Lecture 1: Introduction

COS 375 / ELE 375

Computer Architecture and Organization

Princeton University Fall 2015

Prof. David August

The Usual Suspects

- Me: Prof. David August, 221 CS Building, august@ Office Hours: M/W after class and by appointment
- TAs: Bochao Wang, E-Quad C-319B, bochaow@ Office Hours: Th/F 10:30-11:30AM

Debajit Bhattacharya, E-Quad C-319D, dbhattac@ Office Hours: T/Th 3-4PM

Hansen Zhang, 241 CS Building, hansenz@ Office Hours: M/W 3-4PM

Course Objectives

- Enable you to design and build a computer
 - Get a lump of matter to do your bidding
 - Understand and evaluate tradeoffs in design
- Appreciate theory vs. practice
 - Become a better implementer of algorithms
- Learn assembly/machine language programming
 - Essential for OS and Compiler Work
 - Essential for understanding processor design
- Understand modern Computer Organization
 - High-level languages -> execution on physical material
- Help you to revolutionize computing
 - Discuss the latest research
 - Contribute some of our own?

Course Topics

1. Performance Evaluation

· Measures of performance · Benchmarks and metrics

2. Instruction Set Architecture

- Instruction formats & semantics
- Addressing modes

3. Machine Arithmetic

- ALU design
- Integer multiplication & division
- Floating-point arithmetic

4. Processor Design

• Pipelining

- · Datapath design
- Instruction exec. & sequencing Hardwired & microcode control

8. Multiprocessor

- Interconnection networks
- Programming issues

The Course Project

- Groups of 4 students Sign up in September
- Work can be done anywhere
- Project consists of two parts
 - ARM-based Instructions Set Simulator (in C)
 - Implementation of processor onto an FPGA (in Verilog)

Pick a number 1,2,3

If the random number is the picture of a "processor", then we have a quiz.

· Modeling and simulation 6. Memory Hierarchy

Cache design & evaluation

5. Hardware Design Languages

• Design with a Verilog

- Virtual addressing
- Performance evaluation

7. Input/Output

- Types of I/O devices
- · Device access and interface
- Device control
- I/O performance

Quizzes

- Chance quiz at the beginning of one class each week
- Not intended as a scare tactic liberally graded
- Helps assess progress of class
- Just one question usually

Homework

- 4 homework sets
- Questions resemble exam questions

Exams

- Exams cover concepts presented in the lecture material, homework assignments, and/or required readings
- Sheet of paper allowed

Midterm Exam

- Wednesday before Fall Break
- In class

Final Exam

- The final exam will be cumulative, three hours in length
- Time/Place determined by the Registrar

Required Reading

- Computer Organization and Design: The Hardware/Software Interface Fifth Edition David Patterson and John Hennessy
- Course Web Page Off of CS page
 - Lecture Notes
 - Project Material
 - Homework Assignments
 - Course Announcements

Participation

Negatives

- Class disruptions (snoring, reading newspaper, etc.)
- Mistreatment of TAs

Positives

- Contribute questions and comments to class
- Participate in discussions
- Feedback
- Stop by office hours to introduce yourself

Grading

10

11

Project	40%
Midterm	15%
Final	25%
Quizzes	EXTRA CREDIT
Participation	5%
Homework	15% (best 3 of 4)

Who Am I?

At Princeton (Computer Science, 1999-Present):

- Professor
- Compiler and computer architecture research
- Liberty Research Group

Education (Ph.D. in 2000):

- Ph.D. Electrical Engineering from University of Illinois
- Thesis Topic: Predicate Optimization
- The IMPACT Compiler Research Group

Our Pledge to You

- Lectures only as long as necessary!
- Quick response to questions and issues
- Reasonable late policy

15

- Up to 3 days late for any single assignment without penalty
- Up to 7 days late total across all assignments
- Contact me prior to deadline for special circumstances
- Fast turn-around on grading

END OF ADMINISTRATIVE STUFF

Why Computer Architecture?

Why Computer Architecture?

Why Computer Architecture?

Is computer architecture dead?

Why Computer Architecture?

It's a Wednesday: Pick a number 1,2,3

Quiz 0: Background (use index cards)

Front:

- 1. Full name and Email Address above the red line
- 2. Major/UG or G/Year (immediately below the red line)
- 3. Area (G: Research Area/UG: Interests)
- 4. Briefly describe any C/C++ experience.
- 5. In which programming languages are you fluent?
- 6. What is a bit?

Back:

21

- 1. What is an instruction cache?
- 2. What is the difference between a sequential and a combinational circuit?
- 3. What is a MUX?
- 4. Using AND, OR, and NOT gates design an XOR gate.

What is a Computer?

Computers haven't changed in over 50 years!

- Universal Turing Machine Equivalence
- Given enough time/memory, nothing new
- Computers have undergone enormous changes! New applications enabled
- New form factors
- Computers process information
- Input/Output
- State
- Computation

Universal Turing Machine

"Dude, your get'n a..."

"Thin. Light. Epic."

Modern Computer Organization

- Where does the hard disk go?
- Computer system design
 - Enable applications (speed, reliability, efficiency)
 - Reduce cost (die size, technology, time-to-market)
- The Key: Manage Complexity!

24

Abstraction

- Separate implementation from specification
 - INTERFACE: specify the provided services.
 - IMPLEMENTATION: provide code or HW for operations.
 - CLIENT: code or HW that uses services.
- Examples: ADTs
- Principle of least privilege

The Living Daylights: Bond and Saunders are in a house waiting for General Koskov to defect. Bond is preparing to shoot a sniper.

Bond: What's your escape route? **Saunders:** Sorry old man. Section 26 paragraph 5, that information is on a need-toknow basis only. I'm sure you'll understand.

Intuition

Client

Interface

- universal remote
 volume
- change channel
- adjust picture
- decode NTSC, PAL
- signals
- Implementation
- cathode ray tube
- electron gun
- Sony Wega 36XBR250
- 241 pounds, \$2,699

Intuition

27

Interface

- Implementation - universal remote - gas plasma monitor
- volume - Pioneer PDP-502MX
- change channel
- adjust picture
- decode NTSC, PAL
- wall mountable - 4 inches deep
- \$19,995

signals Can substitute better implementation

without changing client!

Interfaces in Computer Systems

Hello World

The Hello World Algorithm:

- 1. Emit "Hello World"
- 2. Terminate

The Hello World Algorithm:

- 1. Emit "Hello World"
- 2. Terminate

Hello World

Hello World

Hello World

		IA-64 Assembly Language
.LCO:	.file "hello.c" .pred.safe_across_calls p1-p5,p16-p63 .section .rodata.str1.8,"ams",@ .align 8	progbits,1
	stringz "Hello World!\n"	
.text	.align 16 .global main# .proc main#	
main:	.prologue 12, 33 .save ar.pfs, r34 alloc r34 = ar.pfs, 0, 3, 1, 0 addl r35 = @ltoff(.LCO), gp .save rp, r33 mov r33 = b0 :: .body 1d8 r35 = [r35] br.call.sptk.many b0 = printf# :: mov r8 = r0 mov ar.pfs = r34 mov b0 = r33 br.ret.sptk.many b0 .endp main# .ident "GCC: (GNU) 2.96 20000731 (Red	Hat Linux 7.2 2.96-112.7.2)"

Hello World

The Instruction Set Architecture

"The vocabulary of commands"

- Defined by the Architecture (x86)
- Implemented by the Machine (Intel Core i7, 4 GHz)
- An Abstraction Layer: The Hardware/Software Interface
- Architecture has longevity over implementation
- Example:

add r1 = r2 + r3 (assembly)

001 001 010 011 (binary)

00000000, 7545 4-46 0201 0		IA-64 Binary (objdump)
	100 0000 0000 0000 0000 .EEF.	
00000260: 5002 0000 0000 0	0000 006c 6962 632e 736f P	libc.so
00000270: 2e36 2e31 0070 7	7269 6e74 6600 5f5f 6c69 .6.1.	printfli
0000280: 6263 5f73 7461 7	7274 5f6d 6169 6e00 474c bc_st	art_main.GL
00000290: 4942 435f 322e 3	3200 0000 0200 0200 0000 IBC_2	.2
···	576f 726c 6421 0d00 0000 Hollo	vorld
	3761 726C 6421 0000 0000 Herro	worrd:
400000000000690 <main>: 400000000000690: 00 400000000000696: 30</main>	0 10 15 08 80 05 [MII] 0 02 30 00 42 20	alloc r34=ar.pfs,5,4,0 mov r35=r12
400000000000006a0: 0a	a 20 81 03 00 24 [MMI]	add1 r36=96,r1;;
40000000000006a6: 40	D 02 90 30 20 00	ld8 r36=[r36]
40000000000006ac: 04	4 08 00 84	mov r32=r1
4000000000006b0: 1d	d 00 00 00 01 00 [MFB]	nop.m 0x0
4000000000006b6: 00	D 00 00 02 00 00	nop.f 0x0
4000000000006bc: b8	8 fd ff 58	br.call.sptk.many b0=4000000000000460;;
4000000000006c0: 00	0 08 00 40 00 21 [MII]	mov r1=r32
400000000006c6: 80	0 00 00 00 42 00	mov r8=r0
400000000006cc: 20	0 02 aa 00	mov.i ar.pfs=r34
400000000006d0: 00	0 00 00 00 01 00 [MII]	nop.m 0x0
400000000006d6: 00	0 08 05 80 03 80	mov.b0=r33
4000000000006dc: 01	1 18 01 84	mov r12=r35
4000000000006e0: 1d	1 00 00 00 01 00 [MFB]	nop.m 0x0
4000000000006e6: 00	0 00 00 02 00 80	nop.f 0x0
4000000000006ec: 08	3 00 84 00	br.ret.sptk.many b0;;

Hello World in Action

Hello World in Action

Interfaces in Computer Systems

Hardware

Physical Principles of Information

•Fredkin-Toffoli axioms.

E. F. Fredkin and T. Toffoli. Conservative logic. International Journal of Theoretical Physics, 21(3/4):219--253, 1982.

- The speed of propagation of information is bounded.
 - Speed of light
 - No action at a distance causal effects propagate thru local interactions
- The amount of information which can be encoded in the state of a finite system is bounded.
 - Bounded by thermodynamical/quantum-mechanical considerations
- It is possible to construct macroscopic, dissipative physical devices which perform in a recognizable and reliable way the logical functions AND, OR, and FAN-OUT.

Physical Devices

Layout/Circuit Design

Digital Design 4-bit Adder

Digital Design 4-bit Adder

Datapath

Datapath is a conduit for information flow through the processor

Complete Datapath

The Hardware/Software Interface

The Instruction Set Architecture

"The vocabulary of commands"

- Defined by the Architecture (x86)
- Implemented by the Machine (Pentium 4, 3.06 GHz)
- An Abstraction Layer: The Hardware/Software Interface
- Architecture has longevity over implementation
- Example:

add r1 = r2 + r3 (assembly)

001 001 010 011 (binary)

Computer Pre-history

Charles Babbage

- Analytical Engine "programmable"
- Started in 1834
- Babbage Never Finished

Computer History

ENAC

Eckert and Mauchly

 1st working programmable electronic computer (1946)

18,000 Vacuum tubes

1,800 instructions/sec

• 3,000 ft³

EDSAC 1 (1949)

54

Maurice Wilkes

1st stored program computer 650 instructions/sec 1,400 ft³

Slice of History – Intel Processors Intel 4004 Die Photo

- First microprocessor
- Introduced in 1970
- 2,250 transistors
- 12 mm²
- 108 KHz
- 2 Designers

Slice of History – Intel Processors Intel 8086 Die Scan

- Basic x86 architecture
- Introduced in 1979
- 29,000 transistors
- 33 mm²
- 5 MHz

Slice of History – Intel Processors Intel 80486 Die Scan

- 1st pipelined x86
- implementation
- Introduced in 1989
- 1,200,000 transistors
- 81 mm²
 25 MHz

Slice of History – Intel Processors Pentium Die Photo

- 1st superscalar x86
- Introduced in 1993
- 3,100,000 transistors
- 296 mm²
- 60 MHz

•

Slice of History – Intel Processors

Pentium III

- 9,5000,000 transistors
- 125 mm²
- 450 MHz
- Introduced in 1999

58

Slice of History – Intel Processors Core 2 Duo (Merom)

- 293,000,000 transistors
- 143 mm²
- 1.6 GHz 3.16 GHz
- Introduced in 2006

60

61

Slice of History – Intel Processors

"Grove giveth and Gates taketh away." - Bob Metcalfe (inventor of Ethernet)

Other Technology Trends

- Processor
 - Logic Capacity: ~30% increase per year
 - Clock Rate: ~20% increase per year
- Memory
 - DRAM Capacity: ~60% increase per year
 - Memory Speed: ~10% increase per year
 - Cost per Bit: ~25% decrease per year
- Disk
 - Capacity: ~60% increase per year

Trends...

One More Trend...

- Intel 4004 (Thousands of transistors)
 - Number of Designers: 2
- Intel Core i7 (Billions of transistors)
 - Number of Designers: ~1500
- How does Intel manage so many designers on one project?
 - Architects
 - Microarchitects
 - Circuit designers
 - Validation
 - Software
- This trend is exponential. What does this mean?

- Read Chapter 1 in H&P
- Abstraction in HW and SW to manage complexity
- ISA defines the Hardware Software Interface
- Technology influences implementations...

Poor choice of device technology:

http://www.ominous-valve.com/vtsc.html