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Multiplication 
 

Computing Exact Product of w-bit numbers x, y 
 
•  Need 2w bits 
Unsigned: 0 ≤ x * y ≤ (2w – 1)2  =  22w – 2w+1 + 1 
Two’s Complement: 
  min:   x * y ≥ (–2w–1)(2w–1–1)  =  –22w–2 + 2w–1 

  max:  x * y ≤ (–2w–1)2  =  22w–2 

•  Maintaining Exact Results 
•  Need unbounded representation size 
•  Done in software by arbitrary precision arithmetic packages 
•  Also implemented in Lisp, ML, and other languages 
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Unsigned Multiplication in C 
 

•  Standard Multiplication Function 
•  Ignores high order w bits 

•  Implements Modular Arithmetic 
•  UMultw(u, v) = u · v mod 2w 

• • • 

• • • 

u

v* 

• • • u · v

• • • 

True Product: 2*w  bits

Operands: w bits

Discard w bits: w bits UMultw(u , v)

• • • 
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Unsigned Multiplication 
 

Binary makes it easy: 
•  0 => place 0     ( 0 x multiplicand) 
•  1 => place a copy  ( 1 x multiplicand) 

Key sub-parts: 
•  Place a copy or not 
•  Shift copies appropriately 
•  Final addition 
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Unsigned Shift-Add Multiplier (Version 1) 
 

Straightforward approach: 

Product 

Multiplier 

Multiplicand 

64-bit ALU 

Shift Left 

Shift Right 

Write 
Control 

32 bits 

64 bits 

64 bits 
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Algorithm (Version 1) 
 

 
for (i = 0; i < 32; i++) { 

 if(MULTIPLIER[0] == 1) 
  PRODUCT = PRODUCT + MULTIPLICAND; 

 MULTIPLICAND << 1; 

 MULTIPLIER >> 1; 
} 
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Unsigned Multiplier (Version 2) 
 

Observation: Half of bits in the Multiplicand were always 0 
Improvement: Use a 32-bit ALU (faster than a 64-bit ALU) 
Shift product right instead of shifting multiplicand 

Multiplicand 

32-bit ALU 
Shift Right 

Write 
Control 

32 bits 

32 bits 

64 bits 

Shift Right 

Multiplier 

Product                    
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Algorithm (Version 2) 
 

 
for (i = 0; i < 32; i++) { 

 if(MULTIPLIER[0] == 1) 
  PRODUCT[63:32] += MULTIPLICAND; 

 PRODUCT >> 1; 

 MULTIPLIER >> 1; 
} 
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Product         Multiplier 

Unsigned Multiplier (Final Version) 
 

Observation: Multiplier loses bits as Product gains them 
Improvement: Share the same 64-bit register 
Multiplier is placed in Product register at start 

Multiplicand 

32-bit ALU 

Write 
Control 

32 bits 

64 bits 

Shift Right 
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Algorithm (Final Version) 
 

 
PRODUCT[31:0] = MULTIPLIER; 

for (i = 0; i < 32; i++) { 
 if(PRODUCT[0] == 1) 

  PRODUCT[63:32] += MULTIPLICAND; 

 PRODUCT >> 1; 
} 
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Signed Multiplication 
 

Solution 1: 
 Compute multiplication using magnitude, compute 
product sign separately 

 
Solution 2: 

 Same HW as unsigned multiplier except sign extend 
while shifting to maintain sign 

 
Solution 3: 

 A potentially faster way: Booth’s Algorithm… 
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Andrew D. Booth 
 

•  During WWII: X-ray 
crystallographer for British Rubber 
Producers Research Association 

•  Developed a calculating machine to 
help analyze raw data 

•  1947: At Princeton under John von 
Neumann at IAS 

•  Back in Britain: Developed  
Automatic Relay Computer  
with Magnetic Drum 
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Booth’s Algorithm Key Idea 
 

Look for strings of 1’s: 
 2 x 30 = 000102 x 0111102         
 30 = -2 + 32  
 011110 = - 000010 + 100000 

 
To multiply: 
•  Add 000010 four times (w/ shifts)   

 - OR - 
•  Add 100000 once and subtract 000010 once (w/ shifts) 

When is this faster? 
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Booth’s Algorithm 
 

To multiply:  
 Each string of 1s:  subtract at start of run, add after end 

Current Bit Bit to the Right Explanation Example Operation 
1 0 Start of 1s 00110 sub (00010) 
1 1 Middle of 1s 00110 none 
0 1 End of 1s 00110 add (01000) 
0 0 Middle of 0s 00110 none 

0 1 1 1 1 0
beginning of runend of run

middle of  run
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Multiplication: Summary 
 

•  Lots more hardware than addition/subtraction 
•  Large column additions “final add” are big delay if 

implemented in naïve ways à Add at each step 
•  Observe and optimize adding of zeros, use of space 
•  Booth’s algorithm deals with signed and may be faster 

•  Lots of other efforts made in speeding multiplication up 
•  Consider multiplication by powers of 2 
•  Special case small integers 

16 “Float” by Frank Ortmanns 
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Representations 
 

What can be represented in N bits? 
 Unsigned:  0 à 2n-1 
 Signed:  -2n-1 à 2n-1 - 1 

What about: 
Very large numbers?  9,349,787,762,244,859,087,678 
Very small numbers?  0.000000000000000000004691 
Rationals?     2/3 
Irrationals?    SQRT(2) 
Transcendentals?   e, PI 

Pattern Assignments 
 

What should we do?   Another method? 

Bit Pattern Method 1 Method 2 Method 3 

000 0 0 0 
001 1 1 0.1 
010 e 2 0.2 
011 pi 4 0.3 
100 4 8 0.4 
101 -pi 16 0.5 
110 -e 32 0.6 
111 -1 64 0.7 
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The Binary Point 
 

101.112 = 4 + 1 + ½ + ¼ = 5.75 

Observations: 
•  Divide by 2 by shifting point left 

•  0.111111…2 is just below 1.0 

•  Some numbers cannot be exactly represented well  
  1/10 à 0.0001100110011[0011]*…2 
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Obvious Approach: Fixed Point 
 

bi bi–1 b2 b1 b0 b–1 b–2 b–3 b–j• • •• • • .
1
2
4

2i–1

2i

• • •

• • •

1/2
1/4
1/8

2–j

bk ⋅2
k

k=− j

i
∑
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Fixed Point 
 

In w-bits (w = i + j): 
•  use i-bits for left of binary point 
•  use j-bits for right of binary point 
 
Qualities: 
•  Easy to understand 
•  Arithmetic relatively easy to implement… 
•  Precision and Magnitude: 

  16-bits, i=j=8: 0 à 255.99609375 
  Step size: 0.00390625 
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Another Approach: Scientific Notation 
 

6.02 x 10 
23 

Exponent 

radix (base) Mantissa 

decimal point 

Sign, magnitude 

Sign, magnitude 

s E M 

•  In Binary:    
radix = 2 

value = (–1)s ×  M  ×  2E   

 
•  How is this better than fixed point? 
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IEEE Floating Point 
 

IEEE Standard 754 
•  Established in 1980 as uniform standard for floating 

point arithmetic 
•  Supported by all major CPUs 
•  In 99.999% of all machines used today 

Driven by Numerical Concerns 
•  Standards for rounding, overflow, underflow 
•  Primarily numerical analysts rather than hardware types 

defined standard 

This is where it gets a little involved… 

IEEE 754 Floating Point Standard 
 
•  Single precision:  8 bit exponent, 23 bit significand 
•  Double precision:  11 bit exponent, 52 bit significand 

•  Significand M  normally in range [1.0,2.0) à Imply 1 
•  Exponent E biased exponent à B is bias (B = 2N-1 - 1) 

N = (–1)s ×  1.M  ×  2E - B   

•  Bias allows integer comparison (almost)! 
  0000…0000 is most negative exponent 
  1111…1111 is most positive exponent 

s E M 



IEEE 754 Floating Point Example 
 
Define Wimpy Precision as:   

 1 sign bit, 4 bit exponent, 3 bit significand, B = 7 
 
Represent: -0.75 

s E M 
02367
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IEEE 754 Floating Point Special Exponents 
 There’s more! 

Normalized: E ≠ 000…0 and E ≠ 111…1 
•  Recall the implied 1.xxxxx 
 
Special Values: E = 111…1 
•  M = 000…0: 

•  Represents +/- ∞ (infinity) 
•  Used in overflow 

•  Examples: 1.0/0.0 = +∞,  1.0/-0.0 = -∞ 

•  Further computations with infinity possible 
•  Example: X/0 > Y may be a valid comparison 
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IEEE 754 Floating Point Special Exponents 
 

Normalized: E ≠ 000…0 and E ≠ 111…1 
Special Values: E = 111…1 
•  M ≠ 000…0: 

•  Not-a-Number (NaN)  
•  Represents invalid numeric value or operation 
•  Not a number, but not infinity (e.q. sqrt(-4)) 
•  Examples: sqrt(–1), ∞ - ∞

•  NaNs propagate: f(NaN) = NaN 
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IEEE 754 Floating Point Special Exponents 
 

Normalized: E ≠ 000…0 and E ≠ 111…1 
•  Recall the implied 1.xxxxx 

Denormalized: E = 000…0 
•  M = 000…0 

•  Represents value 0 
•  Note the distinct values +0 and –0 
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IEEE 754 Floating Point Special Exponents 
 

Normalized: E ≠ 000…0 and E ≠ 111…1 
•  Recall the implied 1.xxxxx 

Denormalized: E = 000…0 
•  M ≠ 000…0 

•  Numbers very close to 0.0 
•  Lose precision as magnitude gets smaller 
•  “Gradual underflow”  

    
Exponent   –Bias + 1 
Significand   0.xxx…x2 
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Encoding Map 
 

NaNNaN

+∞-∞ -0 +0 +Denorm +Normalized-Denorm-Normalized

Wimpy Precision 
 
Define Wimpy Precision as:   

 1 sign bit, 4 bit exponent, 3 bit significand, B = 7 
 
 
 
E = 1-14: Normalized 
E = 0: Denormalized 
E = 15: Infinity/ NaN 
 
 

s E M 
02367
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Dynamic Range 
 

S  E    M  exp  value   
 
0 0000 000  n/a  0 
0 0000 001  -6  1/512 
0 0000 010  -6  2/512 
… 
0 0000 110  -6  6/512 
0 0000 111  -6  7/512 
0 0001 000  -6  8/512 
0 0001 001   -6  9/512 
… 
0 0110 110  -1  28/32 
0 0110 111  -1  30/32 
0 0111 000  0  1 
0 0111 001  0  36/32 
0 0111 010  0  40/32 
… 
0 1110 110  7  224 
0 1110 111  7  240 
0 1111 000  n/a  inf 

closest to zero

largest denorm
smallest norm

closest to 1 below

closest to 1 above

largest norm

Denormalized
numbers

Normalized
numbers
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Is Rounding Important? 
 

•  June 4, 1996: Ariane 5 rocket. 
 
•  Converted a 64-bit floating point to a 16-bit integer.  

•  The overflow wasn't handled properly. 
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Rounding Modes in IEEE 754 
 

Always round to nearest, unless halfway 
 
Round toward Zero 
Round Down 
Round Up 
 
Nearest Even - Default for good reason 
•  Others are statistically biased 
•  Hard to get anything else without assembly 
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Rounding Binary Numbers 
 

“Even” when least significant bit is 0 
 
Halfway when bits to right of rounding position = 100…2 

Example: Round to nearest 1/4 (2 bits right of point) 

Value  Binary  Rounded  Action              Rounded 
2-3/32  10.000112  10.002  (<1/2—down)  2 
2-3/16  10.001102  10.012  (>1/2—up)  2-1/4 
2-7/8  10.111002  11.002  (1/2—up)  3 
2-5/8  10.101002  10.102  (1/2—down)  2-1/2 



IEEE 754 Rounding 
 

 "Floating Point numbers are like piles of sand; every 
time you move one you lose a little sand, but you pick 
up a little dirt." 

•  How many extra bits?    
•  IEEE Says: As if computed exactly then rounded. 

•  Guard and round bit - 2 extra bits used for computation 

•  Sticky bit - 3rd bit, set when a 1 is shifted to the right 
Indicates difference between 0.10…00 and 0.10…01 
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Arithmetic 
 

Comparison: 
•  Nice property for 0 equality: All 0 bits means +0. 
•  Same as integers except  

•  Compare sign bits 
•  Consider +0 == -0 and NaN’s 

Addition: 
1.  Align decimal point by shifting (remember implied 1) 
2.  Add significands 
3.  Normalize significand of sum 
4.  Round using rounding bits 
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Arithmetic 
 

Multiplication: 
1.  Add exponents - be careful of double bias! 
2.  Multiply significands 
3.  Normalize significand of product 
4.  Round using rounding bits 
5.  Compute sign of product, set sign bit 

40 *Nobody was hurt in the making of this photograph 
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The FDIV (Floating Point Divide) Bug 
 

•  July 1994: Intel discovers the bug in Pentium 
•  Sept. 1994: Math professor (re)discovers it 
•  Nov. 1994: Intel says it’s no biggie for non-techies  
•  Dec. 1994: IBM says it is, stops selling Pentium PCs 
•  Dec. 1994: Intel apologizes, offers recall 

•  Recall cost roughly $300M dollars 
•  Fix in July 1994 would have cost $300K dollars 

•  April 1997: Intel finds, announces, fixes another floating 
point bug 
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What was the FDIV Bug? 
 

•  Floating point DIVide 
•  Uses a lookup table to guess next 2 bits of quotient 
•  Table had bad values 

Enrichment: Devise such a scheme from what is available 
in the book and your knowledge of algebra. 

 

At Intel, quality is job 0.999999998.  
Q: How many Pentium designers does it take to screw in a 

light bulb? 
A: 1.99995827903, but that's close enough for 

nontechnical people.  
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This lecture was brought to you by Apple. 
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The Importance of Standards 
 
For over 20 years, everyone has been using a standard 

that took scientists and engineers years to perfect.   
 
The IEEE 754 standard is more ubiquitous than just about 

anything out there. 
 
In defining Java, Sun ignored it… 
 
How Java’s Floating-Point Hurts Everyone Everywhere  
by W. Kahan and J. Darcy 
http://www.cs.berkeley.edu/~wkahan/JAVAhurt.pdf 
 
(since been fixed) 
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Summary 
 

•  Phew!  We made it through Arithmetic! 

•  Datapath and Control next time!! 


