Lecture 7:
Datapath

COS / ELE 375

Computer Architecture and Organization

Princeton University
Fall 2015

Prof. David August

Datapath

Datapath

“The component of the processor that performs
arithmetic operations” — P&H

Datapath

The collection of state elements, computation elements,
and interconnections that together provide a conduit for
the flow and transformation of data in the processor
during execution. - DIA

Pl—-—
CONTROL i(;— —

nAR
l

4

Ll i

MEMO RY

il

S
=
n\\%g
] H-
| 3
DUNANAN

Datapath - Part of the Microarchitecture

Architecture
e The ISA - the programmer’ s view of the machine
e Implementation independent, an interface

Microarchitecture
e The lower-level implementation of the ISA
e Design specific, an implementation

Example use of terminology
e Architectural state: Register r5
e Microarchitectural state: Carry bit on the 5t 1-bit ALU

Datapath Elements

e ALUs are just one datapath building block
e What about the other elements?

Computational Elements
e Combination Circuits o] Combinatonal |z,
e Outputs follow inputs
e Familiar Example: ALU

State Elements
e Sequential Circuits Hl]l —
| State re

» c—
=

- -
t 14 Ll

e Outputs change on clock edge
e Familiar Example: A Register —

Computation Element: ALU

e Combinational - you had better know how to design it by now!!!
o Refine for MIPS

e Zero equality test on all results - why?

e Set on less than for s1t instruction

ALU Control Function

\ 000 AND

Zero—» 001 OR
>ALU Result—— 010 add

_,/ 110 subtract
111 set on less than

Computation Element: Sign Extender

e 16 - 32 bit Sign extender
e Why is this necessary in MIPS?

© o

e Hint:
6 bits 5 bits 5 bits 5 bits 5 bits 6 bits
R: op rs rt rd shamt funct
I: op rs rt address / immediate
J: op target address

Implementation?

Computation Element: Adder

e Not an ALU, just add
 Why would we need this in MIPS to execute instructions?

~

> Add Sum——»

1

Computational Element: The Magical Mux

e Mux is short for Multiplexer (Think: selector)
e ninput lines (of any common width)

e m control wires to select

o n=2m

Control
~m

A~
iNg=>I1\/]
¢ |U == out
in == X
\/

Implementation?

State Element: Register File

e Microarchitecture to implement architectural state
e Built using D flip-flops
o MIPS:

* Need to be able to read two operands at once
e 2 source operands per instruction

(:5 Read
register 1 Read N
data 1
Register J _*5_> Read
numbers register 2
5 Registers > Data
\ Write
register
“ Read
—>
- data 2
Data< —» Write J
data
RegWrite

5-bits? 2 Reads? 1 Write?

State Element: Register File

14

Register Implementation

-
=t -
— Q
D ——e—
D latch
D D 0 Q D D
_latch

latch _

Falling edge triggered D flip-flop

State Element: Register File

Read Implementation

Read register
number 1

Read register
number 2

Register 0

Register 1

.- e

Register n - 1

Register n

h 4

.
™ M
» U =

» U -
b X

L

»

>

Register
numbers

(3 | Read
> ;
register 1 Read
5 | Read data 1
3 7| register 2
5 Registers
s Write
register
- Read
. data 2
Write
Data { —> data
RegWrite

Read data 1

Read data 2

> Data

State Element: Register File

Write Implementation

A ivif
write

Register number

Register data

Register
numbers

(3 | Read
> ;
register 1 Read
5 | Read data 1
3 7| register 2
5 Registers
s Write
register
- Read
. data 2
Write
Data { —> data
RegWrite

h 4

0
1
n-to-1
decoder
n-1

Register O
D

Ly

Register 1
D

egister n - 1

D

LYY

Register n
D

> Data

Know decoders

State Element: Data and Instruction Memory

e Microarchitectural element to hold the architectural
memory state

e See Appendix B for implementation details

MemWrite

, Instruction
address
—| Address Readl _,
data
Instruction—> Write Data
data memory

Instruction
memory

MemRead

State Element: The Program Counter

18

e To hold the architectural PC state
e Just like a single register

Our Complete Line of Products!

There may be others, but this is good for MIPS

Register
numbers

Instruction
address

Instruction
memory

Instruction =

N Read

ao,| Read

5 .
N Write

register 1

register 2
Registers

data 1

Read >

ALU control

Data

Control
Am

|n0—>§

MemWrite

—

Address

Write
data

Read
data

Data
memory

out

MemRead

xc<Z

register Read
o

data 2

Write in g

Data { — data

RegWrite

Fetching Instructions (no branching)

21

Read
address

Instruction
memory

Instruction

The ALU (R-Type) Instructions

22

6 bits

5 bits 5 bits

5 bits

5 bits 6 bits

R: op

rs rt

rd

shamt funct

Instruction

Read
register 1

Read

register 2
Reqgisters

Write '

register

Read
data 1

Read

Write data 2

data

er
result

Consider: r1=r2-r3

Load and Store Instructions

23

I: op rs rt address / immediate
Read
register 1 "
E“'.Lad —\
F\’Q{l(l (Idtd 1
Instruction register 2 Lero
- Registers ALU aLu = Read
‘_‘t'"'@?‘t rS Lt f— Address ift(w
“ng-\' el F\)Qa d C
Write N data 2 Gt
data dic
memory

Write
data

Consider:

M=M[r2-3]

Composition of Memory and R-Type Datapath

The Magic of the Mux

Instruction

Instruction

24

Instruction

Read
register 1 Read
Read data 1 o
register 2 -
~ Registers >ALU ALU
\‘"!”-mtq result
register RC‘a(_]
Write fdata 2
" data
Read
gister
register 1 Read
Fa’|u'|\71 'I‘,iT-,|]
register 2
,- Registers Read
write data 2
register
"A"l" I It ‘:‘
data

|~ —

»| Read
register 1 Read
Read data 1 -
" register 2 Zero —»
. Registers ALU aLu -
> :‘"L'”g:ltstcr result »| Address FE;,,atE:
-giste Read _ o
" data 2
- "|
memor
| write y
data
16 .
y 1 Sign
» Tlextend
ALU
>> w:tH Address Read
o ‘ data
M
u
Data X
N memory
Wit
data

Recall Fetch

25

PC

Read
address

Instruction
memory

Instruction

Now Add Instruction Fetch

26

_| Read

address

Instruction
memory

Instruction

Instruction

L 4

Read

register 1

Read
register 2

R gisters

Write
register

Write
data

result

Address

Write

| data

Read
data
Data
memory

Now Add Instruction Fetch

27

(ALU + MEM + Fetch)

>Add

4 e

L Read

address

Instruction
memory

> Read

register 1
Read

register

\llnul [| T. l:.‘
1 d [r_‘]

register 2

Instruction Writ
| : Write

Registers

Read
data 1
Read
data 2

Zero

DALU ALU

result

Address

data

Read
data

Data

|write memory

Data and Instruction memory?

Branch Instructions

I: op rs rt address / immediate

PC + 4 from instruction datapath e

Why shift left by 27 | =——mmmp

Branch target

> Add Sum

Read
register 1 Read

Instruction

Read data 1
register 2

Registers
Write
register Read
data 2

To branch
control logic

> ALU Zero

Write

data

Consider: Branch r1 ==0, TARGET

28

Add Branch to Datapath

(ALU + MEM + Fetch + Branch)

v

>\ 1 :

, ALl

4 —b/ >Addresut
Registers lﬂ

- . Read
F.\',‘_'j"ffj""i.,_. , *lregister 1 pead .
aadress Read ~ data T .

Read

_E: register 2 > Zero
Instruction ' ALU ALU
l‘!"‘s”l‘i[e F\ ea j . NG I+ \ 1 | ress
/ - r ‘] ['.' ‘U|[H 7 '7 l’ 1‘ ti:l
Data

reqgister data 2 V
Instruction J data u
\A/ -~ v
memory —p| WVIILE
’ data ® , R
Write Memory
. 1 o

data

Sign
extend

What will zero be connected to?

MIPS Instruction Quirk

e The Destination Register may be in different locations

e 11-15: Loads use rt

e 16-20: All R-Types use rd

6 bits 5 bits 5 bits 5 bits 5 bits 6 bits
R: op rs rt rd shamt funct
I: op rs rt address / immediate

30

Again, The Magic of the Mux!

31

PC

v

.y

[31-0]

Instruction [25-21]

Instruction [20-16]

Insnucﬂon[15—11l

u

o x

¥

* register 2

Read
data 1

Read

Write ata 2
nglSth
Write 4

> Add

v

Instruction [5-0]

ALU
result

oOxc<

Zero
) DAL AL
M result
u
X
0
.

Address

Write
data

Read
data

Data
memory

s 4

oxXc -

Ugh, what is going on here!?!

32

PC

N o
>Add 1 . M
ALU .
4 0
- >Add result
Instruction [25-21] | Read
Read " | registg
address Instruction [20-16] Reg i data 1
Instruction rister 2 Zero
(31-0] . fead : U AU Re
- M il data 2 result Address Read
Instructi . _ register M data
hstruction Instruction [15-11]| 3 Write U
memory & » data Registers é
wriite Data
#|ata Memory
Sign

Instruction [15-0]

s 4

o x:g —_

extend

Instruction [5-0]

Control vs. Datapath (Blurring the Line)

6 bits

5 bits

5 bits

5 bits

6 bits
funct

5 bits
shamt

op

IS

rt

rd

address / immediate

op

rt

33

4
y Read
] PC ot -
address

Instruction
[31 4

Instrucig

me g

1struction [25-21]

n

struction [15-1 ‘Il

struction [15-0]

register

Read
register 2
Write
register
Write

data

LEal
data 1

Read
data 2

Registers

16 { Sign
\ -
T extend

n

|

Instruction [5-0]

memory

What is Control?

34

Control

“The component of the processor that commands the
datapath, memory, and I/O devices according to the
instructions of the program.” — P&H

Control

The component of the processor that commands the
datapath, memory, and I/O devices according to the
instructions of the program. - DIA

Full Datapath with Control

Add
4
Instruction [31-26)
Instruction [25-21) Read
| Read > .
X = s
¥ addiess register 1 Read
Instruction [20-16]) Read data 1
Instruction I 5 regsh 'I 2 "
131-0) e Weit Registers l‘l-r.-..l 5 >I\ll| ALU Read
V wike daa Z > A ea(
Instruction 5 register M result Addre o
memon :
g Instruction [15-11) | * Wiite N
1 nte X [
7| data 1 Jata
. memaory
Yinte
data
¢ 16 12
= o - 4
Instruction [15-0) \ Sign |\
\ extend A)
—
Instruction [5-0)

Pl—-—
CONTROL i(;— —

nAR
l

4

Ll i

MEMO RY

il

S
=
n\\%g
] H-
| 3
DUNANAN

Summary and Next Steps

37

e The book doesn’ t define datapath well

e Computation and State elements compose datapath

e Look for reuse across instruction types

e Build minimal HW datapath with the magic of the mux

Next Steps

e Need to define control

e Understand Timing
e Single cycle
e Multi-cycle

e Understand how to implement control

For Next Time

38

e Review finite state machines:

J'- Outputs

Combinational logic

FYYYY)Y T T T T

State register

(L=

L S —
g

Inputs

Next state

