
1

Lecture 3:
The Instruction Set Architecture (cont.)

COS / ELE 375

Computer Architecture and Organization

Princeton University
Fall 2015

Prof. David August

4

Review: Instructions

Computers process information
•  Input/Output (I/O)
•  State (memory)
•  Computation (processor)

•  Instructions instruct processor to manipulate state
•  Instructions instruct processor to produce I/O in the

same way

Input Output

State

Computation

Typical modern machine has this architectural state:
•  Main Memory
•  Registers
•  Program Counter

Architectural – Part of the programmer�s interface
(implementation likely to have additional state)

5

Review: State

PC
10

Review: Instructions

An ADD Instruction:
 add r1 = r2 + r3 (assembly)

Parts of the Instruction:
•  Opcode (verb) – what operation to perform
•  Operands (noun) – what state to manipulate
•  Source Operands – where values come from
•  Destination Operand – where to deposit data values

Opcode Operands

7

Review: Instructions

36: add r1 = r2 + r3
40: sub r4 = r5 + r6
44: load r7 = M[r8]
48: store M[r9] = r10
48: branch r11 > 0, 56
52: jump 36
56: halt

8

Topics For Today

•  Function Calls and Calling Convention
•  Big and Little Endian
•  Addressing Modes
•  Pseudo-ops
•  Instruction Set Variety
•  RISC vs. CISC

9

10

Function Calls

Recall Our Example:

10: �Hello\n� ; data in memory
36: arg1 = 10 ; argument memory address is 10
40: r1 = 10
44: r1 = r1 - 1
48: call printf ; printf(arg1)
48: branch r1 > 0, 44
52: halt

What state must be passed to function?
What state must be passed back from function?
What state must be preserved across call?
Whose responsibility is it?

Cheesy
Function

Demo

11

Calling Convention

•  Calling convention - standard defined for architecture

•  Register component of calling convention:
Name Register number Usage

$zero 0 the constant value 0
$v0-$v1 2-3 values for results and expression evaluation
$a0-$a3 4-7 arguments
$t0-$t7 8-15 temporaries
$s0-$s7 16-23 saved
$t8-$t9 24-25 more temporaries
$gp 28 global pointer
$sp 29 stack pointer
$fp 30 frame pointer
$ra 31 return address

12

Calling Convention: Stack Frames

FP
Saved Argument

Registers

Saved RA,
Callee Saved
Registers, FP

Local Growth
SP

Higher Memory Addresses

Lower Memory Addresses

Frame Pointer:
stable base to
access data in

stack frame

Stack Pointer:
grows and shrinks

as necessary

13

The Life of a Function Call

1.  Push to stack important values in temp registers: caller

saved ($t0, $t9)
2.  Place the return address in agreed upon reg/stack ($ra)
3.  Place parameters in agreed upon reg/stack ($a0-$a3)
4.  Jump to procedure

1.  Allocate new stack frame ($fp, $sp)
2.  Push registers: callee saved ($s0-$s7, $ra, old $fp)
3.  Do the work of the procedure
4.  Place return value in agreed upon location ($v0, $v1)
5.  Pop callee saved values ($s0-$s7, $ra, old $fp)
6.  Deallocate stack frame ($fp, $sp)
7.  Return to return address

5.  Restore caller saved values ($t0-$t9)
6.  Continue

14

Implementing a Function Call

•  Special call instruction on processor does some work

•  Alternatively, program does all the work
•  Use store, load, and move instructions to save data
•  Use control flow instructions to jump to the function
•  MIPS has no call instruction
•  Push $s1 and $s2:

 M[$sp - 4] = $s1
 M[$sp - 8] = $s2
 $sp = $sp - 8

•  Either way, calling convention must be respected

15

16

Memory Addressing

View memory as a one-dimensional array

1980+: Elements of array are 8-bits

We say �byte addressable�

Assuming 32-bit words:

1.  Can a word start at any address?

MIPS: no, aligned, 2 Least Significant Bits (LSB) are 0
x86: yes

2.  How are bytes of word laid out?
MIPS/IA-64: Big or Little Endian
x86: Little Endian

Address Data

0 8 bits of data

1 1 byte of data

2 2 nibbles of data

3 ¼ word of data

… …

FFFFFFFF 8 bits of data

?

17

Endian

•  Little Endian: least-significant byte is stored in the
location with the lowest address (little end first)

•  Big Endian: most-significant byte is stored in the lowest
address (big end first)

Address 0000 0001 0002 0003
Byte # 0 1 2 3

Address 0000 0001 0002 0003
Byte # 3 2 1 0

3 2 1 0

18

Endian Origin

•  Gulliver's Travels by Jonathan Swift

Two countries go to war over which end of soft-boiled egg should
be eaten first - the big or little end

19

What does this program do?

#include <stdio.h>

main() {
 unsigned int a;
 unsigned char *p;

 a = 0xabcd1234;
 p = (unsigned char *) &a;

 fprintf(stdout, �%x\n�, *p);
}

20

21

Addressing Modes

•  Data/state for instructions can be anywhere:
•  In memory, encoded in instructions
•  In memory data area
•  In registers

•  Data an be specified in many ways:
load r1 = M[0] ! r1 = DEADBEEF
load r1 = M[r0] ! r1 = DEADBEEF
load r1 = M[r0 + 1] ! r1 = 0
load r1 = M[M[1]] ! r1 = DEADBEEF

Address Data

0 DEADBEEF
1 0
2 471A471B

•  Small constants are used quite frequently (50% of operands)
 e.g., A = A + 5;
 B = B + 1;
 C = C - 18;

•  Options:
1.  Put 'typical constants' in binary/memory and load them.
2.  Create hard-wired registers (like $0/$zero) for constants.

3.  Immediates: Encode constants in the instruction

•  MIPS Instructions:

 addi $29, $29, 4
 slti $8, $18, 10
 andi $29, $29, 6
 ori $29, $29, 4

3

Immediates

23

Register and Direct Addressing

•  Direct/Absolute Addressing: address is immediate
Example:

 load r1 = M[1500]

•  Register: register number is immediate

•  Useful for addressing locations fixed during execution
•  Branch target addresses
•  C global variable and static variable memory locations

24

Register Indirect and Displacement Addressing

•  Register Indirect Addressing: address from register
Example:

 load r1 = M[r2]

Useful for pointers

•  Displacement: register + immediate
Example:

 load r1 = M[r2 + 100]

Useful for addressing locations in static array
Useful for structs on heap (dynamically allocated)

25

Register Indirect and Displacement Addressing

•  Index/Base Register Addressing: 2 registers
Example:

 load r1 = M[r2 + r3]

Useful for accessing dynamic offsets into dynamic structs/arrays

•  Memory Indirect Addressing: address in memory
Example:

 load r1 = M[M[r2]]
 load r1 = M[M[2000]]

Useful for dereferencing pointers in structs such as next fields in
linked list

26

PC-Relative

•  PC-Relative: like base + displacement, implied base
 Allows longer displacement immediate, why?

 Used for branch instructions:
 jump [- 8] ; jump back 2 instructions

 Assembly uses labels:
 FooBar:
 add r1 = r2 + r3
 jump FooBar

 Assembler or linker determine actual the immediate…

27

Other, Crazy Modes

•  Scaled: address from registers/immediates, some scaled
Example:

 load r1 = M[100 + r2 + r3 * d]

d is defined by instruction

•  You are bound to see others
•  Make up your own…

28

Addressing Modes

Immediate add r1 = r2 + 5
Register add r1 = r2 + r3
Direct load r1 = M [4000]
Register Indirect add r1 = r2 + M[r2]
Displacement load r1 = M[r2 + 4000]
Indexed/Base add r1 = r3 + M[r2 + r3]
Memory Indirect load r1 = M[M[r2]]
PC Relative branch r1 < r3, 1000
Scaled load r1 = M[100 + r3 + r4 * d]

29

Memory Addressing Mode Usage?
(ignore immediate/register mode)
A few programs measured:
Displacement: 42% avg, 32% to 66%
Direct: 33% avg, 17% to 43%
Register Indirect: 13% avg, 3% to 24%

Scaled: 7% avg, 0% to 16%
Memory Indirect: 3% avg, 1% to 6%
Other: 2% avg, 0% to 3%

75% Displacement + Direct
88% Displacement + Direct + Register Indirect

Optimizations…

31

Review: MIPS Instruction Set

•  MIPS – SGI Workstations, Nintendo, Sony…

State:
•  32-bit addresses to memory (32-bit PC)
•  32 32-bit Registers
•  A �word� is 32-bits on MIPS
•  Register $0 ($zero) always has the value 0
•  By convention, certain registers are used for certain

things – more next time…

32

Review: MIPS Instruction Set

•  Add: add $t1 = $t2 + $t3
•  Subtract: sub $t1 = $t2 + $t3
•  Load Word: lw $t1, 100 ($t2)
•  Store Word: sw $t1, 100 ($t2)
•  Jump: j 100

•  Branch Not Equal: bne $t1, $t2, 100
•  Branch Equal: beq $t1, $t2, 100

•  Why no �blt� instruction?

•  Branch changes the flow of instructions through the processor
•  We say that branch instructions are �control flow instructions�
•  Control Flow: test values to make decisions

•  Example:

 if (i!=j) beq $s4, $s5, Label1
 h=i+j; add $s3, $s4, $s5
 j Label2

 else Label1:
 h=i-j; sub $s3, $s4, $s5

 Label2:
 ...

Control Flow

•  Why no blt?
•  New instruction:

 if $s1 < $s2 then

 $t0 = 1
 slt $t0, $s1, $s2 else
 $t0 = 0

•  Can use this instruction to build a "blt�
•  Assembler has �blt�, but assembler needs a free

register to hold temporary value.
•  Assembler uses Register Convention just like in calling

convention

2

Control Flow

35

MIPS Encodings
32-bits/Instruction

•  Formats:

•  Addresses are 32 bits, immediates are not!

•  How do control flow instructions handle this?

•  How do we handle this with load and store instructions?

 op rs rt 16 bit address
 op 26 bit address

I

J

MIPS Immediates

MIPS:

MIPS operands

Name Example Comments

$s0-$s7, $t0-$t9, $zero, Fast locations for data. In MIPS, data must be in registers to perform

32 registers $a0-$a3, $v0-$v1, $gp, arithmetic. MIPS register $zero always equals 0. Register $at is
$fp, $sp, $ra, $at reserved for the assembler to handle large constants.

Memory[0], Accessed only by data transfer instructions. MIPS uses byte addresses, so

2
30

 memory Memory[4], ..., sequential words differ by 4. Memory holds data structures, such as arrays,

words Memory[4294967292] and spilled registers, such as those saved on procedure calls.

MIPS:
 MIPS assembly language
Category Instruction Example Meaning Comments

add add $s1, $s2, $s3 $s1 = $s2 + $s3 Three operands; data in registers

Arithmetic subtract sub $s1, $s2, $s3 $s1 = $s2 - $s3 Three operands; data in registers

add immediate addi $s1, $s2, 100 $s1 = $s2 + 100 Used to add constants
load word lw $s1, 100($s2) $s1 = Memory[$s2 + 100] Word from memory to register
store word sw $s1, 100($s2) Memory[$s2 + 100] = $s1 Word from register to memory

Data transfer load byte lb $s1, 100($s2) $s1 = Memory[$s2 + 100] Byte from memory to register
store byte sb $s1, 100($s2) Memory[$s2 + 100] = $s1 Byte from register to memory
load upper immediate lui $s1, 100 $s1 = 100 * 216 Loads constant in upper 16 bits

branch on equal beq $s1, $s2, 25 if ($s1 == $s2) go to
PC + 4 + 100

Equal test; PC-relative branch

Conditional

branch on not equal bne $s1, $s2, 25 if ($s1 != $s2) go to
PC + 4 + 100

Not equal test; PC-relative

branch set on less than slt $s1, $s2, $s3 if ($s2 < $s3) $s1 = 1;
else $s1 = 0

Compare less than; for beq, bne

set less than
immediate

slti $s1, $s2, 100 if ($s2 < 100) $s1 = 1;
else $s1 = 0

Compare less than constant

jump j 2500 go to 10000 Jump to target address
Uncondi- jump register jr $ra go to $ra For switch, procedure return
tional jump jump and link jal 2500 $ra = PC + 4; go to 10000 For procedure call

•  Assembly provides convenient symbolic representation
•  Make it readable to that feeble race of humans
•  Text, destination first, single opcode

•  Machine language is the underlying reality
•  Bits/Numbers
•  MIPS: destination in middle, opcode split

•  Assembly can provide 'pseudo-ops'
•  Example:

 �move $t0, $t1�

 Can be implemented using �add $t0, $t1, $zero�

•  For performance, examine real instructions

Assembly vs. Machine Language

40

41

List of Instruction Sets

•  Sun Microsystem�s SPARC
•  IBM/Motorola�s PowerPC
•  Hewlett-Packard�s PA-RISC
•  Intel�s x86
•  DEC Alpha
•  Motorola�s 68xxx
•  Intel�s IA-64
•  SGI�s MIPS
•  ARM
•  SuperH
•  TI�s C6x
•  …

42

How are they different?

•  ISA Class
•  Assembly
•  Encodings
•  RISC vs. CISC
•  State
•  Addressing Modes

Different answers a result of different design goals!

43

Basic ISA Classes

Accumulator (1 register):
 �add A�: accumulator = accumulator + mem[A]

Stack (Think HP calculator):
 �add�: push(pop() + pop())

General Purpose Register, Register-Memory:

 �add r1, M[r2]�: r1 = r1 + M[r2]

GPR, Load/Store (AKA Register-Register):
 �add r1 r2 r3�: r1 = r2 + r3

MIPS

44

Instruction Encoding Widths

Variable:

Fixed:

Hybrid:

…
…

45

Instruction Widths

•  MIPS & ARM: Fixed instruction width (32 bits)

•  Variable instruction width impact on implementation?

Instruction
Memory

add $3, $2, $1

Instruction
Memory

46

State and Addressing Modes

•  Register Count
•  ~8 Integer Registers: x86
•  32 Integer Registers: MIPS
•  128 Integer Registers: IA-64

•  What size is ideal?

•  Addressing Modes
•  Lots - x86
•  A Few - MIPS, IA-64

•  Which is better?

47

Great Debate: CISC vs. RISC

•  CISC: Complex Instruction Set Computer

•  RISC: Reduced Instruction Set Computer

CISC RISC

48

The RISC Design Philosophy

KEEP DESIGN SIMPLE!

•  Keep number of instruction types small
•  Use easier to manipulate fixed length instructions
•  Do simple instructions faster
•  Use only a few key addressing modes

49

The CISC Design Philosophy

MAKE MACHINE EASY TO PROGRAM!

•  Support for frequent tasks

•  Functions: Provide a �call� instruction, save registers
•  Strided Array Access: Provide special addressing mode

•  Make each instruction do lots of work
•  Less explicit state necessary
•  Fewer instructions necessary

50

Arguments

•  RISC
•  Clearly superior, that is why they are covered in the textbook
•  Load/Store architectures dominate new architectures
•  Easier to add advanced performance enhancements
•  Smaller design teams necessary

•  CISC
•  Binaries are smaller (x86 is 20% smaller than MIPS)
•  Machines are faster in practice
•  Almost all processors used in desktop computers are CISC
•  Clearly the winner, because you probably use one now

What do you think? Who is winning or who has won?

51

List of Instruction Sets

•  Sun Microsystem�s SPARC
•  IBM/Motorola�s PowerPC
•  Hewlett-Packard�s PA-RISC
•  Intel�s x86
•  DEC Alpha
•  Motorola�s 68xxx
•  Intel�s IA-64
•  SGI�s MIPS
•  ARM
•  SuperH
•  TI�s C6x
•  …

52

List of Successful Instruction Sets

•  Intel�s x86

This lecture was brought to you by Intel Corporation.

x86: A Dominant Architecture

•  See your textbook for a more detailed description

•  Complexity:
•  Instructions from 1 to 17 bytes long
•  One operand must act as both a source and destination
•  One operand can come from memory
•  Complex addressing modes

 Example: �base or scaled index with 8 or 32 bit displacement�

•  Saving grace:
•  The most frequently used instructions are not too difficult to build
•  Compilers avoid the portions of the architecture that are slow

�what the 80x86 lacks in style is made up in quantity,
making it beautiful from the right perspective� -- unknown

x86: An Evolving Architecture

•  1978: Intel announces 8086 (16 bit architecture)
•  1980: 8087 floating point coprocessor is added
•  1982: 80286 increases address space to 24 bits, new instructions
•  1985: 80386 extends to 32 bits, new addressing modes
•  1989-1995: 80486, Pentium, Pentium Pro add instructions
•  1997: MMX is added

�This history illustrates the impact of the �golden handcuffs� of
compatibility�

�adding new features as someone might add clothing to a packed bag�

�an architecture that is difficult to explain and impossible to love�

55

Summary and Next Time

Summary:
•  Function Calls and Calling Convention
•  Big and Little Endian
•  Addressing Modes
•  Pseudo-ops
•  Instruction Set Variety
•  RISC vs. CISC

•  Next Time: Performance!
•  Read: Chapters 1, 2, and 3

