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Quiz 0 
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Quiz 0 
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CD 
 

3 Miles of Music 
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Pits and Lands 
 

Transition represents a bit state (1/on/red/female/heads) 
No change represents other state (0/off/white/male/tails) 
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Interpretation 
 

0 1 1 1 0 1 0 1 

As Music: 
 011101012 = 117/256 position of speaker 

 
As Number: 

 011101012 =  1 + 4 + 16 + 32 + 64 = 11710 = 7516 

 (Get comfortable with base 2, 8, 10, and 16.) 
 
As Text:   

 011101012 = 117th character in the ASCII codes = “u” 
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Interpretation – ASCII 
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Princeton Computer Science Building West Wall 
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Interpretation 
 

As Music: 
 011101012 = 117/256 position of speaker 

 
As Number: 

 011101012 =  1 + 4 + 16 + 32 + 64 = 11710 = 7516 

  
As Text:   

 011101012 = 117th character in the ASCII codes = “u”  
 
CAN ALSO BE INTERPRETED AS MACHINE INSTRUCTION! 



Binary Code and Data (Hello World!) 
  
•  Programs consist of Code and Data 
•  Code and Data are Encoded in Bits 

IA-64 Binary (objdump) 



Interfaces in Computer Systems 
 

Instruction Set Architecture

Applications

Operating System

FirmwareCompiler

Instruction Set Processor I/O System

Datapath & Control

Digital Design

Circuit Design

Layout

Software: Produce Bits Instructing Machine to Manipulate State or Produce I/O 

Hardware: Read and Obey Instruction Bits 
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Instructions 
 
Computers process information 
•  Input/Output (I/O) 
•  State (memory) 
•  Computation (processor) 

•  Instructions instruct processor to manipulate state 
•  Instructions instruct processor to produce I/O in the 

same way 

Input Output 

State 

Computation 

Sequential Circuit!! 
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State 
 

Typical modern machine has this architectural state: 
1.  Main Memory 
2.  Registers 
3.  Program Counter 

Architectural – Part of the assembly programmer’s interface 
(Implementation has additional microarchitectural state) 
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State – Main Memory 
 

Main Memory (AKA: RAM – Random Access Memory) 
•  Data can be accessed by address (like a big array) 
•  Large but relatively slow 
•  Decent desktop machine: 1 Gigabyte, 800MHz 

Address Data 
0000 010110012 

0001 F516 

0002 7816 

0003 3A16 
… … 

FFFF 000000002 

Byte Addressable 



15 

State – Main Memory 
 

Address Data 
0000 010110012 

0001 F516 

0002 7816 

0003 3A16 
… … 

FFFF 000000002 

Address 

Data 

Read/Write READ 

0002 

7816 

Read: 
1.  Indicate READ 
2.  Give Address 
3.  Get Data 
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State – Main Memory 
 

Address Data 
0000 010110012 

0001 F516 

0002 7816 

0003 3A16 
… … 

FFFF 000000002 

Address 

Data 

Read/Write WRITE 

0003 

1216 

1216 

Write: 
1.  Indicate WRITE 
2.  Give Address and Data 
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State – Registers 
 
Registers (AKA: Register File) 
•  Data can be accessed by register number (address) 
•  Small but relatively fast (typically on processor chip) 
•  Decent desktop machine: 8 32-bit registers, 3 GHz 

Register Data in Reg 
0 0000000016 

1 F629D9B516 

2 7B2D9D0816 

3 0000000116 
… … 
8 DEADBEEF16 
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State – Program Counter 
 

Program Counter (AKA: PC, Instruction Pointer, IP) 
•  Instructions change state, but which instruction now? 
•  PC holds memory address of currently executing 

instruction 

Address Data in Memory 
0000 010110012 

0001 F516 

0002 ADDinst 

0003 SUBTRACTinst 
… … 

FFFF 000000002 

Program Counter 

0002 
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State – Program Counter 
 

Program Counter (AKA: PC, Instruction Pointer, IP) 
•  Instructions change state, but which instruction now? 
•  PC holds address of currently executing instruction 
•  PC is updated after each instruction 

Address Data in Memory 
0000 010110012 

0001 F516 

0002 ADDinst 

0003 SUBTRACTinst 
… … 

FFFF 000000002 

Program Counter 

0003 
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State – Summary 
 

Typical modern machine has this architectural state: 
1.  Main Memory – Big, Slow 
2.  Registers – Small, Fast (always on processor chip) 
3.  Program Counter – Address of executing instruction 

Architectural – Part of the assembly programmer’s 
interface 

(implementation has additional microarchitectural state) 
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An Aside: State and The Core Dump 
 

•  Core Dump: the state of the 
machine at a given time 

•  Typically at program failure  
•  Core dump contains: 

•  Register Contents 
•  Memory Contents 
•  PC Value 

 00: 0000 0000 0000 0000 0000 0000 0000 0000 

08: 0000 0000 0000 0000 0000 0000 0000 0000 

10: 9222 9120 1121 A120 1121 A121 7211 0000 

18: 0000 0001 0002 0003 0004 0005 0006 0007 

20: 0008 0009 000A 000B 000C 000D 000E 000F 

28: 0000 0000 0000 FE10 FACE CAFE ACED CEDE 

. 

. 
E8: 1234 5678 9ABC DEF0 0000 0000 F00D 0000 

F0: 0000 0000 EEEE 1111 EEEE 1111 0000 0000 

F8: B1B2 F1F5 0000 0000 0000 0000 0000 0000 

Main Memory 

Registers 

B700 

2 

0010 

3 

0401 

4 

0002 

5 0 

0788 

1 

0003 

6 

00A0 

7 

0000 

B700 

A 

0010 

B 

0401 

C 

0002 

D 8 

0788 

9 

0003 

E 

00A0 

F 

0000 

PC 

10 



Interfaces in Computer Systems 
 

Instruction Set Architecture

Applications

Operating System

FirmwareCompiler

Instruction Set Processor I/O System

Datapath & Control

Digital Design

Circuit Design

Layout

Software: Produce Bits Instructing Machine to Manipulate State or Produce I/O 

Hardware: Read and Obey Instruction Bits 



Instructions 
 

An ADD Instruction: 
    add r1 = r2 + r3    (assembly) 

 
 
 

 
Parts of the Instruction: 
•  Opcode (verb) – what operation to perform 
•  Operands (noun) – what to operate upon 
•  Source Operands – where values come from 
•  Destination Operand – where to deposit data values 

     

Opcode Operands  



Instructions 
 

Instructions: 
“The vocabulary of commands” 
Specify how to operate on state 
 
Example: 

40: add r1 = r2 + r3 
44: sub r3 = r1 - r0 
48: store M[ r3 ] = r1 
52: load r2 = M[ 2 ] 

Address Data 
0 0 
1 25 
2 5 
3 9 
… … 

FFFFFFFF 0 

Register Data 
0 0 
1 15 
2 1 
3 2 
… … 
31 0 

Program Counter 

40 



Instructions 
 

Instructions: 
“The vocabulary of commands” 
Specify how to operate on state 
 
Example: 

40: add r1 = r2 + r3 
44: sub r3 = r1 - r0 
48: store M[ r3 ] = r1 
52: load r2 = M[ 2 ] 

Address Data 
0 0 
1 25 
2 5 
3 9 
… … 

FFFFFFFF 0 

Register Data 
0 0 
1 15 
2 1 
3 2 
… … 
31 0 

Program Counter 

40 

2 

3 

1 



Instructions 
 

 
 
 
 
Example: 

40: add r1 = r2 + r3 
44: sub r3 = r1 - r0 
48: store M[ r3 ] = r1 
52: load r2 = M[ 2 ] 

Register Data 
0 0 
1 3 
2 1 
3 2 
… … 
31 0 

Address Data 
0 0 
1 25 
2 5 
3 9 
… … 

FFFFFFFF 0 

Program Counter 

40 



Instructions 
 

Instructions: 
“The vocabulary of commands” 
Specify how to operate on state 
 
Example: 

40: add r1 = r2 + r3 
44: sub r3 = r1 - r0 
48: store M[ r3 ] = r1 
52: load r2 = M[ 2 ] 

Address Data 
0 0 
1 25 
2 5 
3 9 
… … 

FFFFFFFF 0 

Register Data 
0 0 
1 3 
2 1 
3 2 
… … 
31 0 

Program Counter 

44 

3 



Instructions 
 

Instructions: 
“The vocabulary of commands” 
Specify how to operate on state 
 
Example: 

40: add r1 = r2 + r3 
44: sub r3 = r1 - r0 
48: store M[ r3 ] = r1 
52: load r2 = M[ 2 ] 

Address Data 
0 0 
1 25 
2 5 
3 9 
… … 

FFFFFFFF 0 

Register Data 
0 0 
1 3 
2 1 
3 3 
… … 
31 0 

Program Counter 

48 

3 

3 

3 



Instructions 
 

Instructions: 
“The vocabulary of commands” 
Specify how to operate on state 
 
Example: 

40: add r1 = r2 + r3 
44: sub r3 = r1 - r0 
48: store M[ r3 ] = r1 
52: load r2 = M[ 2 ] 

Address Data 
0 0 
1 25 
2 5 
3 3 
… … 

FFFFFFFF 0 

Register Data 
0 0 
1 3 
2 1 
3 3 
… … 
31 0 

Program Counter 

52 

5



Instructions 
 

Instructions: 
“The vocabulary of commands” 
Specify how to operate on state 
 
Example: 

40: add r1 = r2 + r3 
44: sub r3 = r1 - r0 
48: store M[ r3 ] = r1 
52: load r2 = M[ 2 ] 

Address Data 
0 0 
1 25 
2 5 
3 3 
… … 

FFFFFFFF 0 

Register Data 
0 0 
1 3 
2 5 
3 3 
… … 
31 0 

Program Counter 

52 



Instructions 
 

Note: 
1.  Insts Executed in Order 
2.  Addressing Modes 
 
Example: 

40: add r1 = r2 + r3 
44: sub r3 = r1 - r0 
48: store M[ r3 ] = r1 
52: load r2 = M[ 2 ] 

Address Data 
0 0 
1 25 
2 5 
3 3 
… … 

FFFFFFFF 0 

Register Data 
0 0 
1 3 
2 5 
3 3 
… … 
31 0 

Program Counter 

52 



Assembly Instructions and C 
 
       main() { 
         int a = 15, b = 1, c = 2; 

 
add r1 = r2 + r3       a = b + c;  /* a gets 3 */ 
 
sub r3 = r1 - r0       c = a;  /* c gets 3 */  
 
store M[ r3 ] = r1     *(int *)c = a;  
                                 /* M[c] = a */ 
 
load r2 = M[ 2 ]       b = *(int *)(2);  
                   /* b gets M[2] */ 
                 } 
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Branching 
 
Suppose we could only execute instructions in sequence. 
 
Recall from our example: 

40: add r1 = r2 + r3 
44: sub r3 = r1 - r0 
48: store M[ r3 ] = r1 
52: load r2 = M[ 2 ] 
 

•  In a decent desktop machine, how long would the 
longest program stored in main memory take? 

•  Assume:  
•  1 instruction per cycle 
•  An instruction is encoded in 4 bytes (32 bits) 
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Therefore… 
 

•  Some instructions must execute more than once 
•  PC must be updated  

Example: 
40: add r1 = r2 + r3 
44: sub r3 = r1 - r0 
48: store M[ r3 ] = r1 
52: load r2 = M[ 2 ] 
56: PC = 40 
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Unconditional Branches 
 

•  Unconditional branches always update the PC 
•  AKA: Jump instructions 

Example: 
40: add r1 = r2 + r3 
44: sub r3 = r1 - r0 
48: store M[ r3 ] = r1 
52: load r2 = M[ 2 ] 
56: jump 40 
 

•  How long with the program take? 
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Conditional Branch 
 

•  Conditional Branch sometimes updates PC 
•  AKA: Branch, Conditional Jump 

•  Example 
40: r1 = 10 
44: r1 = r1 - 1 
48: branch r1 > 0, 44          if r1 is greater than 0, PC = 44 

52: halt 
 

•  How long will this program take? 
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Conditional Branch 
 
•  What does this look like in C? 

•  Example 
10: “Hello\n”           ; data in memory 
36: arg1 = 10         ; argument memory address is 10 
40: r1 = 10 
44: r1 = r1 - 1 
48: call printf           ; printf(arg1) 
52: branch r1 > 0, 44           
56: halt 

 
Details about red instructions/data next time… 
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Indirect Branches 
 

•  Branch address may also come from a register 
•  AKA: Indirect Jump 

Example: 
40: add r1 = r2 + r3 
44: sub r3 = r1 - r0 
48: store M[ r3 ] = r1 
52: load r2 = M[ 2 ] 
56: jump r4 
60: halt 

? 
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Branch Summary 
 
•  Reduce, Reuse, Recycle (instructions) 
•  Branch instructions update state 

00: 0000 0000 0000 0000 0000 0000 0000 0000 

08: 0000 0000 0000 0000 0000 0000 0000 0000 

10: 9222 9120 1121 A120 1121 A121 7211 0000 

18: 0000 0001 0002 0003 0004 0005 0006 0007 

20: 0008 0009 000A 000B 000C 000D 000E 000F 

28: 0000 0000 0000 FE10 FACE CAFE ACED CEDE 

. 

. 
E8: 1234 5678 9ABC DEF0 0000 0000 F00D 0000 

F0: 0000 0000 EEEE 1111 EEEE 1111 0000 0000 

F8: B1B2 F1F5 0000 0000 0000 0000 0000 0000 

Main Memory 

Registers 

B700 

2 

0010 

3 

0401 

4 

0002 

5 0 

0788 

1 

0003 

6 

00A0 

7 

0000 

B700 

A 

0010 

B 

0401 

C 

0002 

D 8 

0788 

9 

0003 

E 

00A0 

F 

0000 

PC 

10 
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A Note on Notation… 
 

•  Assembly syntax is somewhat arbitrary 
•  Equivalent “Add” Instructions 

•  add r1, r2, r3 
•  add r1 = r2, r3 
•  r1 = r2 + r3 
•  add r1 = r2 + r3 
•  add $1, $2, $3 
•  … 

•  Equivalent “Store Word” Instructions 
•  sw $1, 10($2) 
•  M[r2 + 10] = r1 
•  st.w M[r2 + 10] = r1 
•  … 



43 

Specific Instance: MIPS Instruction Set  
 

•  MIPS – SGI Workstations, Nintendo, Sony… 
 
State: 
•  32-bit addresses to memory (32-bit PC)  
•  32 32-bit Registers 
•  A “word” is 32-bits on MIPS 
•  Register $0 ($zero) always has the value 0 
•  By convention, certain registers are used for certain 

things – more next time… 
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MIPS Usage in Course 
 

•  Used throughout book  
•  We will use it on homework and exams 
•  For clarity of lecture, MIPS not always used 
•  Refer to book for all instructions discussed 
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Specific Instance: MIPS Instruction Set  
 

Some Arithmetic Instructions: 
•  Add: 

•  Assembly Format: add <dest>, <src1>, <src2> 
•  Example: add $1, $2, $3 
•  Example Meaning: r1 = r2 + r3 

•  Subtract: 
•  Same as add, except “sub” instead of “add” 
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Specific Instance: MIPS Instruction Set  
 

Some Memory Instructions: 
•  Load Word: 

•  Assembly Format: lw <dest>, <offset immediate> (<src1>) 
•  Example: lw $1, 100 ($2)  
•  Example Meaning: r1 = M[r2 + 100]  

•  Store Word: 
•  Assembly Format: sw <src1>, <offset immediate> (<src2>) 
•  Example: sw $1, 100 ($2)  
•  Example Meaning: M[r2 + 100] = r1 



47 

Specific Instance: MIPS Instruction Set  
 
Some Branch Instructions: 
•  Branch Equal: 

•  Assembly Format: beq <src1>, <src2>, <target immediate>  
•  Example: beq $1, $2, 100  
•  Example Meaning: branch r1 == r2, 100 

      If r1 is equal to r2, PC = 100 

•  Branch Not Equal: Same except beq -> bne 

•  Jump: 
•  Assembly Format: j <target immediate> 
•  Example: j 100  
•  Example Meaning: jump 100 

     PC = 100 
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How are MIPS Instructions Encoded? 
 

Instruction Set Architecture

Applications

Operating System

FirmwareCompiler

Instruction Set Processor I/O System

Datapath & Control

Digital Design

Circuit Design

Layout
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MIPS Encodings 
32-bits/Instruction 
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MIPS Add Instruction Encoding 
 

add $17, $18, $19 

 0              18             19            17              0               32 

add is an R inst 
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MIPS Add Instruction Encoding 
 

sub $17, $18, $19 

 0              18             19            17              0               34 

sub is an R inst 
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Add and Subtract 
A little foreshadowing… 

add 

sub 



53 



54 

Memory Addressing 
 

View memory as a single-dimensional array 
 
Since 1980: Elements of array are 8-bits 
 
We say “byte addressable” 
 
Assuming 32-bit words: 
1.  How are bytes laid out in word read? 

2.  Can a word start at any address? 

0 
1 
2 
3 
4 
5 
6 
... 

8 bits of data 

8 bits of data 

8 bits of data 

8 bits of data 

8 bits of data 

8 bits of data 

8 bits of data 



Memory Organization 
 
•  Bytes are nice, but most data items use larger "words" 
•  For MIPS, a word is 32 bits or 4 bytes. 

 
 
 
 
 
 
 

•  232 bytes with byte addresses from 0 to 232-1 
•  230 words with byte addresses 0, 4, 8, ... 232-4 
•  Words are aligned 

 i.e., what are the  least 2 significant bits of a word address? 

0 
4 
8 

12 
... 

32 bits of data 

32 bits of data 

32 bits of data 

32 bits of data 

Registers hold 32 bits of data 
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Addressing Modes 
Addressing mode  Example  Meaning 
Register Add R4,R3 R4 ← R4+R3 

Immediate Add R4,#3 R4  ← R4+3 

Displacement  Add R4,100(R1) R4  ← R4+Mem[100+R1] 

Register indirect Add R4,(R1) R4  ← R4+Mem[R1] 

Indexed / Base Add R3,(R1+R2) R3  ← R3+Mem[R1+R2] 

Direct or absolute Add R1,(1001) R1  ← R1+Mem[1001] 

Memory indirect Add R1,@(R3) R1  ← R1+Mem[Mem[R3]] 

Auto-increment Add R1,(R2)+  R1  ← R1+Mem[R2]; R2  ← R2+d 

Auto-decrement Add R1,–(R2) R2  ← R2–d; R1  ← R1+Mem[R2] 

Scaled      Add R1,100(R2)[R3] R1  ← R1+Mem[100+R2+R3*d] 



Hello World 
 

The Hello World Algorithm: 
1.  Emit “Hello World” 
2.  Terminate 

C Program 



Hello World 
 

IA-64 Assembly Language 

GNU C Compiler C Program 



Hello World 
 

IA-64 Assembly Language 



Interfaces in Computer Systems 
 

Instruction Set Architecture

Applications

Operating System

FirmwareCompiler
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Circuit Design

Layout

Software 

Hardware 
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Control 
(from the back of a napkin) 



The Hardware/Software Interface 
 

Instruction Set Architecture

Applications

Operating System

FirmwareCompiler

Instruction Set Processor I/O System

Datapath & Control

Digital Design

Circuit Design

Layout

Software 

Hardware 



The Instruction Set Architecture 
 

“The vocabulary of commands” 
•  Defined by the Architecture (x86) 
•  Implemented by the Machine (Pentium 4, 3.06 GHz) 
•  An Abstraction Layer: The Hardware/Software Interface 
•  Architecture has longevity over implementation 
•  Example: 

    add r1 = r2 + r3    (assembly) 
 

    001 001 010 011    (binary) 

Opcode (verb) Operands (nouns) 
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