Datapath

Lecture 7:
Datapath

COS / ELE 375

Computer Architecture and Organization

Princeton University
Fall 2015

Prof. David August

Datapath
“The component of the processor that performs
arithmetic operations” — P&H

Datapath
The collection of state elements, computation elements,
and interconnections that together provide a conduit for
the flow and transformation of data in the processor
during execution. - DIA

Datapath - Part of the Microarchitecture

Architecture 23
e The ISA - the programmer’ s view of the machine |
e Implementation independent, an interface

Microarchitecture
e The lower-level implementation of the ISA
» Design specific, an implementation

Example use of terminology
* Architectural state: Register r5
e Microarchitectural state: Carry bit on the 5™ 1-bit ALU

Datapath Elements

e ALUs are just one datapath building block

¢ What about the other elements?

Computational Elements
e Combination Circuits

e OQOutputs follow inputs
e Familiar Example: ALU

State Elements

¢ Sequential Circuits

e QOutputs change on clock edge
e Familiar Example: A Register

Combinational
7 Circuit

=

D

Combinational logi

[l

Input

Computation Element: Sign Extender

¢ Outputs

Computation Element: ALU

e Combinational - you had better know how to design it by now!!!
e Refine for MIPS

e Zero equality test on all results - why?

e Set on less than for s1t instruction

3 ALU control ALU Control Function
N 000 AND
001 OR
010 add
B 110 subtract
111 set on less than

Computation Element: Adder

e 16 > 32 bit Sign extender
e Why is this necessary in MIPS?

© = @

e Hint:
6 bits 5 bits 5 bits 5 bits 5 bits 6 bits
R: | op | rs | rt | rd | shamt | funct |
I: | op | IS | rt | address / immediate |
J: | op | target address |

Implementation?

e Not an ALU, just add
e Why would we need this in MIPS to execute instructions?

Add Sum—»

Computational Element: The Magical Mux State Element: Register File

e Mux is short for Multiplexer (Think: selector) * Microarchitecture to implement architectural state
e ninput lines (of any common width) . ;L;:lts using D flip-flops
. e :
¢ m control wires to select ¢ Need to be able to read two operands at once
e n=2M e 2 source operands per instruction
Control 5 [ong
m -~ register 1 R
ead_>
Register 5 | Read data 1
. numbers - reZ?sterZ
Ny . M 5 Registers Data
° Writ
ol u out - register Read
n, X Write data2[*
Data < — data
. RegWrite
Implementation?

5-bits? 2 Reads? 1 Write?

12

State Element: Register File State Element: Register File

Register Implementation

latch latch

Falling edge triggered D flip-flop

14

Read Implementation

Register
numbers

N Read

register 1

Read
o

register 2

S| write

register

Registers

Read|
data 1

Read
data 2

Read register

number 1

Register 0

Register 1

Register n - 1

Register n

Read register

number 2

Write
Data { > Jata

— Read data 1

—— Read data 2

RegWrite

Data

State Element: Register File

State Element: Data and Instruction Memory

Write Implementation

Register number

Register data

5

N Read
register 1 Read|
Regi 5 data 1
gister 5 Read
numbers register 2
5 Registers
5 Write
register Read
" data 2
Write
Data{—b data
RegWrite
Register O
1 D
lecoder | Register 1
D
1-1
D_ Register n -1
D
D
Know decoders

State Element: The Program Counter

Data

17

¢ Microarchitectural element to hold the architectural

memory state

e See Appendix B for implementation details

Instruction
address

Instruction
memory

Instruction

—>

|
‘ MemWrite
—| Address Read
data
_| Wiite Data
data memory
T
MemRead

Our Complete Line of Products!

18

e To hold the architectural PC state
e Just like a single register

PC—>

There may be others, but this is good for MIPS

—

Control

Fetching Instructions (no branching) The ALU (R-Type) Instructions

6 bits 5 bits 5 bits 5 bits 5 bits 6 bits

R: op I s | rt | rd | shamt | funct
Read
>Add register 1 Read
o data 1 "
4 iy) Rj_ad . Zer0
Instruction register 2
Registers >ALU ALU

.| Read Wri.t‘? . result
address register Read .
Write @ data 2
INSEIUCTION [r— data

Instruction
memory

Consider: 1 =r2-r3

21 22

Load and Store Instructions Composition of Memory and R-Type Datapath

The Magic of the Mux

1: op I TS | rt | address / immediate | —{t
cad
Read Read data 1
Read data 1 wie REOErS Address i
4 . data
Read Instruction egister 2 register Read
ead egisters Write data 2
" register 1 Read] data) e
cd ea Write
Read data 1 e e data
» :,a(- data N
Instruction register 2 N
Registers
Nrite 2 e
?’“I”It‘-v([‘l Address F)}-'ndttwl]
e T s
°gIs Read
Nrite data 2
21.‘{1'?1(# @ Data -
*| data
register 1 -
Write memory eg ® d
) data
data ead P
Instructio register 2 Ler
a — Registers g ALU 4
1\:) Writ d: kx “ ‘ I":Il.lllé » Address ng;;(:
reqgister M dla
* u
Write x
™ data Data
memory
\rit
late
16 32
A Sign i
¢

Consider: r1=M[r2-3] U

23 24

Recall Fetch Now Add Instruction Fetch

Rea
register 1 R
data 1
[Instructior '_’erw‘ r2 " Zerc
— nstruction . jisters Read AU Ay .
! Instruction e I data 2 . result Addre fod B
memory - ' , :
[l ’
PC | Read e
address ‘
O
[INSLIUCTION [—
Instruction
memory
25 26

Now Add Instruction Fetch Branch Instructions

(ALU + MEM + Fetch)

1: op | IS | rt | address / immediate
Add J PC + 4 trom instruction datapath s
dd
. > Add Sum Branch target
| Why shiftleft by 27 | =——y.
Read Registers
Read register 1 -
address Read -
Instruction register 2 2@ 1) Read
. Writ Read Address ~ Read Instruction | register 1 Read
register data 2 data M Read data 1
Instruction W u register 2
Write ! 9) £
memory "] data Dt : Registers >ALU Zero To branch
- Write Mmemory Write control logic
data register Read
16 Write data 2
A data
16
A Sign
N Tlextend

Data and Instruction memory? Consider: Branch r1 == 0, TARGET

27 28

MIPS Instruction Quirk

Add Branch to Datapath

(ALU + MEM + Fetch + Branch)
e The Destination Register may be in different locations

e 11-15: Loads use rt

l e 16-20: All R-Types use rd
6 bits 5 bits 5 bits 5 bits 5 bits 6 bits
R: | op | IS | rt | rd | shamt | funct |
i) ‘,““ I: | op | rs | rt | address / immediate |
Read LFm‘_' :
re ter 2
nstruction SN
i . 1 W
Instructior jister lata ¢ M
memory —] 1”: o
ate addr
st tior ; Read L,
Instru) jata '

What will zero be connected to?

30

Ugh, what is going on here!?!

Again, The Magic of the Mux!

Instruction [25-21] Instruction [25-21] Read
Read a egist ead
Read
Instruction [20-16] Read data 1 address Instruction [20-16] data 1
register 2 fend L zAerG Instruction Ister 2 Read) ZA'LIS
e _01 = -l
\.:\"ch-l ta 2 result pe# Address Rmi (31-01 \‘”{”‘C'U) data 2 !\14 result = Address Rﬁ:(j
{,{,Q‘\ “ o Instruction Instruction [15-11] {:}ql\ o u e
Vrite cmo) J Write L X
data memory data Registers 0
wiite Data wite Data
data memory ; data memory
. Instruction [15-0] W\'*"
| extend | extend
Instruction [5-0] Instruction [5-0]

N

31 32

Control vs. Datapath (Blurring the Line) What is Control?

6 bits 5 bits 5 bits 5 bits 5 bits 6 bits
R: | op | rs | rt | rd | shamt | funct |

Control
“The component of the processor that commands the
datapath, memory, and I/O devices according to the
instructions of the program.” — P&H

address / immediate |

: Control

The component of the processor that commands the
datapath, memory, and I/O devices according to the
adgaress Fpadi—ef instructions of the program. - DIA

34

33

Full Datapath with Control

N
>\\ ~ > M, ‘\-'—“\‘/
-/ _'\‘,'/:*/
ruction)
L los o st
__T_,r—_: e oY oMl L)
et G v || —'/ "‘
N\ ‘:‘4‘#\/

35

Summary and Next Steps

37

The book doesn’ t define datapath well

Computation and State elements compose datapath
Look for reuse across instruction types

Build minimal HW datapath with the magic of the mux

Next Steps
¢ Need to define control
e Understand Timing
¢ Single cycle
e Multi-cycle
¢ Understand how to implement control

For Next Time

38

e Review finite state machines:

:-~ Outputs

Combinational logic

Next state

State register

Inputs

