
1

Lecture 6:
Arithmetic

COS / ELE 375

Computer Architecture and Organization

Princeton University
Fall 2015

Prof. David August

2

Multiplication

Computing Exact Product of w-bit numbers x, y

•  Need 2w bits
Unsigned: 0 ≤ x * y ≤ (2w – 1)2 = 22w – 2w+1 + 1
Two’s Complement:
 min: x * y ≥ (–2w–1)(2w–1–1) = –22w–2 + 2w–1

 max: x * y ≤ (–2w–1)2 = 22w–2

•  Maintaining Exact Results
•  Need unbounded representation size
•  Done in software by arbitrary precision arithmetic packages
•  Also implemented in Lisp, ML, and other languages

3

Unsigned Multiplication in C

•  Standard Multiplication Function
•  Ignores high order w bits

•  Implements Modular Arithmetic
•  UMultw(u, v) = u · v mod 2w

• • •

• • •

u

v*

• • • u · v

• • •

True Product: 2*w bits

Operands: w bits

Discard w bits: w bits UMultw(u , v)

• • •

4

Unsigned Multiplication

Binary makes it easy:
•  0 => place 0 (0 x multiplicand)
•  1 => place a copy (1 x multiplicand)

Key sub-parts:
•  Place a copy or not
•  Shift copies appropriately
•  Final addition

5

Unsigned Shift-Add Multiplier (Version 1)

Straightforward approach:

Product

Multiplier

Multiplicand

64-bit ALU

Shift Left

Shift Right

Write
Control

32 bits

64 bits

64 bits

6

Algorithm (Version 1)

for (i = 0; i < 32; i++) {

 if(MULTIPLIER[0] == 1)
 PRODUCT = PRODUCT + MULTIPLICAND;

 MULTIPLICAND << 1;

 MULTIPLIER >> 1;
}

7

Unsigned Multiplier (Version 2)

Observation: Half of bits in the Multiplicand were always 0
Improvement: Use a 32-bit ALU (faster than a 64-bit ALU)
Shift product right instead of shifting multiplicand

Multiplicand

32-bit ALU
Shift Right

Write
Control

32 bits

32 bits

64 bits

Shift Right

Multiplier

Product

8

Algorithm (Version 2)

for (i = 0; i < 32; i++) {

 if(MULTIPLIER[0] == 1)
 PRODUCT[63:32] += MULTIPLICAND;

 PRODUCT >> 1;

 MULTIPLIER >> 1;
}

9

Product Multiplier

Unsigned Multiplier (Final Version)

Observation: Multiplier loses bits as Product gains them
Improvement: Share the same 64-bit register
Multiplier is placed in Product register at start

Multiplicand

32-bit ALU

Write
Control

32 bits

64 bits

Shift Right

10

Algorithm (Final Version)

PRODUCT[31:0] = MULTIPLIER;

for (i = 0; i < 32; i++) {
 if(PRODUCT[0] == 1)

 PRODUCT[63:32] += MULTIPLICAND;

 PRODUCT >> 1;
}

11

Signed Multiplication

Solution 1:
 Compute multiplication using magnitude, compute
product sign separately

Solution 2:

 Same HW as unsigned multiplier except sign extend
while shifting to maintain sign

Solution 3:

 A potentially faster way: Booth’s Algorithm…

12

Andrew D. Booth

•  During WWII: X-ray
crystallographer for British Rubber
Producers Research Association

•  Developed a calculating machine to
help analyze raw data

•  1947: At Princeton under John von
Neumann at IAS

•  Back in Britain: Developed
Automatic Relay Computer
with Magnetic Drum

13

Booth’s Algorithm Key Idea

Look for strings of 1’s:
 2 x 30 = 000102 x 0111102
 30 = -2 + 32
 011110 = - 000010 + 100000

To multiply:
•  Add 000010 four times (w/ shifts)

 - OR -
•  Add 100000 once and subtract 000010 once (w/ shifts)

When is this faster?

14

Booth’s Algorithm

To multiply:
 Each string of 1s: subtract at start of run, add after end

Current Bit Bit to the Right Explanation Example Operation
1 0 Start of 1s 00110 sub (00010)
1 1 Middle of 1s 00110 none
0 1 End of 1s 00110 add (01000)
0 0 Middle of 0s 00110 none

0 1 1 1 1 0
beginning of runend of run

middle of run

15

Multiplication: Summary

•  Lots more hardware than addition/subtraction
•  Large column additions “final add” are big delay if

implemented in naïve ways à Add at each step
•  Observe and optimize adding of zeros, use of space
•  Booth’s algorithm deals with signed and may be faster

•  Lots of other efforts made in speeding multiplication up
•  Consider multiplication by powers of 2
•  Special case small integers

16 “Float” by Frank Ortmanns

17

Representations

What can be represented in N bits?
 Unsigned: 0 à 2n-1
 Signed: -2n-1 à 2n-1 - 1

What about:
Very large numbers? 9,349,787,762,244,859,087,678
Very small numbers? 0.000000000000000000004691
Rationals? 2/3
Irrationals? SQRT(2)
Transcendentals? e, PI

Pattern Assignments

What should we do? Another method?

Bit Pattern Method 1 Method 2 Method 3

000 0 0 0
001 1 1 0.1
010 e 2 0.2
011 pi 4 0.3
100 4 8 0.4
101 -pi 16 0.5
110 -e 32 0.6
111 -1 64 0.7

19

The Binary Point

101.112 = 4 + 1 + ½ + ¼ = 5.75

Observations:
•  Divide by 2 by shifting point left

•  0.111111…2 is just below 1.0

•  Some numbers cannot be exactly represented well
 1/10 à 0.0001100110011[0011]*…2

20

Obvious Approach: Fixed Point

bi bi–1 b2 b1 b0 b–1 b–2 b–3 b–j• • •• • • .
1
2
4

2i–1

2i

• • •

• • •

1/2
1/4
1/8

2–j

bk ⋅2
k

k=− j

i
∑

21

Fixed Point

In w-bits (w = i + j):
•  use i-bits for left of binary point
•  use j-bits for right of binary point

Qualities:
•  Easy to understand
•  Arithmetic relatively easy to implement…
•  Precision and Magnitude:

 16-bits, i=j=8: 0 à 255.99609375
 Step size: 0.00390625

22

Another Approach: Scientific Notation

6.02 x 10
23

Exponent

radix (base) Mantissa

decimal point

Sign, magnitude

Sign, magnitude

s E M

•  In Binary:
radix = 2

value = (–1)s × M × 2E

•  How is this better than fixed point?

23

IEEE Floating Point

IEEE Standard 754
•  Established in 1980 as uniform standard for floating

point arithmetic
•  Supported by all major CPUs
•  In 99.999% of all machines used today

Driven by Numerical Concerns
•  Standards for rounding, overflow, underflow
•  Primarily numerical analysts rather than hardware types

defined standard

This is where it gets a little involved…

IEEE 754 Floating Point Standard

•  Single precision: 8 bit exponent, 23 bit significand
•  Double precision: 11 bit exponent, 52 bit significand

•  Significand M normally in range [1.0,2.0) à Imply 1
•  Exponent E biased exponent à B is bias (B = 2N-1 - 1)

N = (–1)s × 1.M × 2E - B

•  Bias allows integer comparison (almost)!
 0000…0000 is most negative exponent
 1111…1111 is most positive exponent

s E M

IEEE 754 Floating Point Example

Define Wimpy Precision as:

 1 sign bit, 4 bit exponent, 3 bit significand, B = 7

Represent: -0.75

s E M
02367

26

IEEE 754 Floating Point Special Exponents
 There’s more!

Normalized: E ≠ 000…0 and E ≠ 111…1
•  Recall the implied 1.xxxxx

Special Values: E = 111…1
•  M = 000…0:

•  Represents +/- ∞ (infinity)
•  Used in overflow

•  Examples: 1.0/0.0 = +∞, 1.0/-0.0 = -∞

•  Further computations with infinity possible
•  Example: X/0 > Y may be a valid comparison

27

IEEE 754 Floating Point Special Exponents

Normalized: E ≠ 000…0 and E ≠ 111…1
Special Values: E = 111…1
•  M ≠ 000…0:

•  Not-a-Number (NaN)
•  Represents invalid numeric value or operation
•  Not a number, but not infinity (e.q. sqrt(-4))
•  Examples: sqrt(–1), ∞ - ∞

•  NaNs propagate: f(NaN) = NaN

28

IEEE 754 Floating Point Special Exponents

Normalized: E ≠ 000…0 and E ≠ 111…1
•  Recall the implied 1.xxxxx

Denormalized: E = 000…0
•  M = 000…0

•  Represents value 0
•  Note the distinct values +0 and –0

29

IEEE 754 Floating Point Special Exponents

Normalized: E ≠ 000…0 and E ≠ 111…1
•  Recall the implied 1.xxxxx

Denormalized: E = 000…0
•  M ≠ 000…0

•  Numbers very close to 0.0
•  Lose precision as magnitude gets smaller
•  “Gradual underflow”

Exponent –Bias + 1
Significand 0.xxx…x2

30

Encoding Map

NaNNaN

+∞-∞ -0 +0 +Denorm +Normalized-Denorm-Normalized

Wimpy Precision

Define Wimpy Precision as:

 1 sign bit, 4 bit exponent, 3 bit significand, B = 7

E = 1-14: Normalized
E = 0: Denormalized
E = 15: Infinity/ NaN

s E M
02367

32

Dynamic Range

S E M exp value

0 0000 000 n/a 0
0 0000 001 -6 1/512
0 0000 010 -6 2/512
…
0 0000 110 -6 6/512
0 0000 111 -6 7/512
0 0001 000 -6 8/512
0 0001 001 -6 9/512
…
0 0110 110 -1 28/32
0 0110 111 -1 30/32
0 0111 000 0 1
0 0111 001 0 36/32
0 0111 010 0 40/32
…
0 1110 110 7 224
0 1110 111 7 240
0 1111 000 n/a inf

closest to zero

largest denorm
smallest norm

closest to 1 below

closest to 1 above

largest norm

Denormalized
numbers

Normalized
numbers

33 34

Is Rounding Important?

•  June 4, 1996: Ariane 5 rocket.

•  Converted a 64-bit floating point to a 16-bit integer.

•  The overflow wasn't handled properly.

35

Rounding Modes in IEEE 754

Always round to nearest, unless halfway

Round toward Zero
Round Down
Round Up

Nearest Even - Default for good reason
•  Others are statistically biased
•  Hard to get anything else without assembly

36

Rounding Binary Numbers

“Even” when least significant bit is 0

Halfway when bits to right of rounding position = 100…2

Example: Round to nearest 1/4 (2 bits right of point)

Value Binary Rounded Action Rounded
2-3/32 10.000112 10.002 (<1/2—down) 2
2-3/16 10.001102 10.012 (>1/2—up) 2-1/4
2-7/8 10.111002 11.002 (1/2—up) 3
2-5/8 10.101002 10.102 (1/2—down) 2-1/2

IEEE 754 Rounding

 "Floating Point numbers are like piles of sand; every
time you move one you lose a little sand, but you pick
up a little dirt."

•  How many extra bits?
•  IEEE Says: As if computed exactly then rounded.

•  Guard and round bit - 2 extra bits used for computation

•  Sticky bit - 3rd bit, set when a 1 is shifted to the right
Indicates difference between 0.10…00 and 0.10…01

38

Arithmetic

Comparison:
•  Nice property for 0 equality: All 0 bits means +0.
•  Same as integers except

•  Compare sign bits
•  Consider +0 == -0 and NaN’s

Addition:
1.  Align decimal point by shifting (remember implied 1)
2.  Add significands
3.  Normalize significand of sum
4.  Round using rounding bits

39

Arithmetic

Multiplication:
1.  Add exponents - be careful of double bias!
2.  Multiply significands
3.  Normalize significand of product
4.  Round using rounding bits
5.  Compute sign of product, set sign bit

40 *Nobody was hurt in the making of this photograph

41

The FDIV (Floating Point Divide) Bug

•  July 1994: Intel discovers the bug in Pentium
•  Sept. 1994: Math professor (re)discovers it
•  Nov. 1994: Intel says it’s no biggie for non-techies
•  Dec. 1994: IBM says it is, stops selling Pentium PCs
•  Dec. 1994: Intel apologizes, offers recall

•  Recall cost roughly $300M dollars
•  Fix in July 1994 would have cost $300K dollars

•  April 1997: Intel finds, announces, fixes another floating
point bug

42

What was the FDIV Bug?

•  Floating point DIVide
•  Uses a lookup table to guess next 2 bits of quotient
•  Table had bad values

Enrichment: Devise such a scheme from what is available
in the book and your knowledge of algebra.

At Intel, quality is job 0.999999998.
Q: How many Pentium designers does it take to screw in a

light bulb?
A: 1.99995827903, but that's close enough for

nontechnical people.

43

This lecture was brought to you by Apple.

44

The Importance of Standards

For over 20 years, everyone has been using a standard

that took scientists and engineers years to perfect.

The IEEE 754 standard is more ubiquitous than just about

anything out there.

In defining Java, Sun ignored it…

How Java’s Floating-Point Hurts Everyone Everywhere
by W. Kahan and J. Darcy
http://www.cs.berkeley.edu/~wkahan/JAVAhurt.pdf

(since been fixed)

45

Summary

•  Phew! We made it through Arithmetic!

•  Datapath and Control next time!!

