Lecture 7: Datapath

1

COS / ELE 375

Computer Architecture and Organization

Princeton University Fall 2015

Prof. David August

<u>Datapath</u>

"The component of the processor that performs arithmetic operations" – P&H

Datapath

The collection of state elements, computation elements, and interconnections that together provide a conduit for the flow and transformation of data in the processor during execution. - DIA

Datapath - Part of the Microarchitecture

Architecture

- The ISA the programmer's view of the machine
- Implementation independent, an interface

<u>Microarchitecture</u>

- The lower-level implementation of the ISA
- Design specific, an implementation

Example use of terminology

- Architectural state: Register r5
- Microarchitectural state: Carry bit on the 5th 1-bit ALU

Datapath Elements

- ALUs are just one datapath building block
- What about the other elements?

Computational Elements

- Combination Circuits
- Outputs follow inputs
- Familiar Example: ALU

State Elements

- Sequential Circuits
- Outputs change on clock edge
- Familiar Example: A Register

- Combinational you had better know how to design it by now!!!
- Refine for MIPS
 - Zero equality test on all results why?
 - Set on less than for slt instruction

Computation Element: ALU

Computation Element: Adder

- Not an ALU, just add
- Why would we need this in MIPS to execute instructions?

Outputs

Computation Element: Sign Extender

• $16 \rightarrow 32$ bit Sign extender

Computational Element: The Magical Mux

- Mux is short for Multiplexer (Think: selector)
- n input lines (of any common width)
- m control wires to select
- n = 2^m

Implementation?

- · Microarchitecture to implement architectural state
- Built using D flip-flops

Register

numbers

Data -

- MIPS:
 - Need to be able to read two operands at once
 - 2 source operands per instruction

⁵⁻bits? 2 Reads? 1 Write?

State Element: Register File

Falling edge triggered D flip-flop

State Element: Register File Read Implementation

State Element: Register File

Write Implementation

- Microarchitectural element to hold the architectural memory state
- See Appendix B for implementation details

State Element: The Program Counter

- To hold the architectural PC state
- Just like a single register

Our Complete Line of Products! There may be others, but this is good for MIPS

Fetching Instructions (no branching)

The ALU (R-Type) Instructions

	6 bits	5 bits	5 bits	5 bits	5 bits	6 bits
R:	op	rs	rt	rd	shamt	funct

Consider: r1 = r2 - r3

Load and Store Instructions

Consider: r1 = M[r2 - 3]

Composition of Memory and R-Type Datapath The Magic of the Mux

Now Add Instruction Fetch (ALU + MEM + Fetch)

Data and Instruction memory?

26

Branch Instructions

Add Branch to Datapath (ALU + MEM + Fetch + Branch)

What will zero be connected to?

MIPS Instruction Quirk

- The Destination Register may be in different locations
 - 11-15: Loads use rt
 - 16-20: All R-Types use rd

Ugh, what is going on here !?!

Again, The Magic of the Mux!

32

30

Control vs. Datapath (Blurring the Line)

What is Control?

<u>Control</u>

"The component of the processor that commands the datapath, memory, and I/O devices according to the instructions of the program." – P&H

<u>Control</u>

34

The component of the processor that commands the datapath, memory, and I/O devices according to the instructions of the program. - DIA

Full Datapath with Control

Summary and Next Steps

For Next Time

38

- The book doesn't define datapath well
- Computation and State elements compose datapath
- Look for reuse across instruction types
- Build minimal HW datapath with the magic of the mux

Next Steps

- Need to define control
- Understand Timing
 - Single cycle
 - Multi-cycle
- Understand how to implement control

• Review finite state machines:

