Lecture 6:
Arithmetic

COS / ELE 375

Computer Architecture and Organization

Princeton University
Fall 2015

Prof. David August

Unsigned Multiplication in C

Multiplication

Computing Exact Product of w-bit numbers x, y

e Need 2w bits
Unsigned: 0 S x *y < (2W—-1)2 = 22w 2w+l 1
Two’ s Complement:
min: X ¥y 2 (=2%1)(2W1-1) = —22w2 4 2wl
max: X ¥y < (=2w1)2 = 22w=2

e Maintaining Exact Results
¢ Need unbounded representation size
¢ Done in software by arbitrary precision arithmetic packages
¢ Also implemented in Lisp, ML, and other languages

Unsigned Multiplication

w111

Operands: w bits

* v [111

True Product: 2*w bits u-v [

UMult, (u,v) 111

Discard w bits: w bits

e Standard Multiplication Function
¢ Ignores high order w bits

e Implements Modular Arithmetic
e UMult,(u, v) = u v mod 2%

Binary makes it easy:
e 0=>place0 (0 x multiplicand)
e 1 => place a copy (1 x multiplicand)

Key sub-parts:

* Place a copy or not
 Shift copies appropriately
* Final addition

Unsigned Shift-Add Multiplier (Version 1) Algorithm (Version 1)

Straightforward approach:
for (1 = 0; i < 32; i++) {

—e

64 bits PRODUCT = PRODUCT + MULTIPLICAND;
MULTIPLICAND << 1;
N Multiplier | Shife Right .
64-bit ALU 2 bits MULTIPLIER >> 1;
}
| Product | Control
64 bits
Unsigned Multiplier (Version 2) Algorithm (Version 2)
Observation: Half of bits in the Multiplicand were always 0
Improvement: Use a 32-bit ALU (faster than a 64-bit ALU) for (i = 0; i < 32; i++) {
Shift product right instead of shifting multiplicand if (MULTIPLIER[O0] == 1)
_ PRODUCT [63:32] += MULTIPLICAND;
Multiplicand PRODUCT >> 1:
32 bits E— _
Multiplier | Shift Right MULTIPLIER >> 1;

32-bit ALU gﬂ)it’s/
— Shift Right
64 bits Write

Unsigned Multiplier (Final Version)

Algorithm (Final Version)

Observation: Multiplier loses bits as Product gains them
Improvement: Share the same 64-bit register
Multiplier is placed in Product register at start

Multiplicand
32 bits
32-bit ALU
E— Shift Right
| Product | Multiplier
64 bits

Signed Multiplication

10

PRODUCT[31:0] = MULTIPLIER;
for (1 = 0; 1 < 32; i++) {
if (PRODUCT[0] == 1)
PRODUCT [63:32] += MULTIPLICAND;

PRODUCT >> 1;

Andrew D. Booth

11

Solution 1:

Compute multiplication using magnitude, compute
product sign separately

Solution 2:

Same HW as unsigned multiplier except sign extend
while shifting to maintain sign

Solution 3:
A potentially faster way: Booth’ s Algorithm...

12

e During WWII: X-ray
crystallographer for British Rubber
Producers Research Association

e Developed a calculating machine to
help analyze raw data

e 1947: At Princeton under John von
Neumann at IAS

e Back in Britain: Developed
Automatic Relay Computer
with Magnetic Drum

Booth’ s Algorithm Key Idea

13

Look for strings of 1’s:
2 x 30 = 00010, x 011110,
30=-2+ 32
011110 = - 000010 + 100000

To multiply:
e Add 000010 four times (w/ shifts)

-OR -
e Add 100000 once and subtract 000010 once (w/ shifts)

When is this faster?

Multiplication: Summary

Booth’ s Algorithm

15

¢ Lots more hardware than addition/subtraction

e Large column additions “final add” are big delay if
implemented in naive ways - Add at each step

e Observe and optimize adding of zeros, use of space
e Booth’ s algorithm deals with signed and may be faster

e Lots of other efforts made in speeding multiplication up
¢ Consider multiplication by powers of 2
e Special case small integers

To multiply:
Each string of 1s: subtract at start of run, add after end
Current Bit | Bit to the Right | Explanation | Example | Operation
1 0 Start of 1s 00110 | sub (00010)
1 1 Middle of 1s | 00110 none
0 1 End of 1s 00110 | add (01000)
0 0 Middle of Os | 00110 none

middle of run

end of run

O\1f 1

1 0

14

beginning of un

Representations

Pattern Assignments

17

What can be represented in N bits?

Unsigned: 0 »> 2"-1

Signed: -2m1 > 2n1-1

What about:

Very large numbers?
Very small numbers?
Rationals?
Irrationals?
Transcendentals?

The Binary Point

9,349,787,762,244,859,087,678
0.000000000000000000004691
2/3

SQRT(2)

e, PI

Bit Pattern | Method 1 | Method 2 | Method 3
000 0 0 0
001 1 1 0.1
010 e 2 0.2
011 pi 4 0.3
100 4 8 0.4
101 -pi 16 0.5
110 -e 32 0.6
111 -1 64 0.7

What should we do? Another method?

Obvious Approach: Fixed Point

19

101.11, =4+ 1+ %2 + Va = 5.75

Observations:

e Divide by 2 by shifting point left

e 0.111111..., is just below 1.0

e Some numbers cannot be exactly represented well
1/10 - 0.0001100110011[0011]*...,

4 ibk ok
‘ [o

b, b, **s by, b, byeb, b, b, **s b

—
o |

1/8

i

2

20

Fixed Point

Another Approach: Scientific Notation

21

In w-bits (w =i + {):
e use i-bits for left of binary point
e use j-bits for right of binary point

Qualities:
e Easy to understand
¢ Arithmetic relatively easy to implement...
e Precision and Magnitude:
16-bits, i=j=8: 0 > 255.99609375
Step size: 0.00390625

IEEE Floating Point

22

; i Exponent
decimal point Sign, magnitude
23
6.02 x 10
Mantissa radix (base)

Sign, magnitude
e In Binary:
radix = 2
value = (-1)sx M x 2E

L=] E I M

e How is this better than fixed point?

IEEE 754 Floating Point Standard

23

IEEE Standard 754

e Established in 1980 as uniform standard for floating

point arithmetic
e Supported by all major CPUs
e In 99.999% of all machines used today

Driven by Numerical Concerns
e Standards for rounding, overflow, underflow

e Primarily numerical analysts rather than hardware types

defined standard

N=(-1)sx 1.M x 2E-B

Single precision: 8 bit exponent, 23 bit significand
Double precision: 11 bit exponent, 52 bit significand

Significand M normally in range [1.0,2.0) - Imply 1
Exponent E biased exponent > B is bias (B = 2N-1 - 1)

L=] E I M

Bias allows integer comparison (almost)!
0000...0000 is most negative exponent
1111...1111 is most positive exponent

IEEE 754 Floating Point Example

Define Wimpy Precision as:
1 sign bit, 4 bit exponent, 3 bit significand, B = 7

Represent: -0.75

76 32 0
[s] E M

IEEE 754 Floating Point Special Exponents

IEEE 754 Floating Point Special Exponents

26

There s more!
Normalized: E = 000...0 and E = 111...1

e Recall the implied 1.xxxxx

Special Values: E = 111...1

e M =000..0:

e Represents +/- o0 (infinity)

Used in overflow

Examples: 1.0/0.0 = +o0, 1.0/-0.0 = -©
Further computations with infinity possible
Example: X/0 > Y may be a valid comparison

IEEE 754 Floating Point Special Exponents

27

Normalized: E = 000...0 and E = 111...1
Special Values: E = 111...1
e M= 000...0:
¢ Not-a-Number (NaN)
Represents invalid numeric value or operation
Not a number, but not infinity (e.q. sqrt(-4))
Examples: sqrt(—1), o« —
NaNs propagate: f(NaN) = NaN

28

Normalized: E = 000...0 and E = 111...1

e Recall the implied 1.xxxxx

Denormalized: E = 000...0

e M=000..0
e Represents value 0
¢ Note the distinct values +0 and -0

IEEE 754 Floating Point Special Exponents

29

Normalized: E = 000...0 and E = 111...1

e Recall the implied 1.xxxxx

Denormalized: E = 000...0

e M= 000..0
e Numbers very close to 0.0
e Lose precision as magnitude gets smaller
« “Gradual underflow”

Exponent —Bias + 1
Significand 0.XXX...Xy

Wimpy Precision

Encoding Map

L1 -Normalized ; -Denorm -0;!-0 +DenormI +Normalized '||‘°|°
11

30

Dynamic Range

Define Wimpy Precision as:
1 sign bit, 4 bit exponent, 3 bit significand, B = 7

76
[s] E | M [

E = 1-14: Normalized
E = 0: Denormalized
E = 15: Infinity/ NaN

S E M exp value

0 0000 000 n/a 0

0 0000 001 -6 1/512 «— closest to zero
Denormalized 0 0000 010 -6 2/512
numbers
0 0000 110 -6 6/512
0 0000 111 -6 7/512 «— largest denorm
............ 56T 666 - S R e oo St
0 0001 o001 -6 9/512
0 0110 110 -1 28/32
0 0110 111 -1 30/32 «— closest to 1 below
Normalized 0 0111 000 0 1
numbers 0 0111 001 0O 36/32 — closest to 1 above
0 0111 o010 0 40/32
0 1110 110 7 224
0 1110 111 7 240 +«— largest norm

0 1111 000 n/a inf

32

Is Rounding Important?

e June 4, 1996: Ariane 5 rocket.
e Converted a 64-bit floating point to a 16-bit integer.

e The overflow wasn't handled properly.

34

Rounding Modes in IEEE 754 Rounding Binary Numbers

Always round to nearest, unless halfway “Even” when least significant bit is 0

Round toward Zero Halfway when bits to right of rounding position = 100...,
Round Down

Round Up

Example: Round to nearest 1/4 (2 bits right of point)
Nearest Even - Default for good reason
« Others are statistically biased Value Binary Rounded Action Rounded

. . 2-3/32 : } 1/2—d 2
» Hard to get anything else without assembly 2_3§16 18 8821;2 18 8(1)2 E:ljz_ug\)/vn) 2-1/4

2-7/8 10.11100, 11.00, (1/2—up) 3
2-5/8 10.10100, 10.10, (1/2—down) 2-1/2

35 36

IEEE 754 Rounding

"Floating Point numbers are like piles of sand; every
time you move one you lose a little sand, but you pick
up a little dirt."

How many extra bits?
IEEE Says: As if computed exactly then rounded.

Guard and round bit - 2 extra bits used for computation

Sticky bit - 3" bit, set when a 1 is shifted to the right
Indicates difference between 0.10...00 and 0.10...01

Arithmetic

Arithmetic

Multiplication:

1.

i b

39

Add exponents - be careful of double bias!
Multiply significands

Normalize significand of product

Round using rounding bits

Compute sign of product, set sign bit

Comparison:
e Nice property for 0 equality: All 0 bits means +0.

e Same as integers except
e Compare sign bits
o Consider +0 == -0 and NaN’s

Addition:

1. Align decimal point by shifting (remember implied 1)
2. Add significands

3. Normalize significand of sum

4. Round using rounding bits

38

%0 *Nobody was hurt in the making of this photograph

The FDIV (Floating Point Divide) Bug

a1

e July 1994: Intel discovers the bug in Pentium

e Sept. 1994: Math professor (re)discovers it

e Nov. 1994: Intel says it’ s no biggie for non-techies
e Dec. 1994: IBM says it is, stops selling Pentium PCs
e Dec. 1994: Intel apologizes, offers recall

e Recall cost roughly $300M dollars
e Fix in July 1994 would have cost $300K dollars

e April 1997: Intel finds, announces, fixes another floating
point bug

What was the FDIV Bug?

42

e Floating point DIVide
e Uses a lookup table to guess next 2 bits of quotient
e Table had bad values

Enrichment: Devise such a scheme from what is available
in the book and your knowledge of algebra.

At Intel, quality is job 0.999999998.

Q: How many Pentium designers does it take to screw in a
light bulb?

A: 1.99995827903, but that's close enough for
nontechnical people.

The Importance of Standards

43

This lecture was brought to you by Apple.

J

44

For over 20 years, everyone has been using a standard
that took scientists and engineers years to perfect.

The IEEE 754 standard is more ubiquitous than just about

anything out there. %/‘é/

o——

In defining Java, Sun ignored it...

How Java’s Floating-Point Hurts Everyone Everywhere
by W. Kahan and J. Darcy
http://www.cs.berkeley.edu/~wkahan/JAVAhurt.pdf

(since been fixed)

Summary

a5

e Phew! We made it through Arithmetic!

e Datapath and Control next time!!

