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Review: Instructions 
 
Computers process information 
•  Input/Output (I/O) 
•  State (memory) 
•  Computation (processor) 

•  Instructions instruct processor to manipulate state 
•  Instructions instruct processor to produce I/O in the 

same way 

Input Output 

State 

Computation 

Typical modern machine has this architectural state: 
•  Main Memory 
•  Registers 
•  Program Counter 

Architectural – Part of the programmer�s interface 
(implementation likely to have additional state) 
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Review: State 
 

PC 
10 



Review: Instructions 
 

An ADD Instruction: 
    add r1 = r2 + r3    (assembly) 

 
 
 

 
Parts of the Instruction: 
•  Opcode (verb) – what operation to perform 
•  Operands (noun) – what state to manipulate 
•  Source Operands – where values come from 
•  Destination Operand – where to deposit data values 

     

Opcode Operands  
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Review: Instructions 
 

 
36: add r1 = r2 + r3 
40: sub r4 = r5 + r6 
44: load r7 = M[ r8 ] 
48: store M[ r9 ] = r10 
48: branch r11 > 0, 56     
52: jump 36       
56: halt 
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Topics For Today 
 

•  Function Calls and Calling Convention 
•  Big and Little Endian 
•  Addressing Modes 
•  Pseudo-ops 
•  Instruction Set Variety 
•  RISC vs. CISC 
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Function Calls 
 
Recall Our Example: 

10: �Hello\n�           ; data in memory 
36: arg1 = 10         ; argument memory address is 10 
40: r1 = 10 
44: r1 = r1 - 1 
48: call printf           ; printf(arg1) 
48: branch r1 > 0, 44           
52: halt 

 
What state must be passed to function?  
What state must be passed back from function? 
What state must be preserved across call? 
Whose responsibility is it? 

Cheesy  
Function  

Demo 
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Calling Convention 
 

•  Calling convention - standard defined for architecture 

•  Register component of calling convention: 
Name Register number Usage

$zero 0 the constant value 0
$v0-$v1 2-3 values for results and expression evaluation
$a0-$a3 4-7 arguments
$t0-$t7 8-15 temporaries
$s0-$s7 16-23 saved
$t8-$t9 24-25 more temporaries
$gp 28 global pointer
$sp 29 stack pointer
$fp 30 frame pointer
$ra 31 return address
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Calling Convention: Stack Frames 
 

FP 
Saved Argument  

Registers 

Saved RA,  
Callee Saved 
Registers, FP 

Local Growth 
SP 

Higher Memory Addresses 

Lower Memory Addresses 

Frame Pointer:  
stable base to  
access data in  

stack frame 

Stack Pointer:  
grows and shrinks  

as necessary 
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The Life of a Function Call 
 
1.  Push to stack important values in temp registers: caller 

saved ($t0, $t9) 
2.  Place the return address in agreed upon reg/stack ($ra) 
3.  Place parameters in agreed upon reg/stack ($a0-$a3) 
4.  Jump to procedure 

1.  Allocate new stack frame ($fp, $sp) 
2.  Push registers: callee saved  ($s0-$s7, $ra, old $fp) 
3.  Do the work of the procedure 
4.  Place return value in agreed upon location ($v0, $v1) 
5.  Pop callee saved values ($s0-$s7, $ra, old $fp) 
6.  Deallocate stack frame ($fp, $sp) 
7.  Return to return address 

5.  Restore caller saved values ($t0-$t9) 
6.  Continue 
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Implementing a Function Call 
 

•  Special call instruction on processor does some work 

•  Alternatively, program does all the work 
•  Use store, load, and move instructions to save data 
•  Use control flow instructions to jump to the function 
•  MIPS has no call instruction 
•  Push $s1 and $s2:   

   M[ $sp - 4 ] = $s1 
   M[ $sp - 8 ] = $s2 
   $sp = $sp - 8 

•  Either way, calling convention must be respected 
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Memory Addressing 
 

View memory as a one-dimensional array 
 
1980+: Elements of array are 8-bits 
 
We say �byte addressable� 
 
Assuming 32-bit words: 
 
1.  Can a word start at any address? 

MIPS: no, aligned, 2 Least Significant Bits (LSB) are 0 
x86: yes 
 

2.  How are bytes of word laid out? 
MIPS/IA-64: Big or Little Endian 
x86: Little Endian 

Address Data 

0 8 bits of data 

1 1 byte of data 

2 2 nibbles of data 

3 ¼ word of data 

… … 

FFFFFFFF 8 bits of data 

? 
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Endian 
 

•  Little Endian: least-significant byte is stored in the 
location with the lowest address (little end first) 

•  Big Endian: most-significant byte is stored in the lowest 
address  (big end first)  

 

Address 0000 0001 0002 0003 
Byte # 0 1 2 3 

Address 0000 0001 0002 0003 
Byte # 3 2 1 0 

3 2 1 0 
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Endian Origin 
 
•  Gulliver's Travels by Jonathan Swift 

Two countries go to war over which end of soft-boiled egg should 
be eaten first - the big or little end 
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What does this program do? 
 

#include <stdio.h> 
 
main() { 
  unsigned int a; 
  unsigned char *p; 
 
  a = 0xabcd1234; 
  p = (unsigned char *) &a; 
 
  fprintf(stdout, �%x\n�, *p); 
} 
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Addressing Modes 
 

•  Data/state for instructions can be anywhere: 
•  In memory, encoded in instructions 
•  In memory data area 
•  In registers 

•  Data an be specified in many ways: 
load r1 = M[ 0 ]  ! r1 = DEADBEEF 
load r1 = M[ r0 ] ! r1 = DEADBEEF 
load r1 = M[ r0 + 1 ] ! r1 = 0 
load r1 = M[ M[ 1 ] ] ! r1 = DEADBEEF 

Address Data 

0 DEADBEEF 
1 0 
2 471A471B 

•  Small constants are used quite frequently (50% of operands)  
 e.g.,  A = A + 5; 
  B = B + 1; 
  C = C - 18; 

•  Options: 
1.  Put 'typical constants' in binary/memory and load them.   
2.  Create hard-wired registers (like $0/$zero) for constants. 

3.  Immediates: Encode constants in the instruction 

•  MIPS Instructions: 
 
  addi $29, $29, 4   
 slti $8, $18, 10   
 andi $29, $29, 6 
 ori $29, $29, 4 
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Immediates 
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Register and Direct Addressing 
 

•  Direct/Absolute Addressing: address is immediate 
Example: 

 load r1 = M[ 1500 ] 
 

•  Register: register number is immediate 

•  Useful for addressing locations fixed during execution 
•  Branch target addresses 
•  C global variable and static variable memory locations 
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Register Indirect and Displacement Addressing 
 

•  Register Indirect Addressing: address from register 
Example: 

 load r1 = M[ r2 ] 
 
Useful for pointers 
 

•  Displacement: register + immediate 
Example: 

 load r1 = M[ r2 + 100] 

Useful for addressing locations in static array 
Useful for structs on heap (dynamically allocated) 
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Register Indirect and Displacement Addressing 
 

•  Index/Base Register Addressing: 2 registers 
Example: 

 load r1 = M[ r2 + r3 ] 
 
Useful for accessing dynamic offsets into dynamic structs/arrays 
 

•  Memory Indirect Addressing: address in memory 
Example: 

 load r1 = M[ M[ r2 ] ] 
 load r1 = M[ M[ 2000 ] ] 

Useful for dereferencing pointers in structs such as next fields in 
linked list 
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PC-Relative 
 

•  PC-Relative: like base + displacement, implied base 
 Allows longer displacement immediate, why? 

 Used for branch instructions: 
 jump [ - 8 ]       ; jump back 2 instructions 

 Assembly uses labels:    
 FooBar: 
  add r1 = r2 + r3 
  jump FooBar 

 Assembler or linker determine actual the immediate… 
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Other, Crazy Modes 
 

•  Scaled: address from registers/immediates, some scaled 
Example: 

 load r1 = M[ 100 + r2 + r3 * d] 
 
d is defined by instruction 

 
•  You are bound to see others 
•  Make up your own… 
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Addressing Modes 
 

Immediate   add r1 = r2 + 5 
Register   add r1 = r2 + r3 
Direct    load r1 = M [ 4000 ] 
Register Indirect  add r1 = r2 + M[ r2 ] 
Displacement  load r1 = M[ r2 + 4000 ] 
Indexed/Base  add r1 = r3 + M[ r2 + r3 ] 
Memory Indirect  load r1 = M[ M[ r2 ] ] 
PC Relative   branch r1 < r3, 1000 
Scaled   load r1 = M[ 100 + r3 + r4 * d] 
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Memory Addressing Mode Usage? 
(ignore immediate/register mode) 
A few programs measured:  
Displacement:                 42% avg, 32% to 66% 
Direct:    33% avg, 17% to 43% 
Register Indirect:   13% avg, 3% to 24% 
 
Scaled:    7% avg, 0% to 16% 
Memory Indirect:   3% avg, 1% to 6% 
Other:    2% avg, 0% to 3% 
 
75% Displacement + Direct 
88% Displacement + Direct + Register Indirect 
 
Optimizations… 
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Review: MIPS Instruction Set  
 

•  MIPS – SGI Workstations, Nintendo, Sony… 
 
State: 
•  32-bit addresses to memory (32-bit PC)  
•  32 32-bit Registers 
•  A �word� is 32-bits on MIPS 
•  Register $0 ($zero) always has the value 0 
•  By convention, certain registers are used for certain 

things – more next time… 
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Review: MIPS Instruction Set  
 

•  Add: add $t1 = $t2 + $t3 
•  Subtract: sub $t1 = $t2 + $t3 
•  Load Word: lw $t1, 100 ($t2)  
•  Store Word: sw $t1, 100 ($t2) 
•  Jump: j 100 
 
•  Branch Not Equal: bne $t1, $t2, 100 
•  Branch Equal: beq $t1, $t2, 100 

•  Why no �blt� instruction? 



•  Branch changes the flow of instructions through the processor 
•  We say that branch instructions are �control flow instructions� 
•  Control Flow: test values to make decisions 

•  Example: 

 if (i!=j)    beq $s4, $s5, Label1 
   h=i+j;   add $s3, $s4, $s5 
     j Label2 

  else    Label1: 
   h=i-j;   sub $s3, $s4, $s5 

    Label2:  
      ... 

 

Control Flow 
 

•  Why no blt? 
•  New instruction: 

 
      if  $s1 < $s2 then 

         $t0 = 1 
  slt $t0, $s1, $s2   else  
          $t0 = 0 

 
•  Can use this instruction to build  a "blt� 
•  Assembler has �blt�, but assembler needs a free 

register to hold temporary value.   
•  Assembler uses Register Convention just like in calling 

convention 
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Control Flow 
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MIPS Encodings 
32-bits/Instruction 



•  Formats: 
 
 
 
 

•  Addresses are 32 bits, immediates are not!  

•  How do control flow instructions handle this? 

•  How do we handle this with load and store instructions? 

   op    rs    rt    16 bit address 
    op       26 bit address 

I 

J 

MIPS Immediates 
 

MIPS: 
 

MIPS operands 

Name Example Comments 

$s0-$s7, $t0-$t9, $zero, Fast locations for data. In MIPS, data must be in registers to perform  

32 registers $a0-$a3, $v0-$v1, $gp, arithmetic.  MIPS register $zero always equals 0.  Register $at is  
$fp, $sp, $ra, $at reserved for the assembler to handle large constants. 

Memory[0], Accessed only by data transfer instructions. MIPS uses byte addresses, so 

2 
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 memory Memory[4], ..., sequential words differ by 4. Memory holds data structures, such as arrays, 

words Memory[4294967292] and spilled registers, such as those saved on procedure calls. 

MIPS: 
 MIPS assembly language
Category Instruction Example Meaning Comments

add add $s1, $s2, $s3 $s1 = $s2 + $s3 Three operands; data in registers

Arithmetic subtract sub $s1, $s2, $s3 $s1 = $s2 - $s3 Three operands; data in registers

add immediate addi $s1, $s2, 100 $s1 = $s2 + 100 Used to add constants
load word lw  $s1, 100($s2) $s1 = Memory[$s2 + 100] Word from memory to register
store word sw  $s1, 100($s2) Memory[$s2 + 100] = $s1 Word from register to memory

Data transfer load byte lb  $s1, 100($s2) $s1 = Memory[$s2 + 100] Byte from memory to register
store byte sb  $s1, 100($s2) Memory[$s2 + 100] = $s1 Byte from register to memory
load upper immediate lui $s1, 100 $s1 = 100 * 216 Loads constant in upper 16 bits

branch on equal beq  $s1, $s2, 25 if ($s1 == $s2) go to             
PC + 4 + 100

Equal test; PC-relative branch

Conditional

branch on not equal bne  $s1, $s2, 25 if ($s1 != $s2) go to             
PC + 4 + 100

Not equal test; PC-relative

branch set on less than slt  $s1, $s2, $s3 if ($s2 < $s3)  $s1 = 1;          
else $s1 = 0

Compare less than; for beq, bne

set less than 
immediate

slti  $s1, $s2, 100 if ($s2 < 100)  $s1 = 1;          
else $s1 = 0

Compare less than constant

jump j    2500 go to 10000 Jump to target address
Uncondi- jump register jr   $ra go to $ra For switch, procedure return
tional jump jump and link jal  2500 $ra = PC + 4; go to 10000 For procedure call



•  Assembly provides convenient symbolic representation 
•  Make it readable to that feeble race of humans 
•  Text, destination first, single opcode 

•  Machine language is the underlying reality 
•  Bits/Numbers 
•  MIPS: destination in middle, opcode split 

•  Assembly can provide 'pseudo-ops' 
•  Example:  

 �move $t0, $t1� 
  
 Can be implemented using �add $t0, $t1, $zero�  

•  For performance, examine real instructions 
  

Assembly vs. Machine Language 
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List of Instruction Sets 
 
•  Sun Microsystem�s SPARC 
•  IBM/Motorola�s PowerPC 
•  Hewlett-Packard�s PA-RISC 
•  Intel�s x86 
•  DEC Alpha 
•  Motorola�s 68xxx 
•  Intel�s IA-64 
•  SGI�s MIPS 
•  ARM 
•  SuperH 
•  TI�s C6x 
•  … 
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How are they different? 
  

•  ISA Class 
•  Assembly 
•  Encodings 
•  RISC vs. CISC 
•  State 
•  Addressing Modes 

Different answers a result of different design goals! 
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Basic ISA Classes 
 

Accumulator (1 register): 
 �add A�:  accumulator = accumulator + mem[ A ] 
  

Stack (Think HP calculator): 
 �add�: push(pop() + pop()) 

  
General Purpose Register, Register-Memory: 

 �add r1, M[ r2 ]�: r1 = r1 + M[ r2 ] 
  

GPR, Load/Store (AKA Register-Register): 
 �add r1 r2 r3�:  r1 = r2 + r3 

 

MIPS 
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Instruction Encoding Widths 
 

Variable: 
 
 
 
 
Fixed: 
 
 
Hybrid: 

… 
… 
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Instruction Widths 
 

•  MIPS & ARM: Fixed instruction width (32 bits) 

•  Variable instruction width impact on implementation? 

Instruction 
Memory 

add $3, $2, $1 

 
Instruction 
Memory 
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State and Addressing Modes 
 

•  Register Count 
•  ~8 Integer Registers: x86 
•  32 Integer Registers: MIPS 
•  128 Integer Registers: IA-64 

•  What size is ideal? 

•  Addressing Modes 
•  Lots - x86 
•  A Few - MIPS, IA-64 

•  Which is better? 
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Great Debate: CISC vs. RISC  
 

•  CISC: Complex Instruction Set Computer 

•  RISC: Reduced Instruction Set Computer 

CISC RISC 
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The RISC Design Philosophy 
 

KEEP DESIGN SIMPLE! 
 
•  Keep number of instruction types small 
•  Use easier to manipulate fixed length instructions  
•  Do simple instructions faster 
•  Use only a few key addressing modes 
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The CISC Design Philosophy 
 

MAKE MACHINE EASY TO PROGRAM! 
 
•  Support for frequent tasks 

•  Functions: Provide a �call� instruction, save registers 
•  Strided Array Access: Provide special addressing mode 

•  Make each instruction do lots of work 
•  Less explicit state necessary 
•  Fewer instructions necessary 
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Arguments  
 

•  RISC 
•  Clearly superior, that is why they are covered in the textbook 
•  Load/Store architectures dominate new architectures 
•  Easier to add advanced performance enhancements 
•  Smaller design teams necessary 

•  CISC 
•  Binaries are smaller (x86 is 20% smaller than MIPS) 
•  Machines are faster in practice  
•  Almost all processors used in desktop computers are CISC 
•  Clearly the winner, because you probably use one now 

What do you think?  Who is winning or who has won? 
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List of Instruction Sets 
 
•  Sun Microsystem�s SPARC 
•  IBM/Motorola�s PowerPC 
•  Hewlett-Packard�s PA-RISC 
•  Intel�s x86 
•  DEC Alpha 
•  Motorola�s 68xxx 
•  Intel�s IA-64 
•  SGI�s MIPS 
•  ARM 
•  SuperH 
•  TI�s C6x 
•  … 

52 

List of Successful Instruction Sets 
 
•  Intel�s x86 

This lecture was brought to you by Intel Corporation. 

x86: A Dominant Architecture 
 
•  See your textbook for a more detailed description 

•  Complexity: 
•  Instructions from 1 to 17 bytes long 
•  One operand must act as both a source and destination 
•  One operand can come from memory 
•  Complex addressing modes 

 Example: �base or scaled index with 8 or 32 bit displacement� 

•  Saving grace: 
•  The most frequently used instructions are not too difficult to build 
•  Compilers avoid the portions of the architecture that are slow 

 
 

�what the 80x86 lacks in style is made up in quantity,  
making it beautiful from the right perspective�  -- unknown 



x86: An Evolving Architecture 
 
•  1978:  Intel announces 8086 (16 bit architecture) 
•  1980:  8087 floating point coprocessor is added 
•  1982:  80286 increases address space to 24 bits, new instructions 
•  1985:  80386 extends to 32 bits, new addressing modes 
•  1989-1995:  80486, Pentium, Pentium Pro add instructions 
•  1997:  MMX is added 

 
�This history illustrates the impact of the �golden handcuffs� of 
compatibility� 

 
�adding new features as someone might add clothing to a packed bag� 
 
�an architecture that is difficult to explain and impossible to love�  
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Summary and Next Time 
 

Summary: 
•  Function Calls and Calling Convention 
•  Big and Little Endian 
•  Addressing Modes 
•  Pseudo-ops 
•  Instruction Set Variety 
•  RISC vs. CISC 

•  Next Time: Performance! 
•  Read: Chapters 1, 2, and 3  


