
1

Lecture 2:
The Instruction Set Architecture

COS / ELE 375

Computer Architecture and Organization

Princeton University
Fall 2015

Prof. David August

2

Quiz 0

3

Quiz 0

4

CD

3 Miles of Music

5

Pits and Lands

Transition represents a bit state (1/on/red/female/heads)
No change represents other state (0/off/white/male/tails)

6

Interpretation

0 1 1 1 0 1 0 1

As Music:
 011101012 = 117/256 position of speaker

As Number:

 011101012 = 1 + 4 + 16 + 32 + 64 = 11710 = 7516

 (Get comfortable with base 2, 8, 10, and 16.)

As Text:

 011101012 = 117th character in the ASCII codes = “u”

7

Interpretation – ASCII

8

Princeton Computer Science Building West Wall

9

Interpretation

As Music:
 011101012 = 117/256 position of speaker

As Number:

 011101012 = 1 + 4 + 16 + 32 + 64 = 11710 = 7516

As Text:

 011101012 = 117th character in the ASCII codes = “u”

CAN ALSO BE INTERPRETED AS MACHINE INSTRUCTION!

Binary Code and Data (Hello World!)

•  Programs consist of Code and Data
•  Code and Data are Encoded in Bits

IA-64 Binary (objdump)

Interfaces in Computer Systems

Instruction Set Architecture

Applications

Operating System

FirmwareCompiler

Instruction Set Processor I/O System

Datapath & Control

Digital Design

Circuit Design

Layout

Software: Produce Bits Instructing Machine to Manipulate State or Produce I/O

Hardware: Read and Obey Instruction Bits

12

Instructions

Computers process information
•  Input/Output (I/O)
•  State (memory)
•  Computation (processor)

•  Instructions instruct processor to manipulate state
•  Instructions instruct processor to produce I/O in the

same way

Input Output

State

Computation

Sequential Circuit!!

13

State

Typical modern machine has this architectural state:
1.  Main Memory
2.  Registers
3.  Program Counter

Architectural – Part of the assembly programmer’s interface
(Implementation has additional microarchitectural state)

14

State – Main Memory

Main Memory (AKA: RAM – Random Access Memory)
•  Data can be accessed by address (like a big array)
•  Large but relatively slow
•  Decent desktop machine: 1 Gigabyte, 800MHz

Address Data
0000 010110012

0001 F516

0002 7816

0003 3A16
… …

FFFF 000000002

Byte Addressable

15

State – Main Memory

Address Data
0000 010110012

0001 F516

0002 7816

0003 3A16
… …

FFFF 000000002

Address

Data

Read/Write READ

0002

7816

Read:
1.  Indicate READ
2.  Give Address
3.  Get Data

16

State – Main Memory

Address Data
0000 010110012

0001 F516

0002 7816

0003 3A16
… …

FFFF 000000002

Address

Data

Read/Write WRITE

0003

1216

1216

Write:
1.  Indicate WRITE
2.  Give Address and Data

17

State – Registers

Registers (AKA: Register File)
•  Data can be accessed by register number (address)
•  Small but relatively fast (typically on processor chip)
•  Decent desktop machine: 8 32-bit registers, 3 GHz

Register Data in Reg
0 0000000016

1 F629D9B516

2 7B2D9D0816

3 0000000116
… …
8 DEADBEEF16

18

State – Program Counter

Program Counter (AKA: PC, Instruction Pointer, IP)
•  Instructions change state, but which instruction now?
•  PC holds memory address of currently executing

instruction

Address Data in Memory
0000 010110012

0001 F516

0002 ADDinst

0003 SUBTRACTinst
… …

FFFF 000000002

Program Counter

0002

19

State – Program Counter

Program Counter (AKA: PC, Instruction Pointer, IP)
•  Instructions change state, but which instruction now?
•  PC holds address of currently executing instruction
•  PC is updated after each instruction

Address Data in Memory
0000 010110012

0001 F516

0002 ADDinst

0003 SUBTRACTinst
… …

FFFF 000000002

Program Counter

0003

20

State – Summary

Typical modern machine has this architectural state:
1.  Main Memory – Big, Slow
2.  Registers – Small, Fast (always on processor chip)
3.  Program Counter – Address of executing instruction

Architectural – Part of the assembly programmer’s
interface

(implementation has additional microarchitectural state)

21

An Aside: State and The Core Dump

•  Core Dump: the state of the
machine at a given time

•  Typically at program failure
•  Core dump contains:

•  Register Contents
•  Memory Contents
•  PC Value

 00: 0000 0000 0000 0000 0000 0000 0000 0000

08: 0000 0000 0000 0000 0000 0000 0000 0000

10: 9222 9120 1121 A120 1121 A121 7211 0000

18: 0000 0001 0002 0003 0004 0005 0006 0007

20: 0008 0009 000A 000B 000C 000D 000E 000F

28: 0000 0000 0000 FE10 FACE CAFE ACED CEDE

.

.
E8: 1234 5678 9ABC DEF0 0000 0000 F00D 0000

F0: 0000 0000 EEEE 1111 EEEE 1111 0000 0000

F8: B1B2 F1F5 0000 0000 0000 0000 0000 0000

Main Memory

Registers

B700

2

0010

3

0401

4

0002

5 0

0788

1

0003

6

00A0

7

0000

B700

A

0010

B

0401

C

0002

D 8

0788

9

0003

E

00A0

F

0000

PC

10

Interfaces in Computer Systems

Instruction Set Architecture

Applications

Operating System

FirmwareCompiler

Instruction Set Processor I/O System

Datapath & Control

Digital Design

Circuit Design

Layout

Software: Produce Bits Instructing Machine to Manipulate State or Produce I/O

Hardware: Read and Obey Instruction Bits

Instructions

An ADD Instruction:
 add r1 = r2 + r3 (assembly)

Parts of the Instruction:
•  Opcode (verb) – what operation to perform
•  Operands (noun) – what to operate upon
•  Source Operands – where values come from
•  Destination Operand – where to deposit data values

Opcode Operands

Instructions

Instructions:
“The vocabulary of commands”
Specify how to operate on state

Example:

40: add r1 = r2 + r3
44: sub r3 = r1 - r0
48: store M[r3] = r1
52: load r2 = M[2]

Address Data
0 0
1 25
2 5
3 9
… …

FFFFFFFF 0

Register Data
0 0
1 15
2 1
3 2
… …
31 0

Program Counter

40

Instructions

Instructions:
“The vocabulary of commands”
Specify how to operate on state

Example:

40: add r1 = r2 + r3
44: sub r3 = r1 - r0
48: store M[r3] = r1
52: load r2 = M[2]

Address Data
0 0
1 25
2 5
3 9
… …

FFFFFFFF 0

Register Data
0 0
1 15
2 1
3 2
… …
31 0

Program Counter

40

2

3

1

Instructions

Example:

40: add r1 = r2 + r3
44: sub r3 = r1 - r0
48: store M[r3] = r1
52: load r2 = M[2]

Register Data
0 0
1 3
2 1
3 2
… …
31 0

Address Data
0 0
1 25
2 5
3 9
… …

FFFFFFFF 0

Program Counter

40

Instructions

Instructions:
“The vocabulary of commands”
Specify how to operate on state

Example:

40: add r1 = r2 + r3
44: sub r3 = r1 - r0
48: store M[r3] = r1
52: load r2 = M[2]

Address Data
0 0
1 25
2 5
3 9
… …

FFFFFFFF 0

Register Data
0 0
1 3
2 1
3 2
… …
31 0

Program Counter

44

3

Instructions

Instructions:
“The vocabulary of commands”
Specify how to operate on state

Example:

40: add r1 = r2 + r3
44: sub r3 = r1 - r0
48: store M[r3] = r1
52: load r2 = M[2]

Address Data
0 0
1 25
2 5
3 9
… …

FFFFFFFF 0

Register Data
0 0
1 3
2 1
3 3
… …
31 0

Program Counter

48

3

3

3

Instructions

Instructions:
“The vocabulary of commands”
Specify how to operate on state

Example:

40: add r1 = r2 + r3
44: sub r3 = r1 - r0
48: store M[r3] = r1
52: load r2 = M[2]

Address Data
0 0
1 25
2 5
3 3
… …

FFFFFFFF 0

Register Data
0 0
1 3
2 1
3 3
… …
31 0

Program Counter

52

5

Instructions

Instructions:
“The vocabulary of commands”
Specify how to operate on state

Example:

40: add r1 = r2 + r3
44: sub r3 = r1 - r0
48: store M[r3] = r1
52: load r2 = M[2]

Address Data
0 0
1 25
2 5
3 3
… …

FFFFFFFF 0

Register Data
0 0
1 3
2 5
3 3
… …
31 0

Program Counter

52

Instructions

Note:
1.  Insts Executed in Order
2.  Addressing Modes

Example:

40: add r1 = r2 + r3
44: sub r3 = r1 - r0
48: store M[r3] = r1
52: load r2 = M[2]

Address Data
0 0
1 25
2 5
3 3
… …

FFFFFFFF 0

Register Data
0 0
1 3
2 5
3 3
… …
31 0

Program Counter

52

Assembly Instructions and C

 main() {
 int a = 15, b = 1, c = 2;

add r1 = r2 + r3 a = b + c; /* a gets 3 */

sub r3 = r1 - r0 c = a; /* c gets 3 */

store M[r3] = r1 *(int *)c = a;
 /* M[c] = a */

load r2 = M[2] b = *(int *)(2);
 /* b gets M[2] */
 }

33

34

Branching

Suppose we could only execute instructions in sequence.

Recall from our example:

40: add r1 = r2 + r3
44: sub r3 = r1 - r0
48: store M[r3] = r1
52: load r2 = M[2]

•  In a decent desktop machine, how long would the
longest program stored in main memory take?

•  Assume:
•  1 instruction per cycle
•  An instruction is encoded in 4 bytes (32 bits)

35

Therefore…

•  Some instructions must execute more than once
•  PC must be updated

Example:
40: add r1 = r2 + r3
44: sub r3 = r1 - r0
48: store M[r3] = r1
52: load r2 = M[2]
56: PC = 40

36

Unconditional Branches

•  Unconditional branches always update the PC
•  AKA: Jump instructions

Example:
40: add r1 = r2 + r3
44: sub r3 = r1 - r0
48: store M[r3] = r1
52: load r2 = M[2]
56: jump 40

•  How long with the program take?

37

Conditional Branch

•  Conditional Branch sometimes updates PC
•  AKA: Branch, Conditional Jump

•  Example
40: r1 = 10
44: r1 = r1 - 1
48: branch r1 > 0, 44 if r1 is greater than 0, PC = 44

52: halt

•  How long will this program take?

38

Conditional Branch

•  What does this look like in C?

•  Example
10: “Hello\n” ; data in memory
36: arg1 = 10 ; argument memory address is 10
40: r1 = 10
44: r1 = r1 - 1
48: call printf ; printf(arg1)
52: branch r1 > 0, 44
56: halt

Details about red instructions/data next time…

39

Indirect Branches

•  Branch address may also come from a register
•  AKA: Indirect Jump

Example:
40: add r1 = r2 + r3
44: sub r3 = r1 - r0
48: store M[r3] = r1
52: load r2 = M[2]
56: jump r4
60: halt

?

40

Branch Summary

•  Reduce, Reuse, Recycle (instructions)
•  Branch instructions update state

00: 0000 0000 0000 0000 0000 0000 0000 0000

08: 0000 0000 0000 0000 0000 0000 0000 0000

10: 9222 9120 1121 A120 1121 A121 7211 0000

18: 0000 0001 0002 0003 0004 0005 0006 0007

20: 0008 0009 000A 000B 000C 000D 000E 000F

28: 0000 0000 0000 FE10 FACE CAFE ACED CEDE

.

.
E8: 1234 5678 9ABC DEF0 0000 0000 F00D 0000

F0: 0000 0000 EEEE 1111 EEEE 1111 0000 0000

F8: B1B2 F1F5 0000 0000 0000 0000 0000 0000

Main Memory

Registers

B700

2

0010

3

0401

4

0002

5 0

0788

1

0003

6

00A0

7

0000

B700

A

0010

B

0401

C

0002

D 8

0788

9

0003

E

00A0

F

0000

PC

10

42

A Note on Notation…

•  Assembly syntax is somewhat arbitrary
•  Equivalent “Add” Instructions

•  add r1, r2, r3
•  add r1 = r2, r3
•  r1 = r2 + r3
•  add r1 = r2 + r3
•  add $1, $2, $3
•  …

•  Equivalent “Store Word” Instructions
•  sw $1, 10($2)
•  M[r2 + 10] = r1
•  st.w M[r2 + 10] = r1
•  …

43

Specific Instance: MIPS Instruction Set

•  MIPS – SGI Workstations, Nintendo, Sony…

State:
•  32-bit addresses to memory (32-bit PC)
•  32 32-bit Registers
•  A “word” is 32-bits on MIPS
•  Register $0 ($zero) always has the value 0
•  By convention, certain registers are used for certain

things – more next time…

44

MIPS Usage in Course

•  Used throughout book
•  We will use it on homework and exams
•  For clarity of lecture, MIPS not always used
•  Refer to book for all instructions discussed

45

Specific Instance: MIPS Instruction Set

Some Arithmetic Instructions:
•  Add:

•  Assembly Format: add <dest>, <src1>, <src2>
•  Example: add $1, $2, $3
•  Example Meaning: r1 = r2 + r3

•  Subtract:
•  Same as add, except “sub” instead of “add”

46

Specific Instance: MIPS Instruction Set

Some Memory Instructions:
•  Load Word:

•  Assembly Format: lw <dest>, <offset immediate> (<src1>)
•  Example: lw $1, 100 ($2)
•  Example Meaning: r1 = M[r2 + 100]

•  Store Word:
•  Assembly Format: sw <src1>, <offset immediate> (<src2>)
•  Example: sw $1, 100 ($2)
•  Example Meaning: M[r2 + 100] = r1

47

Specific Instance: MIPS Instruction Set

Some Branch Instructions:
•  Branch Equal:

•  Assembly Format: beq <src1>, <src2>, <target immediate>
•  Example: beq $1, $2, 100
•  Example Meaning: branch r1 == r2, 100

 If r1 is equal to r2, PC = 100

•  Branch Not Equal: Same except beq -> bne

•  Jump:
•  Assembly Format: j <target immediate>
•  Example: j 100
•  Example Meaning: jump 100

 PC = 100

48

How are MIPS Instructions Encoded?

Instruction Set Architecture

Applications

Operating System

FirmwareCompiler

Instruction Set Processor I/O System

Datapath & Control

Digital Design

Circuit Design

Layout

49

MIPS Encodings
32-bits/Instruction

50

MIPS Add Instruction Encoding

add $17, $18, $19

 0 18 19 17 0 32

add is an R inst

51

MIPS Add Instruction Encoding

sub $17, $18, $19

 0 18 19 17 0 34

sub is an R inst

52

Add and Subtract
A little foreshadowing…

add

sub

53

54

Memory Addressing

View memory as a single-dimensional array

Since 1980: Elements of array are 8-bits

We say “byte addressable”

Assuming 32-bit words:
1.  How are bytes laid out in word read?

2.  Can a word start at any address?

0
1
2
3
4
5
6
...

8 bits of data

8 bits of data

8 bits of data

8 bits of data

8 bits of data

8 bits of data

8 bits of data

Memory Organization

•  Bytes are nice, but most data items use larger "words"
•  For MIPS, a word is 32 bits or 4 bytes.

•  232 bytes with byte addresses from 0 to 232-1
•  230 words with byte addresses 0, 4, 8, ... 232-4
•  Words are aligned

 i.e., what are the least 2 significant bits of a word address?

0
4
8

12
...

32 bits of data

32 bits of data

32 bits of data

32 bits of data

Registers hold 32 bits of data

56

Addressing Modes
Addressing mode Example Meaning
Register Add R4,R3 R4 ← R4+R3

Immediate Add R4,#3 R4 ← R4+3

Displacement Add R4,100(R1) R4 ← R4+Mem[100+R1]

Register indirect Add R4,(R1) R4 ← R4+Mem[R1]

Indexed / Base Add R3,(R1+R2) R3 ← R3+Mem[R1+R2]

Direct or absolute Add R1,(1001) R1 ← R1+Mem[1001]

Memory indirect Add R1,@(R3) R1 ← R1+Mem[Mem[R3]]

Auto-increment Add R1,(R2)+ R1 ← R1+Mem[R2]; R2 ← R2+d

Auto-decrement Add R1,–(R2) R2 ← R2–d; R1 ← R1+Mem[R2]

Scaled Add R1,100(R2)[R3] R1 ← R1+Mem[100+R2+R3*d]

Hello World

The Hello World Algorithm:
1.  Emit “Hello World”
2.  Terminate

C Program

Hello World

IA-64 Assembly Language

GNU C Compiler C Program

Hello World

IA-64 Assembly Language

Interfaces in Computer Systems

Instruction Set Architecture

Applications

Operating System

FirmwareCompiler

Instruction Set Processor I/O System

Datapath & Control

Digital Design

Circuit Design

Layout

Software

Hardware

61

Control
(from the back of a napkin)

The Hardware/Software Interface

Instruction Set Architecture

Applications

Operating System

FirmwareCompiler

Instruction Set Processor I/O System

Datapath & Control

Digital Design

Circuit Design

Layout

Software

Hardware

The Instruction Set Architecture

“The vocabulary of commands”
•  Defined by the Architecture (x86)
•  Implemented by the Machine (Pentium 4, 3.06 GHz)
•  An Abstraction Layer: The Hardware/Software Interface
•  Architecture has longevity over implementation
•  Example:

 add r1 = r2 + r3 (assembly)

 001 001 010 011 (binary)

Opcode (verb) Operands (nouns)

Some Figure and Text Acknowledgements

•  Dan Connors
•  David Patterson
•  The COS126 Team (Wayne, Sedgewick)
•  A. Mason
•  Intel Corporation
•  Amazon.com
•  www.uiuc.edu

