Lecture 3:
The Instruction Set Architecture (cont.)

COS / ELE 375

Computer Architecture and Organization

Princeton University
Fall 2015

Prof. David August

Review: Instructions

Computers process information State
e Input/Output (I/0) o
o State (memory)

e Computation (processor)

Input Output

e Instructions instruct processor to manipulate state

¢ Instructions instruct processor to produce I/O in the
same way

Review: State

Typical modern machine has this architectural state:
e Main Memory

e Registers

e Program Counter

Architectural — Part of the programmer’ s interface
(implementation likely to have additional state)



Review: Instructions

An ADD Instruction:
addrl =r2 +r3 (assembly)

Opcode Operands

Parts of the Instruction:

e Opcode (verb) — what operation to perform

e Operands (noun) — what state to manipulate

e Source Operands — where values come from

e Destination Operand — where to deposit data values

Review: Instructions

36:addrl=r2+1r3
40: subrd =r5 + r6
44: load r7 = M[ r8 ]
48: storeM[ r9 ] =rl10
48: branch r11 > 0, 56
52: jump 36

56: halt

Topics For Today

e Function Calls and Calling Convention
e Big and Little Endian

¢ Addressing Modes

¢ Pseudo-ops

e Instruction Set Variety

e RISC vs. CISC



Function Calls

10

Recall Our Example:
10: “Hello\n”

36: argl = 10

40:rl =
44:r1 =

10
ri-1

48: call printf
48: branch rl > 0, 44

52: halt

A

; data in memory

argument memory address is 10

; printf(argl)

What state must be passed to function?

What state must be passed back from function?
What state must be preserved across call?
Whose responsibility is it?

Calling Convention

11

e Calling convention - standard defined for architecture

e Register component of calling convention:

Name |Register number Usage
$zero 0 the constant value 0
$v0-$vl 2-3 values for results and expression evaluation
$a0-$a3 4-7 arguments
$t0-$t7 8-15 temporaries
$s0-$s7 16-23 saved
$t8-5t9 24-25 more temporaries
$gp 28 global pointer
$sp 29 stack pointer
Sfp 30 frame pointer
Sra 31 return address




Calling Convention: Stack Frames

12

Higher Memory Addresses

(P — T
Saved Argument Frame Pointer:
Registers stable base to
access data in
Saved RA,
Callee Saved stack frame
Registers, FP || |
Local Growth Stack Pointer:
[Sp ] : grows and shrinks
as necessary

Lower Memory Addresses

The Life of a Function Call

13

1.

w

Push to stack important values in temp registers: caller
saved ($t0, $t9)

Place the return address in agreed upon reg/stack ($ra)
Place parameters in agreed upon reg/stack ($a0-$a3)
Jump to procedure

Allocate new stack frame ($fp, $sp)

Push registers: callee saved ($s0-$s7, $ra, old $fp)
Do the work of the procedure

Place return value in agreed upon location ($v0, $v1)
Pop callee saved values ($s0-$s7, $ra, old $fp)
Deallocate stack frame ($fp, $sp)

. Return to return address

Restore caller saved values ($t0-$t9)

Continue

Nouhwbhe=

Implementing a Function Call

14

Special call instruction on processor does some work

Alternatively, program does all the work
e Use store, load, and move instructions to save data
¢ Use control flow instructions to jump to the function
e MIPS has no call instruction
e Push $s1 and $s2:
M[$sp-4]=$sl
M[ $sp - 8] = $s2
$sp = $sp - 8

Either way, calling convention must be respected



Memory Addressing

View memory as a one-dimensional array

1980+: Elements of array are 8-bits

We say “byte addressable”

Assuming 32-bit words:

1. Can a word start at any address?
MIPS: no, aligned, 2 Least Significant Bits (LSB) are 0

x86: yes

2. How are bytes of word laid out?
MIPS/IA-64: Big or Little Endian

x86: Little Endian

16

Endian

Address Data
0 8 bits of data
1 1 byte of data
2 2 nibbles of data
3 Ya word of data
FFFFFFFF | 8 bits of data

_?

[3]2]1]0]

¢ Little Endian: least-significant byte is stored in the
location with the lowest address (little end first)

Address

0000

0001

0002

0003

Byte #

0

1

2

3

e Big Endian: most-significant byte is stored in the lowest
address (big end first)

Address

0000

0001

0002

0003

Byte #

3

17




Endian Origin

o Gulliver's Travels by Jonathan Swift

Two countries go to war over which end of soft-boiled egg should
be eaten first - the big or little end

i

18

What does this program do?

#include <stdio.h>

main() {
unsigned int a;

unsigned char *p;

Oxabcdl234;

(unsigned char *) &a;

a
|

fprintf (stdout, “%x\n”, *p);

19




Addressing Modes

o Data/state for instructions can be anywhere:
e In memory, encoded in instructions
¢ In memory data area
e In registers
¢ Data an be specified in many ways:
loadrl = M[ 0] = rl = DEADBEEF
load r1 = M[ r0 ] - r1 = DEADBEEF
loadrl =M[r0+1]>r1=0
loadrl =M[M[1]]~> rl = DEADBEEF

Address Data
0 DEADBEEF
1 0
2 471A471B

Immediates

e Small constants are used quite frequently (50% of operands)
eg., A=A+5;
B=B+1;
C=C-18;
e Options:
1. Put 'typical constants' in binary/memory and load them.
2. Create hard-wired registers (like $0/$zero) for constants.

3. Immediates: Encode constants in the instruction
e  MIPS Instructions:
addi $29, $29, 4
slti $8, $18, 10

andi $29, $29, 6
ori $29, $29, 4

Register and Direct Addressing

o Direct/Absolute Addressing: address is immediate
Example:
load r1 = M[ 1500 ]

e Register: register number is immediate

o Useful for addressing locations fixed during execution
¢ Branch target addresses
e C global variable and static variable memory locations



Register Indirect and Displacement Addressing

o Register Indirect Addressing: address from register
Example:
load r1 = M[r2 ]
Useful for pointers
e Displacement: register + immediate
Example:
load r1 = M[ r2 + 100]
Useful for addressing locations in static array

Useful for structs on heap (dynamically allocated)

24

Register Indirect and Displacement Addressing

¢ Index/Base Register Addressing: 2 registers
Example:
loadrl =M[r2 +r3]

Useful for accessing dynamic offsets into dynamic structs/arrays
e Memory Indirect Addressing: address in memory
Example:
loadrl =M[M[r2]]
load r1 = M[ M[ 2000 ] ]

Useful for dereferencing pointers in structs such as next fields in
linked list

25

PC-Relative

o PC-Relative: like base + displacement, implied base
Allows longer displacement immediate, why?

Used for branch instructions:
jump[-8] ; jump back 2 instructions

Assembly uses labels:
FooBar:
addrl =r2 +1r3
jump FooBar

Assembler or linker determine actual the immediate...

26



Other, Crazy Modes

27

e Scaled: address from registers/immediates, some scaled
Example:
load r1 = M[ 100 + r2 + r3 * d]

d is defined by instruction

e You are bound to see others
e Make up your own...

Addressing Modes

28

Immediate addrl=r2+5

Register addrl =r2 4+ 13

Direct load r1 = M [ 4000 ]

Register Indirect addrl =r2+ M[r2]
Displacement load r1 = M[ r2 + 4000 ]
Indexed/Base addrl =r3+M[r2 +r3]
Memory Indirect loadrl =M[ M[r2]]

PC Relative branch r1 < r3, 1000

Scaled load r1 = M[ 100 + r3 + r4 * d]

Memory Addressing Mode Usage?

29

(ignore immediate/register mode)
A few programs measured:

Displacement: 42% avg, 32% to 66%
Direct: 33% avg, 17% to 43%
Register Indirect: 13% avg, 3% to 24%
Scaled: 7% avg, 0% to 16%
Memory Indirect: 3% avg, 1% to 6%
Other: 2% avg, 0% to 3%

75% Displacement + Direct
88% Displacement + Direct + Register Indirect

Optimizations...



Review: MIPS Instruction Set

31

o MIPS — SGI Workstations, Nintendo, Sony...

State:

e 32-bit addresses to memory (32-bit PC)

e 32 32-bit Registers

e A “word” is 32-bits on MIPS

¢ Register $0 ($zero) always has the value 0

¢ By convention, certain registers are used for certain
things — more next time...

Review: MIPS Instruction Set

32

e Add: add $t1 = $t2 + $t3

e Subtract: sub $t1 = $t2 + $t3
e Load Word: Iw $t1, 100 ($t2)
e Store Word: sw $t1, 100 ($t2)
e Jump: j 100

e Branch Not Equal: bne $t1, $t2, 100
e Branch Equal: beq $t1, $t2, 100

¢ Why no “blt” instruction?

N



Control Flow

e Branch changes the flow of instructions through the processor
e We say that branch instructions are “control flow instructions”
e Control Flow: test values to make decisions

e Example:
if (i'=j) beq $s4, $s5, Labell
h=i+j; add $s3, $s4, $s5
j Label2
else Labell:
h=i-j; sub $s3, $s4, $s5
Label2:

Control Flow

e Why no blt?
e New instruction:

if $sl1 < $s2 then

St0 =1
slt $t0, $sl1, $s2 else
St0 = 0

e (Can use this instruction to build a "o1t”

e Assembler has “blt”, but assembler needs a free
register to hold temporary value.

e Assembler uses Register Convention just like in calling
convention

MIPS Encodings

35

32-bits/Instruction

6 bits 5 bits 5 bits 5 bits 5 bits 6 bits
R: | op I rs I rt I rd I shamt I funct |
I: | op I rs I rt ‘ address / immediate |
J: | op ‘ target address |

op: basic operation of the instruction (opcode)

rs: first source operand register

rt: second source operand register

rd: destination operand register

shamt: shift amount

funct: selects the specific variant of the opcode (function code)
address: offset for load/store instructions (+/-2'%)

immediate: constants for immediate instructions



MIPS Immediates

e Formats:

l op | 16 bit address ‘

I rt |
J l op | 26 bit address ‘

rs |

¢ Addresses are 32 bits, immediates are not!
¢ How do control flow instructions handle this?

e How do we handle this with load and store instructions?

MIPS:

MIPS operands

Name Example Comments
$s0-$s7, $t0-$t9, S$zero| Fastlocations for data. In MIPS, data must be in registers to perform
32 registers | $a0-$a3, $v0-Svl, Sgp, arithmetic. MIPS register $zero always equals 0. Register $at is
$fp, $sp, Sra, S$at reserved for the assembler to handle large constants.
Memory[0], Accessed only by data transfer instructions. MIPS uses byte addresses, so
30
2 memory| Memory[4], ..., sequential words differ by 4. Memory holds data structures, such as arrays,
words Memory[4294967292] and spilled registers, such as those saved on procedure calls.
MIPS bly |
Category Instruction Example Meaning Comments
add add $s1, $s2, $s3 $sl = $s2 + $s3 Three operands; data in registers
Arithmetic subtract sub $sl, $s2, $s3  |$s1 = $s2 - $s3 Three operands; data in registers
add immediate addi $s1, $s2, 100 |$sl = $s2 + 100 Used to add constants
load word lw $sl, 100($s2) $s1 = Memory[$s2 + 100]|Word from memory to register
store word sw_ $s1, 100($s2) Memory[$52 + 100] = $s1_|Word from register to memory
Data transfer |load byte lb  $s1, 100($s2) $s1 = Memory[$s2 + 100]|Byte from memory to register
store byte sb  $s1, 100($s2) Memory[$52 + 100] = $s1 |Byte from register to memory
load upper immediate | Lui $s1, 100 $s1=100%2" Loads constant in upper 16 bits
branch on equal beg $sl, $s2, 25 if (5s1 == $s2)goto Equal test; PC-relative branch
PC +4 + 100
branch on notequal |bne $s1, $s2, 25  |if($s1 != $s2)goto Not equal test; PC-relative
o PC +4 + 100
Conditional
branch set on less than slt $sl, $s2, $s3 [if($s2 < $s3) $sl=1 Compare less than; for beg, bne
else $s1 =0
set less than slti  $sl, $s2, 100 [if($s2 < 100) $sl=1; Compare less than constant
immediate else $s1 =0
jum 3 2500 go to 10000 Jump to target address
Uncondi- jr  $ra goto Sra For switch, procedure return
tional jump __|jump and link jal 2500 Sra = PC +4; go to 10000 |For procedure call




Assembly vs. Machine Language

Assembly provides convenient symbolic representation
* Make it readable to that feeble race of humans
¢ Text, destination first, single opcode

Machine language is the underlying reality
e Bits/Numbers
e MIPS: destination in middle, opcode split

Assembly can provide 'pseudo-ops'
e Example:
“move $t0, $t1”

Can be implemented using “add $t0, $t1, $zero”

For performance, examine real instructions

List of Instruction Sets

a1

 Sun Microsystem’s SPARC
e IBM/Motorola’ s PowerPC

e Hewlett-Packard’ s PA-RISC
e Intel’s x86

e DEC Alpha

e Motorola’ s 68xxx

o Intel’s IA-64

e SGI’ s MIPS

e ARM

e SuperH

e TI's C6x



How are they different?

a2

o ISA Class

e Assembly

e Encodings

e RISC vs. CISC

o State

¢ Addressing Modes

Different answers a result of different design goals!

Basic ISA Classes

43

Accumulator (1 register):
“add A”: accumulator = accumulator + mem[ A ]

Stack (Think HP calculator):
“add”: push(pop() + pop())

General Purpose Register, Register-Memory:
“addri, M[r217:r1=r1 + M[r2]

MIPS
GPR, Load/Store (AKA Register-Register): /
“addr1ir2r3”: r1=r2+1r3

Instruction Encoding Widths

Variable: |:]
C T T 1T 1 ... ]

Fixed: 1]
Hybrid: [ |




Instruction Widths

e

Instruction
Memory

Instruction
Memory

e MIPS & ARM: Fixed instruction width (32 bits)

e Variable instruction width impact on implementation?

a5

State and Addressing Modes

e Register Count
o ~8 Integer Registers: x86
o 32 Integer Registers: MIPS
o 128 Integer Registers: IA-64

e What size is ideal?

e Addressing Modes
e Lots - x86
o A Few - MIPS, IA-64

e Which is better?

46

Great Debate: CISC vs. RISC

e CISC: Complex Instruction Set Computer

e RISC: Reduced Instruction Set Computer

. ——
B

a7



The RISC Design Philosophy

a8

KEEP DESIGN SIMPLE!

Keep number of instruction types small

Use easier to manipulate fixed length instructions
Do simple instructions faster

Use only a few key addressing modes

The CISC Design Philosophy

49

MAKE MACHINE EASY TO PROGRAM!

e Support for frequent tasks
e Functions: Provide a “call” instruction, save registers
o Strided Array Access: Provide special addressing mode

e Make each instruction do lots of work
e Less explicit state necessary
e Fewer instructions necessary

Arguments

50

e RISC
o Clearly superior, that is why they are covered in the textbook
o Load/Store architectures dominate new architectures
¢ Easier to add advanced performance enhancements
¢ Smaller design teams necessary

e CISC
¢ Binaries are smaller (x86 is 20% smaller than MIPS)
e Machines are faster in practice
¢ Almost all processors used in desktop computers are CISC
¢ Clearly the winner, because you probably use one now

What do you think? Who is winning or who has won?



List of Instruction Sets

 Sun Microsystem’ s SPARC
e IBM/Motorola’ s PowerPC

e Hewlett-Packard’ s PA-RISC
o Intel’s x86

e DEC Alpha

o Motorola’ s 68xxx

o Intel’ s IA-64

e SGI's MIPS

e ARM

e SuperH

e TI's C6x

51

List of Successful Instruction Sets

e Intel’s x86

52

x86: A Dominant Architecture

e See your textbook for a more detailed description

e Complexity:
¢ Instructions from 1 to 17 bytes long
¢ One operand must act as both a source and destination
¢ One operand can come from memory

e Complex addressing modes
Example: “base or scaled index with 8 or 32 bit displacement”

e Saving grace:
* The most frequently used instructions are not too difficult to build
e Compilers avoid the portions of the architecture that are slow

“What the 80x86 lacks in style is made up in quantity,
making it beautiful from the right perspective” -- unknown



x86: An Evolving Architecture

1978: Intel announces 8086 (16 bit architecture)

1980: 8087 floating point coprocessor is added

1982: 80286 increases address space to 24 bits, new instructions
1985: 80386 extends to 32 bits, new addressing modes
1989-1995: 80486, Pentium, Pentium Pro add instructions

1997: MMX is added

“This history illustrates the impact of the “golden handcuffs” of
compatibility”

“adding new features as someone might add clothing to a packed bag”

“an architecture that is difficult to explain and impossible to love”

Summary and Next Time

55

Summary:

Function Calls and Calling Convention
Big and Little Endian

Addressing Modes

Pseudo-ops

Instruction Set Variety

RISC vs. CISC

Next Time: Performance!
Read: Chapters 1, 2, and 3



