A 1 g() I 1 t h Ims ROBERT SEDGEWICK | KEVIN WAYNE

6.5 REDUCTIONS

» introduction

» designing algorithms

» establishing lower bounds
» classifying problems

» intractability

RoOBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

http://algs4.cs.princeton.edu
http://algs4.cs.princeton.edu
http://algs4.cs.princeton.edu
http://algs4.cs.princeton.edu

Overview

Shifting gears.
 From individual problems to problem-solving models. '&
e From linear/quadratic to polynomial/exponential scale. <
« From implementation details to conceptual frameworks. ‘

Goals.
« Place algorithms and techniques we've studied in a larger context.
e Introduce you to important and essential ideas.
e Inspire you to learn more about algorithms!

6.5 REDUCTIONS

» introduction

Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

http://algs4.cs.princeton.edu
http://algs4.cs.princeton.edu
http://algs4.cs.princeton.edu
http://algs4.cs.princeton.edu

Bird's-eye view

Desiderata. Classify problems according to computational requirements.

min, max, median,

linear N
Burrows-Wheeler transform, ...
_ _ _ sorting, element distinctness,
linearithmic Nlog N) ,
& closest pair, Euclidean MST, ...
quadratic N2 ?
exponential cN ?

Frustrating news. Huge number of problems have defied classification.

Bird's-eye view

Desiderata. Classify problems according to computational requirements.

Desiderata’. Suppose we could (could not) solve problem X efficiently.
What else could (could not) we solve efficiently?

“ Give me a lever long enough and a fulcrum on which to

place it, and I shall move the world.” — Archimedes

Reduction

Def. Problem X reduces to problem Y if you can use an algorithm that
solves Y to help solve X.

Algorithm
forY

instance |
(of X)

solution to |

Algorithm for X

Cost of solving X = total cost of solving Y + cost of reduction.

T T

perhaps many calls to Y preprocessing and postprocessing
on problems of different sizes (typically less than cost of solving Y)
(typically only 1 call)

Reduction

Def. Problem X reduces to problem Y if you can use an algorithm that
solves Y to help solve X.

Algorithm
forY

instance |
(of X)

solution to |

Algorithm for X

Ex 1: element distinctness reduces to sorting
To solve element distinctness on N items:

e Sort N items.

o Check adjacent pairs for equality.

cost of sorting
cost of reduction
4 —

Cost of element distinctness. N log N + N.

Reduction

Def. Problem X reduces to problem Y if you can use an algorithm that
solves Y to help solve X.

instance | Algorithm

solution to |
(of X) forY
“"'"Wm"""'"m/'s;ig'&r'i't"r{rﬁnf&r"k
Ex 2: finding the median reduces to sorting.
To find the median of N items:
e Sort N items.
e« Return item in the middle.
cost of sorting
/ — cost of reduction

Cost of finding the median. NlogN + 1. [even though we know how to do it better]

Reduction

Def. Problem X reduces to problem Y if you can use an algorithm that
solves Y to help solve X.

Algorithm
forY

instance |
(of X)

solution to |

Algorithm for X

Beware of novice error. Confusing X reduces to Y with Y reduces to X.

Reductions: quiz 1

Which of the following reductions have we encountered in this course?

heed to find max st-flow and min st-cut
(not simply compute the value)

. MAX-FLow reduces to MIN-CUT. >
II. MIN-CUT reduces to MAX-FLOw.

| only.

Il only.

A.

B.

C. Both I and Il.
D. Neither | nor Il
E.

I don't know.

6.5 REDUCTIONS

» designing algorithms

Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

http://algs4.cs.princeton.edu
http://algs4.cs.princeton.edu
http://algs4.cs.princeton.edu
http://algs4.cs.princeton.edu

Reduction: design algorithms

Def. Problem X reduces to problem Y if you can use an algorithm that
solves Y to help solve X.

Design algorithm. Given an algorithm for Y, can also solve X.

More familiar reductions.
e Mincut reduces to maxflow.

Arbitrage reduces to negative cycles.

Bipartite matching reduces to maxflow.

Seam carving reduces to shortest paths in a DAG.
Burrows-Wheeler transform reduces to suffix sort.

Mentality. Since | know how to solve Y, can | use that algorithm to solve X?

1

programmer’s version: | have code for Y. Can | use it for X?

12

3-collinear

3-COLLINEAR. Given N distinct points in the plane, are there 3 (or more)
that all lie on the same line?

3-collinear

Brute force N3. For all triples of points (p, g, r), check if they are collinear.

13

3-collinear reduces to sorting

Sorting-based algorithm. For each point p,
« Compute the slope that each other point ¢ makes with p.
 Sort the N—1 points by slope.
o Collinear points are adjacent.

q3

-/

q2
qi

dx

cost of sorting (N times)
cost of reduction
rd —

Cost of solving 3-COLLINEAR. N? log N + N2.

14

Shortest paths on edge-weighted graphs and digraphs

Proposition. Undirected shortest paths (with nonnegative weights)
reduces to directed shortest path.

TN
4 10
—_ —d ® \@
Pf. Replace each undirected edge by two directed edges.
SN
4 10
G— s —>$ © \®

Cost of solving undirected shortest paths. ElogV + (E + V).

cost of Dijkstra / cost of reduction

15

Some reductions in combinatorial optimization

baseball : bipartite undirected shortest paths
. mincut : :
elimination matching (nonnegative)

N

directed shortest paths

seam
carving

|

shortest paths

maxflow (nonnegative) SR (in a DAG)
v
assignment directed shortest paths
problem (no neg cycles)

\/

linear
programming

16

Some reductions in string processing

circular
shift
substring
search

longest repeated
substring

longest common
substring

N

longest palindromic

substring

» suffix trees <

Burrows-Wheeler
transform

IR

tandem
repeats

Lempel-Ziv

ffix arr ..
>u arrays decomposition

17

6.5 REDUCTIONS

» establishing lower bounds

Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

http://algs4.cs.princeton.edu
http://algs4.cs.princeton.edu
http://algs4.cs.princeton.edu
http://algs4.cs.princeton.edu

Bird's-eye view

Goal. Prove that a problem requires a certain number of steps.
Ex. In decision tree model, any compare-based sorting algorithm
requires Q(N log N) compares in the worst case.

ach cab bca cba argument must apply to all
conceivable algorithms

/

Bad news. Very difficult to establish lower bounds from scratch.
Good news. Spread Q(Nlog N) lower bound to Y by reducing sorting to Y.

\

assuming cost of reduction is not too high

19

Linear-time reductions

Def. Problem X linear-time reduces to problem Y if X can be solved with:

e Linear number of standard computational steps.

e Constant number of calls to Y.

Establish
e If Xta
e If Xta

Mentality.

* If | could easily solve Y, then | could easily solve X.

ower bound:
kes Q(N log N) steps, then so does Y.

kes Q(N?2) steps, then so does Y.

* | can’t easily solve X.

 Therefore, | can't easily solve Y.

20

Reductions: quiz 2

Which of the following reductions is not a linear-time reduction?

ELEMENT-DISTINCTNESS reduces to SORTING.
MIN-CUT reduces to MAX-FLOW.
3-COLLINEAR reduces to SORTING.

BURROWS-WHEELER-TRANSFORM reduces to SUFFIX-SORTING.

m O 0 ® »

I don't know.

21

ELEMENT-DISTINCTNESS lineartime reduces to 2D-CLOSEST-PAIR

ELEMENT-DISTINCTNESS. Given N elements, are any two equal?
2D-CLOSEST-PAIR. Given N points in the plane, find the closest pair.

590584
-23439854
1251432 °
-2861534
3988818

~43434213 o *\\ o
333255

13546464 ¢ o

89885444

-43434213
11998833 ° o

element distinctness 2d closest pair

ELEMENT-DISTINCTNESS lineartime reduces to 2D-CLOSEST-PAIR

ELEMENT-DISTINCTNESS. Given N elements, are any two equal?
2D-CLOSEST-PAIR. Given N points in the plane, find the closest pair.

Proposition. ELEMENT-DISTINCTNESS linear-time reduces to 2D-CLOSEST-PAIR.
Pf.

e ELEMENT-DISTINCTNESS instance: xi,xz, ..., xn.

o 2D-CLOSEST-PAIR instance: (x1,x1), (x2,x2), ..., (xn, XN).

e The N elements are distinct iff distance of closest pair > 0.

allows linear tests like x; < x;
/ and quadratic tests like (x; — xx)? + (xj — xx)? > 4

ELEMENT-DISTINCTNESS lower bound. In quadratic decision tree model,
any algorithm that solves ELEMENT-DISTINCTNESS takes Q(N log N) steps.

Implication. In quadratic decision tree model, any algorithm for
2D-CLOSEST-PAIR takes Q(N log N) steps.

23

Some lineartime reductions in computational geometry

smallest
enclosing circle

element distinctness
(N log N lower bound)

7N\

sorting 2d closest pair
\/ \4
2d convex hull 2d Euclidean MST
Delaunay triangulation) largest empty circle
Voronoi diagram (N log N lower bound)

24

Lower bound for 3-COLLINEAR

3-SuM. Given N distinct integers, are there three that sum to 0?

3-COLLINEAR. Given N distinct points in the plane, are there 3 (or more)
that lie on the same line?

590584
-23439854
1251432 o
-2861534 Pt
3988818 ’
-4190745 o Re R
333255 R ’ o
13546464 4 o
89885444
~43434213
11998833 o o

3-sum 3-collinear

Lower bound for 3-COLLINEAR

3-SuM. Given N distinct integers, are there three that sum to 0?

3-COLLINEAR. Given N distinct points in the plane, are there 3 (or more)
that lie on the same line?

Proposition. 3-SuM linear-time reduces to 3-COLLINEAR.
Pf. [next two slides] ™ lower-bound mentality:

if | can't solve 3-SUM in N'-99 time,

| can't solve 3-COLLINEAR
in NT-99 time either

Conjecture. Any algorithm for 3-SuM requires Q(N2-¢) steps.
Implication. No sub-quadratic algorithm for 3-COLLINEAR likely.

our N2 log N algorithm was pretty good

26

3-SUM linear-time reduces to 3-COLLINEAR

Proposition. 3-SuM linear-time reduces to 3-COLLINEAR.

e 3_-SUM Instance: xi,x2, ...,XnN.

e 3-COLLINEAR Instance: (xi,xi13), (x2,x23), ..., (xn, xn3).

Lemma. If g, b, and ¢ are distinct, thena+b+c=0
if and only if (a, @), (b, b3), and (c, ¢3) are collinear.

f(x)=x’

342+1=0

27

3-SUM linear-time reduces to 3-COLLINEAR

Proposition. 3-SuM linear-time reduces to 3-COLLINEAR.
e 3-SUM Instance: xi,x2,...,Xxn.

e 3-COLLINEAR Instance: (xi,xi13), (x2,x23), ..., (xn, xn3).

Lemma. If g, b, and ¢ are distinct, thena+b+c=0
if and only if (a, @), (b, b3), and (c, ¢3) are collinear.

Pf. Three distinct points (a, a3, (b, b3), and (c, ¢3) are collinear iff:

a a> 1
0 = b b 1
1

= a(b® =) —ba’® -)+ c(a® — V%)

= (a=b)(b—c)(c—a)la+b+c)

28

More geometric reductions and lower bounds

3-Sum

(conjectured N2-¢ lower bound)

AR

POLYGONAL-CONTAINMENT 3 -COLLINEAR DIHEDRAL-ROTATION

/ N\

3 —-CONCURRENT

MIN-AREA-TRIANGLE

GEOMETRIC-BASE

/\

LINE-SEGMENT-
SEPARATOR

PLANAR-MOTION-
PLANNING

29

Complexity of 3-SUM

April 2014. Some recent evidence that the complexity might be N3/2,

Threesomes, Degenerates, and Love Triangles®

Allan Grgnlund Seth Pettie
MADALGO, Aarhus University University of Michigan

April 4, 2014

Abstract

The 3SUM problem is to decide, given a set of n real numbers, whether any three sum to zero.
We prove that the decision tree complexity of 3SUM is O(n*/24/logn), that there is a randomized
3SUM algorithm running in O(n?(loglogn)?/logn) time, and a deterministic algorithm running
in O(n?(loglogn)®?/(logn)??) time. These results refute the strongest version of the 3SUM
conjecture, namely that its decision tree (and algorithmic) complexity is (n?).

30

Establishing lower bounds: summary

Establishing lower bounds through reduction is an important tool
in guiding algorithm design efforts.

Q. How to convince yourself no linear-time EUCLIDEAN-MST algorithm exists?
Al. [hard way] Long futile search for a linear-time algorithm.
A2. [easy way] Linear-time reduction from element distinctness.

?

2d Euclidean MST

31

6.5 REDUCTIONS

Algorithms
» classifying problems

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

http://algs4.cs.princeton.edu
http://algs4.cs.princeton.edu
http://algs4.cs.princeton.edu
http://algs4.cs.princeton.edu

Classifying problems: summary

Desiderata. Problem with algorithm that matches lower bound.
Ex. Sorting and element distinctness have complexity Nlog N.

Desiderata’. Prove that two problems X and Y have the same complexity.

* First, show that problem X linear-time reduces to Y.
e Second, show that Y linear-time reduces to X.

* Conclude that X has complexity N? iff Y has complexity N? for b > 1.

\

even if we don't know what it is

X = sorting ir!te.ger.
T x multiplication

[

integer
division

Y = element
distinctness

33

Integer arithmetic reductions

Integer multiplication. Given two N-bit integers, compute their product.
Brute force. N2 bit operations.

1 1 0 1 O 1 0O 1
x 0 1 1 1 1T 1T 0 1
1 1 0 1 O 1 0O 1

O 0 00 0 0 0 O

1 1 0 1 O 1T 0 1
1 1. 0 1 O 1 O 1
1 1. 0 1 O 1 0O 1
1 1.0 1 O 1 0 1
1 1.0 1 O 1 0 1
O 0 00 00O O O

o1 101 0 O O OO O OO0 O 0O 1

34

Integer arithmetic reductions

Integer multiplication. Given two N-bit integers, compute their product.

Brute force. N2 bit operations.

integer multiplication axb M(N)
integer division al/b, amod b M(N)
integer square a? M(N)
integer square root |Va | M(N)

integer arithmetic problems with the same complexity as integer multiplication

Q. Is brute-force algorithm optimal?

35

History of complexity of integer multiplication

? brute force N2
1962 Karatsuba N 1.585
1963 Toom-3, Toom-4 N1465 = N 1404
1966 Toom-Cook Nl+e
1971 Schénhage-Strassen Nlog N log log N
2007 Firer N log N 2 log*N
? ? N

number of bit operations to multiply two N-bit integers

used in Maple, Mathematica, gcc, cryptography, ...

/

Remark. GNU Multiple Precision Library uses one of five GMP
different algorithm depending on size of operands.

«Arithmetic without limitations»

36

Numerical linear algebra reductions

Matrix multiplication. Given two N-by-N matrices, compute their product.
Brute force. N3 flops.

column j j
0.1 0.2 0.8 0.1 0.4 0.3 0.1 0.1 0.16 0.11 0.34 0.62
row i 0.5 0.3 0.9 0.6 0.2 0.2 0.0 0.6 i 0.74 0.45 0.47 1.22
X —
0.1 0.0 0.7 0.4 0.0 0.0 0.4 0.5 0.36 0.19 /0.33 0.72
0.0 0.3 0.3 0.1 0.8 0.4 0.1 0.9 0.14 0.1 0.13 0.42

0.5-0.1+ 0.3-0.0 + 0.9:0.4 + 0.6-0.1 =0.47

Numerical linear algebra reductions

Matrix multiplication. Given two N-by-N matrices, compute their product.
Brute force. N3 flops.

linear algebra order of growth

matrix multiplication AxB MM(N)
matrix inversion Al MM(N)
determinant |Al MM(N)
system of linear equations Ax=D> MM(N)
LU decomposition A=LU MM(N)
least squares min l|IAx — bll, MM(N)

numerical linear algebra problems with the same complexity as matrix multiplication

Q. Is brute-force algorithm optimal?

History of complexity of matrix multiplication

? brute force N3
1969 Strassen NN 2.808
1978 Pan N 2796
1979 Bini N 2780
1981 Schéonhage N 2522
1982 Romani N 2517
1982 Coppersmith-Winograd N 2496
1986 Strassen N 2479
1989 Coppersmith-Winograd N 2376
2010 Strother N 23737
2012 Williams N 2372873
2014 de Gall N 2372864

? ? N2+

number of floating-point operations to multiply two N-by-N matrices

6.5 REDUCTIONS

Algorithms

» intractability

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

http://algs4.cs.princeton.edu
http://algs4.cs.princeton.edu
http://algs4.cs.princeton.edu
http://algs4.cs.princeton.edu

Bird's-eye view

Def. A problem is intractable if it can't be solved in polynomial time.
Desiderata. Prove that a problem is intractable.

input size=c+Ig K
Two problems that provably require exponential time. /

* Given a constant-size program, does it halt in at most K steps?
e Given N-by-N checkers board position, can the first player force a win?

N\

using forced capture rule

Frustrating news. Very few successes.

41

A core problem: satisfiability

SAT. Given a system of boolean equations, find a solution.

EX. = X1 or
X1 or

= X1 or

- X1 or

3-SAT. All equations of this form (with three variables per equation).

Key applications.

or

or

or

or

or

instance |

X3

or

or

trrue

trrue

trrue

trrue

trrue

« Automatic verification systems for software.

o Mean field diluted spin glass model in physics.
« Electronic design automation (EDA) for hardware.

X1 X2 X3 X4
T T F T

solution S

42

Satisfiability is conjectured to be intractable

Q. How to solve an instance of 3-SAT with N variables?
A. Exhaustive search: try all 2V truth assignments.

(onsmﬂ atens,

i€ only faok yev

85199 seconds LB EN
~ { ' P

Q. Can we do anything substantially more clever?

Conjecture (P # NP). 3-SAT is intractable (no poly-time algorithm).

N\

consensus opinion

43

Polynomialtime reductions

Problem X poly-time (Cook) reduces to problem Y if X can be solved with:
o Polynomial number of standard computational steps.
e Polynomial number of calls to Y.

Algorithm
forY

instance |
(of X)

solution to |

Algorithm for X

Establish intractability. If 3-SAT poly-time reduces to Y, then Y is intractable.
(assuming 3-SAT is intractable)

Mentality.
* If | could solve Y in poly-time, then | could also solve 3-SAT in poly-time.
« 3-SAT is believed to be intractable.
 Therefore, so is Y.

44

Integer linear programming

ILP. Given a system of linear inequalities, find an integral solution.

3x1+5x+2x3+x4+4xs > 10
S5x1+2x +4xa+ 1xs < 7
X1 +x3+2x4 <2
3x1 +4x3+ Txa < 7 linear inequalities
x1+xs <1

x1+tx3t+txs <1

all x, = {0,1} <«——— integer variables X1 X2 X3 X4 X5
O 1 0 1 1
instance | solution S

Context. Cornerstone problem in operations research.
Remark. Finding a real-valued solution is tractable (linear programming).

45

3-SAT poly-time reduces to ILP

3-SAT. Given a system of boolean equations, find a solution.

- X, or X, or X3 = trrue
Xy or X, or X3 = trrue

- X, or — X, or = X3 = true
- X, or X, or or Xy = trrue
- X, or X3 or X4 = true

ILP. Given a system of linear inequalities, find a 0-1 solution.

(1-x) + X2 + X3 > 1
X1 + (1-x) <+ X3 > 1
1-x) + U-=-x) + (1-x3) > 1
(1-x) + U-=-x) + + Xy = 1
(1-x) + X3 + Xy = 1

solution to this ILP instance gives solution to original 3-SAT instance

46

Reductions: quiz 3

Suppose that Problem X poly-time reduces to Problem Y. Which of the
following can you infer?

A
B
C.
D
E

If X can be solved in poly-time, then so can Y.
If X cannot be solved in cubic time, Y cannot be solved in poly-time.
If Y can be solved in cubic time, then X can be solved in poly-time.

If Y cannot be solved in poly-time, then neither can X.

I don't know.

47

More poly-time reductions from 3-satisfiability

3-SAT

VERTEX-COVER Dick Karp
'85 Turing award

3-COLOR

d1] 01 SdNpaJ 1vs-€

v

ExXACT-COVER ILP CLIQUE HaM-CYCLE
\L 7
SUBSET-SUM Tsp HAM-PATH
7
PARTITION

j\ Conjecture. 3-SAT is intractable.

KNAPSACK BIN-PACKING

Implication. All of these problems are intractable.

48

Implications of poly-time reductions from 3-satisfiability

Establishing intractability through poly-time reduction is an important tool
in guiding algorithm design efforts.

Q. How to convince yourself that a new problem is (probably) intractable?

Al. [hard way] Long futile search for an efficient algorithm (as for 3-Sar).
A2. [easy way] Reduction from 3-SAT.

Caveat. Intricate reductions are common.

COMPUTERS AND INTRACTABILITY
A Guide 1 The Theory of NP-Completeness

49

Search problems

Search problem. Problem where you can check a solution in poly-time.

Ex 1. 3-SAT.

- X1 or X2 or X3 = [frue
Xy or -—Xp oOr X3 = [frue
- X1 or — X2 or - X3 = [frue
-X{ oOor -—X, oOr or X4 = true

X1 X2 X3 X4

-X> Or X3 or X4 = [lrue T T F T

instance | solution S

Ex 2. FAcTor. Given an N-bit integer x, find a nontrivial factor.

147573952589676412927 193707721

instance | solution S

50

Pvs. NP

P. Set of search problems solvable in poly-time.
Importance. What scientists and engineers can compute feasibly.

NP. Set of search problems (checkable in poly-time).
Importance. What scientists and engineers aspire to compute feasibly.

Fundamental question.

Consensus opinion. No.

51

Cook-Levin theorem

A problem is NP-CompPLETE if
e |tis in NP.
« All problems in NP poly-time reduce to it.

Cook-Levin theorem. 3-SAT is NP-COMPLETE.
Corollary. 3-Sart is tractable if and only if P = NP.
Two worlds.

NP

P+ NP

P=NP

52

Implications of Cook-Levin theorem

a-COVER

Stephen Cook Leonid Levin
JF '82 Turing award

EXACT-COVER CLIQUE AM-CYCLE

\4

SUBSET-SUM TSP HAM-PATH

\ 4

PARTITIO

All of these problems (and many, many more)

poly-time reduce to 3-SAT.

KNAPSACK BIN-PACKING

Implications of Karp + Cook-Levin

> AM-CYCLE

SUBSET-SU \ Tsp<—> HAM-PATH
PARTITION
\ All of these problems are NP-COMPLETE; they are

KNAPSACK «—> BIN-PACKING

manifestations of the same really hard problem.

54

Reductions: quiz 4

Suppose that X is NP-COMPLETE, Y is in NP, and X poly-time reduces to Y.
Which of the following statements can you infer?

. YIS NP-COMPLETE.
Il. If Y cannot be solved in poly-time, then P = NP.
Ill. If P+ NP, then neither X nor Y can be solved in poly-time.

| only.

Il only.

A.

B.

C. Iland Il only.
D. |, I, and Ill.
E.

I don't know.

Birds-eye view: review

Desiderata. Classify problems according to computational requirements.

min, max, median,

linear N
Burrows-Wheeler transform, ...
linearithmic Nlog N sorting, element distinctness, ...
quadratic N 2 ?
exponential cN ?

Frustrating news. Huge number of problems have defied classification.

56

Birds-eye view: revised

Desiderata. Classify problems according to computational requirements.

min, max, median,

linear N
Burrows-Wheeler transform, ...
linearithmic Nlog N sorting, element distinctness, ...
M(N)) ii.fzt.e(g.'er multiplication,
division, square root, ...
MM(N)) matrix multiplicationf Ax = b,
least square, determinant, ...
NP-complete probably not Nb 3-SAT, IND-SET, ILP, ...

Good news. Can put many problems into equivalence classes.

57

Complexity zoo

Complexity class. Set of problems sharing some computational property.

-
dNSI01 .Ea._s_n

AHINDd 2 o
JIVdSdd E .mu..—._z_._._a

2 1VAjod/dbg o E S
m = SM_M__ & d s
=& ® /33VdSd
._z..__“___ﬂ._w__ % & 0080-ddg dneiied
INILDYS = Bojw/ddg HF dXy
m:n—ﬂmo_._al_.“._mﬂ_mm dnasiuoag I%dN

= LN LVS BojAjod2re,

polv

H) A0VdSHAE I 3VdSAaY .
z..._ dXaN M ——-ﬂwz._w o m
P DiH D3y haz B INLIOTY E
u OE n__uus_mn_ﬂ._z._._a o B
ddM'l SEE_ 3
&um &&m .§_N S
m — guma.z w
dd8-2
dWooIy]
Aod/d6iv A1D B ~N S
m._._._zs_se,_ _ =n_<w> ;“%zwu< # S
V_Nm_z n_n_,m“._.uuzhm% 4
M<z=_>_<&n_ M -
<! m:—uss__._s,_)
a JuAs
1]
Y09 u.__”__wmm._ﬁ
madvL-d 2 £0anes
..me:n_ mmazs
NZ) = didj
ddany
d2o
TN N
F:u

Lots of complexity classes (498 animals in zoo).

Bad news.

58

https://complexityzoo.uwaterloo.ca
https://complexityzoo.uwaterloo.ca

Summary

Reductions are important in theory to:
e Design algorithms.
« Establish lower bounds.

« Classify problems according to their computational requirements.

Reductions are important in practice to:
e Design algorithms.

« Design reusable software modules.
— stacks, queues, priority queues, symbol tables, sets, graphs
— sorting, regular expressions, suffix arrays
— MST, shortest paths, maxflow, linear programming

o Determine difficulty of your problem and choose the right tool.

59

