Lecture 7:
Datapath

COS / ELE 375

Computer Architecture and Organization

Princeton University
Fall 2015

Prof. David August

Datapath

Datapath

“The component of the processor that performs
arithmetic operations” — P&H

Datapath

The collection of state elements, computation elements,
and interconnections that together provide a conduit for
the flow and transformation of data in the processor
during execution. - DIA

Datapath - Part of the Microarchitecture

Architecture
e The ISA - the programmer’ s view of the machine
e Implementation independent, an interface

Microarchitecture
e The lower-level implementation of the ISA
e Design specific, an implementation

Example use of terminology
¢ Architectural state: Register r5
o Microarchitectural state: Carry bit on the 5% 1-bit ALU

Datapath Elements

¢ ALUs are just one datapath building block
e What about the other elements?

Computational Elements

e Combination Circuits Al e A

e OQutputs follow inputs

e Familiar Example: ALU

State Elements posesoge [
[State regiser]

¢ Outputs change on clock edge

¢ Sequential Circuits H‘H
e Familiar Example: A Register —

Computation Element: ALU

e Combinational - you had better know how to design it by now!!!
¢ Refine for MIPS

e Zero equality test on all results - why?

¢ Set on less than for s1t instruction

ALU control ALU Control Function
000 AND
001 OR
010 add
110 subtract

111 set on less than

Computation Element: Sign Extender

e 16 - 32 bit Sign extender
e Why is this necessary in MIPS?

© = @

e Hint:
6 bits 5 bits 5 bits 5 bits 5 bits 6 bits
R: ’ op | rs | rt | rd | shamt | funct |
I: ‘ op | rs | rt | address / immediate |
J: l op | target address |

Implementation?

Computation Element: Adder

e Not an ALU, just add
e Why would we need this in MIPS to execute instructions?

Add Sum—>

Computational Element: The Magical Mux

e Mux is short for Multiplexer (Think: selector)
e n input lines (of any common width)
e m control wires to select

e n=2m
Control
+~m
ing = \/
U out
in X

Implementation?

State Element: Register File

¢ Microarchitecture to implement architectural state
e Built using D flip-flops
e MIPS:

¢ Need to be able to read two operands at once

e 2 source operands per instruction

:5 Read
register 1 Read
data 1
Register | 5 | Read
numbers register 2
s Registers Data
\ Write
register Read
—>
Write data 2
Data data
RegWrite

5-bits? 2 Reads? 1 Write?

State Element: Register File

Register Implementation

D latch

_latch latch

Falling edge triggered D flip-flop

14

State Element: Register File

Read Implementation

:5 Read
register 1 Read|
data 1
Register 5 | Read ata
numbers register 2
5 Registers Data
N Write
register Read|
—
" data 2
Read register Data Write
number 1 /i\ data
T
Register 0 RegWrite
Register 1 M |
U = Read data 1
Register 1 - 1
Register n
./
Read register
number 2 /i\
L]
— M
U —— Read data 2
—/

State Element: Register File

Write Implementation

N Read
register 1 Read|
data 1
Register] 5| Read ata
numbers register 2
s Registers Data
Write
register
Read|
Write data 2
Data data
T
RegWrite
Write ‘
| 1O
Register (
1 —‘ D
to-1 D_
eqist r N
Register numbe jecoder | + R ter 1
D
n-1 —L
1 |:: Register 1
D
D Register
Register data !
Know decoders

State Element: Data and Instruction Memory

e Microarchitectural element to hold the architectural
memory state

e See Appendix B for implementation details

‘ MemWrite

»| Instruction
address
—>! Address Readl_—,
data
Instruction —> —,) write Data
data memory

Instruction
memory

MemRead

17

State Element: The Program Counter

¢ To hold the architectural PC state
¢ Just like a single register

18

Our Complete Line of Products!

There may be others, but this is good for MIPS

| MemWrite
Instruction
address read
—{ Address. ead]
datal
Instruction ==
Data
Instruction —| Wite
memory data memory
T
| MemRead
ntrol
5 [Rema Control
=1 register 1 Read| m
Register | _5,| Read data 1
numbers | | register 2 6 2
s | i Registers ing M Sign
register Read| | u out extend
data 2 X
oua{ —{ e iny
RegWrite

Fetching Instructions (no branching)

Instruction

Instruction
memory

21

The ALU (R-Type) Instructions

6 bits 5 bits 5 bits 5 bits 5 bits 6 bits
R: op | IS | rt | rd | shamt | funct |
Read
vead data 1 .
Instruction register 2))
— Registers ALU aLu
| Write I
register Read
Write data 2
data

22

Consider: r1=r2-r3

Load and Store Instructions

1: op | IS | rt | address / immediate |
Read
register 1 Read
Read data 1
Instruction register 2
— Reqisters
Write egisters Address Read
register Read data
Write @ data 2
e ln[i?ntSr
e
Write Y
data
16 .
N Sign

extend

Consider: r1=M[r2-3]

23

Composition of Memory and R-Type Datapath

The Magic of the Mux

| Read
register 1 Read
Read |l Read data 1
register 1 Instruction register 2
Read - Registers
Read data 1 Wiite Address Read
Instruction register 2 register Jead ata
Registers Wite data
Write —! data Data
register Read wie memory
Write data 2 data
|_‘ data 16
| Read
register 1
Read
Instruction register 2
4 Rec r
Write Lo Read
register data
M
Write u
Write
t
data L X
1em.
Write
data
1€ 32
4 Sign § &

2

Recall Fetch

Read
address

Instruction

Instruction
memory

25

Now Add Instruction Fetch

26

Instruction

Instruction

Now Add Instruction Fetch

27

(ALU + MEM + Fetch)

address

Instruction (4

Instruction
memory

Data and Instruction memory?

Branch Instructions

I: op

5 | n

| address / immediate

PC + 4 from instruction datapath s

Why shift left by 27?

N

Instruction

> Add Sum

Branch target

To branch

ALU Zero .
control logic

Read

register 1 Read
Read data 1
register 2

Registers

Write

register Rc‘agl
Write data 2
data

Consider: Branchr1 ==0, TARGET

Add Branch to Datapath
(ALU + MEM + Fetch + Branch)

Instructi

oss Read
lata[" |m
Dat X

rit mory

‘J:HM

nstructior
memory -

What will zero be connected to?

29

MIPS Instruction Quirk

¢ The Destination Register may be in different locations

e 11-15: Loads use rt
e 16-20: All R-Types use rd

6 bits 5 bits 5 bits 5 bits 5 bits 6 bits
R: op s rt | rd | shamt | funct |
I: op IS rt address / immediate

Again, The Magic of the Mux!

Instruction [25-21] Rea
register Read
Instruction [20-16] Read \data 1
Instruction 7 register 2 Read
(31-01 [Wi e Wiite bta 2 Address Read
_ u register data
Instruction [15-11] | x Write
1 0) [*|data__ gfisters
Write [?‘“(
- b= data Memory
ction [15-0) O f Sign 33 —
— T S extend

Instruction [5-0]

31

Ugh, what is going on here!?!

Instruction [25-21]
Read
address Instruction [20-16]
Instructior
3101 L.
M
Instruction Instruction [15-11] |
memory
Write Data
data Memory
Instruction [15-0] N
-
Instruction [5-0]

Control vs. Datapath (Blurring the Line)
6 bits 5 bits 5 bits 5 bits 5 bits 6 bits
R: | op | IS | rt | rd | shamt | funct |
I: | op | IS | rt | address / immediate |
Instruction [25-21]
EPs
Instruction [15-0]

What is Control?

Control
“The component of the processor that commands the
datapath, memory, and I/O devices according to the

instructions of the program.” — P&H

Control
The component of the processor that commands the
datapath, memory, and I/O devices according to the
instructions of the program. - DIA

Full Datapath with Control

—\\ _|
N\ S
\J ©
EIEEIEEUN
L. flrncton 2820 f
: G L
] - -
| e A — 1
/N . o e
—

35

Summary and Next Steps

The book doesn’ t define datapath well

Computation and State elements compose datapath
Look for reuse across instruction types

Build minimal HW datapath with the magic of the mux

Next Steps
¢ Need to define control

e Understand Timing
¢ Single cycle
o Multi-cycle
e Understand how to implement control

37

For Next Time

e Review finite state machines:

Combinational logic

State register

. 4

-
Inputs

}‘ Outputs

Next state

