 4.1

53

Single/Multi-Cycle Summary

Single Cycle Datapath:
•  CPI = 1!!
•  Long cycle time L

 (critical path based)

Multiple Cycle Datapath:
•  Short cycle time!!
•  CPI = 3-5 L

Can we achieve a CPI of 1 (on average)
with a clock cycle time

similar to the multiple cycle datapath?

