
ROBERT SEDGEWICK | KEVIN WAYNE

F O U R T H E D I T I O N

Algorithms

http://algs4.cs.princeton.edu

Algorithms ROBERT SEDGEWICK | KEVIN WAYNE

Last updated on Mar 4, 2015, 9:56 AM

3.4 HASH TABLES

‣ hash functions

‣ separate chaining

‣ linear probing

‣ context

Premature optimization

2

 “ Programmers waste enormous amounts of time thinking about,
 or worrying about, the speed of noncritical parts of their programs,
 and these attempts at efficiency actually have a strong negative
 impact when debugging and maintenance are considered.

 We should forget about small efficiencies, say about 97% of the time:
 premature optimization is the root of all evil.

 Yet we should not pass up our opportunities in that critical 3%. ”

Symbol table implementations: summary

Q. Can we do better?

A. Yes, but with different access to the data.

3

implementation

guaranteeguaranteeguarantee average caseaverage caseaverage case
ordered

ops?
key

interface
implementation

search insert delete search hit insert delete

ordered
ops?

key
interface

sequential search
(unordered list) N N N N N N equals()

binary search
(ordered array) log N N N log N N N ✔ compareTo()

BST N N N log N log N √ N ✔ compareTo()

red-black BST log N log N log N log N log N log N ✔ compareTo()

4

Hashing: basic plan

Save items in a key-indexed table (index is a function of the key).

Hash function. Method for computing array index from key.

Issues.

・Computing the hash function.

・Equality test: Method for checking whether two keys are equal.

・Collision resolution: Algorithm and data structure

to handle two keys that hash to the same array index.

Classic space-time tradeoff.

・No space limitation: trivial hash function with key as index.

・No time limitation: trivial collision resolution with sequential search.

・Space and time limitations: hashing (the real world).

hash("times") = 3

??

0

1

2

3 "it"

4

5

hash("it") = 3

http://algs4.cs.princeton.edu

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

‣ hash functions

‣ separate chaining

‣ linear probing

‣ context

3.4 HASH TABLES

6

Computing the hash function

Idealistic goal. Scramble the keys uniformly to produce a table index.

・Efficiently computable.

・Each table index equally likely for each key.

Ex. Social Security numbers.

・Bad: first three digits.

・Better: last three digits.

Practical challenge. Need different approach for each key type.

thoroughly researched problem,
still problematic in practical applications

573 = California, 574 = Alaska
(assigned in chronological order within geographic region)

key

table
index

Which of the following would be a good hash function for U.S. phone

numbers to integers between 0 and 999?

A. First three digits.

B. Second three digits.

C. Last three digits.

D. Either B or C.

E. I don't know.

7

Hash tables: quiz 1

(609) 867-5309

8

Java’s hash code conventions

All Java classes inherit a method hashCode(), which returns a 32-bit int.

Requirement. If x.equals(y), then (x.hashCode() == y.hashCode()).

Highly desirable. If !x.equals(y), then (x.hashCode() != y.hashCode()).

Default implementation. Memory address of x.

Legal (but poor) implementation. Always return 17.

Customized implementations. Integer, Double, String, File, URL, Date, …

User-defined types. Users are on their own.

x.hashCode()

x

y.hashCode()

y

9

Implementing hash code: integers, booleans, and doubles

public final class Integer
{
 private final int value;
 ...

 public int hashCode()
 { return value; }
}

public final class Double
{
 private final double value;
 ...

 public int hashCode()
 {
 long bits = doubleToLongBits(value);
 return (int) (bits ^ (bits >>> 32));
 }
}

convert to IEEE 64-bit representation;
xor most significant 32-bits
with least significant 32-bits

Warning: -0.0 and +0.0 have different hash codes

public final class Boolean
{
 private final boolean value;
 ...

 public int hashCode()
 {
 if (value) return 1231;
 else return 1237;
 }
}

Java library implementations

Treat string of length L as L-digit, base-31 number:

 h = s[0] · 31L–1 + … + s[L – 3] · 312 + s[L – 2] · 311 + s[L – 1] · 310

Horner's method: only L multiplies/adds to hash string of length L.

10

Implementing hash code: strings

String s = "call";
s.hashCode(); 3045982 = 99·313 + 97·312 + 108·311 + 108·310

char Unicode

… …

'a' 97

'b' 98

'c' 99

… ...

public final class String
{
 private final char[] s;

 ⋮
 public int hashCode()
 {
 int hash = 0;
 for (int i = 0; i < length(); i++)
 hash = s[i] + (31 * hash);
 return hash;
 }
} Java library implementation

 = 108 + 31· (108 + 31 · (97 + 31 · (99)))

Performance optimization.

・Cache the hash value in an instance variable.

・Return cached value.

Q. What if hashCode() of string is 0?

public final class String
{
 private int hash = 0;
 private final char[] s;
 ...

 public int hashCode()
 {
 int h = hash;
 if (h != 0) return h;
 for (int i = 0; i < length(); i++)
 h = s[i] + (31 * h);
 hash = h;
 return h;
 }
}

11

Implementing hash code: strings

return cached value

cache of hash code

store cache of hash code

hashCode() of "pollinating sandboxes" is 0

12

Implementing hash code: user-defined types

public final class Transaction implements Comparable<Transaction>
{
 private final String who;
 private final Date when;
 private final double amount;

 public Transaction(String who, Date when, double amount)
 { /* as before */ }

 ...

 public boolean equals(Object y)
 { /* as before */ }

 public int hashCode()
 {
 int hash = 17;
 hash = 31*hash + who.hashCode();
 hash = 31*hash + when.hashCode();
 hash = 31*hash + ((Double) amount).hashCode();
 return hash;
 }
} typically a small prime

nonzero constant

for primitive types,
use hashCode()
of wrapper type

for reference types,
use hashCode()

13

Hash code design

"Standard" recipe for user-defined types.

・Combine each significant field using the 31x + y rule.

・If field is a primitive type, use wrapper type hashCode().

・If field is null, use 0.

・If field is a reference type, use hashCode().

・If field is an array, apply to each entry.

In practice. Recipe above works reasonably well; used in Java libraries.

In theory. Keys are bitstring; "universal" family of hash functions exist.

Basic rule. Need to use the whole key to compute hash code;

consult an expert for state-of-the-art hash codes.

applies rule recursively

or use Arrays.deepHashCode()

awkward in Java since only
one (deterministic) hashCode()

Which of the following is an effective way to map a hashable key

to an integer between 0 and M-1 ?

A.

B.

C. Both A and B.

D. Neither A nor B.

E. I don't know.

14

Hash tables: quiz 1

 private int hash(Key key)
 { return Math.abs(key.hashCode()) % M; }

x.hashCode()

x

hash(x)

 private int hash(Key key)
 { return key.hashCode() % M; }

Hash code. An int between -231 and 231 - 1.

Hash function. An int between 0 and M - 1 (for use as array index).

15

Modular hashing

typically a prime or power of 2

bug

 private int hash(Key key)
 { return (key.hashCode() & 0x7fffffff) % M; }

correct

1-in-a-billion bug

hashCode() of "polygenelubricants" is -231

x.hashCode()

x

hash(x)

 private int hash(Key key)
 { return Math.abs(key.hashCode()) % M; }

 private int hash(Key key)
 { return key.hashCode() % M; }

16

Uniform hashing assumption

Uniform hashing assumption. Each key is equally likely to hash to an

integer between 0 and M - 1.

Bins and balls. Throw balls uniformly at random into M bins.

Birthday problem. Expect two balls in the same bin after ~ π M / 2 tosses.

Coupon collector. Expect every bin has ≥ 1 ball after ~ M ln M tosses.

Load balancing. After M tosses, expect most loaded bin has

~ ln M / ln ln M balls.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

17

Uniform hashing assumption

Uniform hashing assumption. Each key is equally likely to hash to an

integer between 0 and M - 1.

Bins and balls. Throw balls uniformly at random into M bins.

Hash value frequencies for words in Tale of Two Cities (M = 97)

Java's String data uniformly distribute the keys of Tale of Two Cities

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

http://algs4.cs.princeton.edu

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

‣ hash functions

‣ separate chaining

‣ linear probing

‣ context

3.4 HASH TABLES

19

Collisions

Collision. Two distinct keys hashing to same index.

・Birthday problem ⇒ can't avoid collisions.

・Coupon collector ⇒ not too much wasted space.

・Load balancing ⇒ no index gets too many collisions.

Challenge. Deal with collisions efficiently.

hash("times") = 3

??

0

1

2

3 "it"

4

5

hash("it") = 3

 unless you have a ridiculous
(quadratic) amount of memory

L 11

Use an array of M < N linked lists. [H. P. Luhn, IBM 1953]

・Hash: map key to integer i between 0 and M - 1.

・Insert: put at front of ith chain (if not already in chain).

・Search: sequential search in ith chain.

F C B5 12

20

Separate-chaining symbol table

I D

K J E A

H G

0

1

2

3

st[]

8

10

7

3

9

6

4 0

put(L, 11)
hash(L) = 3

separate-chaining hash table (M = 4)

Use an array of M < N linked lists. [H. P. Luhn, IBM 1953]

・Hash: map key to integer i between 0 and M - 1.

・Insert: put at front of ith chain (if not already in chain).

・Search: sequential search in ith chain.

21

Separate-chaining symbol table

I D

K J E A

H G

L F C

0

1

2

3

st[]

8

10

7

11

3

9

6

4

2

0

get(E)
hash(E) = 1

separate-chaining hash table (M = 4)

5 B 1

public class SeparateChainingHashST<Key, Value>
{
 private int M = 97; // number of chains
 private Node[] st = new Node[M]; // array of chains

 private static class Node
 {
 private Object key;
 private Object val;
 private Node next;
 ...
 }

 private int hash(Key key)
 { return (key.hashCode() & 0x7fffffff) % M; }

 public Value get(Key key) {
 int i = hash(key);
 for (Node x = st[i]; x != null; x = x.next)
 if (key.equals(x.key)) return (Value) x.val;
 return null;
 }

}

Separate-chaining symbol table: Java implementation

22

no generic array creation
(declare key and value of type Object)

array doubling and
halving code omitted

public class SeparateChainingHashST<Key, Value>
{
 private int M = 97; // number of chains
 private Node[] st = new Node[M]; // array of chains

 private static class Node
 {
 private Object key;
 private Object val;
 private Node next;
 ...
 }

 private int hash(Key key)
 { return (key.hashCode() & 0x7fffffff) % M; }

 public void put(Key key, Value val) {
 int i = hash(key);
 for (Node x = st[i]; x != null; x = x.next)
 if (key.equals(x.key)) { x.val = val; return; }
 st[i] = new Node(key, val, st[i]);
 }

}

Separate-chaining symbol table: Java implementation

23

Proposition. Under uniform hashing assumption, prob. that the number of

keys in a list is within a constant factor of N / M is extremely close to 1.

Pf sketch. Distribution of list size obeys a binomial distribution.

Consequence. Number of probes for search/insert is proportional to N / M.

・M too large ⇒ too many empty chains.

・M too small ⇒ chains too long.

・Typical choice: M ~ ¼ N ⇒ constant-time ops.
24

Analysis of separate chaining

M times faster than
sequential search

equals() and hashCode()

Binomial distribution (N = 104 , M = 103 , ! = 10)

.125

0

0 10 20 30

(10, .12511...)

Goal. Average length of list N / M = constant.

・Double size of array M when N / M ≥ 8;

halve size of array M when N / M ≤ 2.

・Note: need to rehash all keys when resizing.

25

Resizing in a separate-chaining hash table

A B C D E F G H I J

K L M N O P

0

1

K I

P N L E
0

1

2

3

before resizing (N/M = 8)

after resizing (N/M = 4)

J F C B

O M H G D

A

x.hashCode() does not change;
but hash(x) can change

st[]

st[]

Q. How to delete a key (and its associated value)?

A. Easy: need to consider only chain containing key.

26

Deletion in a separate-chaining hash table

before deleting C

K I

P N L0

1

2

3
J F C B

O M

st[]
K I

P N L

J F B

O M

after deleting C

0

1

2

3

st[]

Symbol table implementations: summary

27

* under uniform hashing assumption

implementation

guaranteeguaranteeguarantee average caseaverage caseaverage case
ordered

ops?
key

interface
implementation

search insert delete search hit insert delete

ordered
ops?

key
interface

sequential search
(unordered list) N N N N N N equals()

binary search
(ordered array) log N N N log N N N ✔ compareTo()

BST N N N log N log N √ N ✔ compareTo()

red-black BST log N log N log N log N log N log N ✔ compareTo()

separate chaining N N N 1 * 1 * 1 *
equals()
hashCode()

http://algs4.cs.princeton.edu

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

‣ hash functions

‣ separate chaining

‣ linear probing

‣ context

3.4 HASH TABLES

Open addressing. [Amdahl-Boehme-Rocherster-Samuel, IBM 1953]

・Maintain keys and values in two parallel arrays.

・When a new key collides, find next empty slot, and put it there.

29

Collision resolution: open addressing

linear-probing hash table (M = 16, N =10)

0 1 2 3 4 5 6 7 8 9

keys[]

10 11 12 13 14 15

EA C H R XMP L

vals[] 139 5 6 4 81011 12

put(K, 14)
hash(K) = 7

K

14

Hash. Map key to integer i between 0 and M − 1.

Insert. Put at table index i if free; if not try i + 1, i + 2, etc.

Search. Search table index i; if occupied but no match, try i + 1, i + 2, etc.

Note. Array size M must be greater than number of key-value pairs N.

30

Linear-probing hash table summary

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

M = 16

S EA C H R XMP Lkeys[]

public class LinearProbingHashST<Key, Value>
{
 private int M = 30001;
 private Value[] vals = (Value[]) new Object[M];
 private Key[] keys = (Key[]) new Object[M];

 private int hash(Key key) { /* as before */ }

 private void put(Key key, Value val) { /* next slide */ }

 public Value get(Key key)
 {
 for (int i = hash(key); keys[i] != null; i = (i+1) % M)
 if (key.equals(keys[i]))
 return vals[i];
 return null;
 }

}

Linear-probing symbol table: Java implementation

31

array doubling and
halving code omitted

sequential search
in chain i

public class LinearProbingHashST<Key, Value>
{
 private int M = 30001;
 private Value[] vals = (Value[]) new Object[M];
 private Key[] keys = (Key[]) new Object[M];

 private int hash(Key key) { /* as before */ }

 private Value get(Key key) { /* prev slide */ }

 public void put(Key key, Value val)
 {
 int i;
 for (i = hash(key); keys[i] != null; i = (i+1) % M)
 if (keys[i].equals(key))
 break;
 keys[i] = key;
 vals[i] = val;
 }

}

Linear-probing symbol table: Java implementation

32

sequential search
in chain i

Cluster. A contiguous block of items.

Observation. New keys likely to hash into middle of big clusters.

33

Clustering

Model. Cars arrive at one-way street with M parking spaces.

Each desires a random space i : if space i is taken, try i + 1, i + 2, etc.

Q. What is mean displacement of a car?

Half-full. With M / 2 cars, mean displacement is ~ 5 / 2.

Full. With M cars, mean displacement is ~ π M / 8 .

Key insight. Cannot afford to let linear-probing hash table get too full.

34

Knuth's parking problem

displacement = 3

Proposition. Under uniform hashing assumption, the average # of probes

in a linear probing hash table of size M that contains N = α M keys is:

Pf.

Parameters.

・M too large ⇒ too many empty array entries.

・M too small ⇒ search time blows up.

・Typical choice: α = N / M ~ ½.
35

Analysis of linear probing

⇥ 1

2

�
1 +

1

1 � �

⇥
⇥ 1

2

�
1 +

1

(1 � �)2

⇥

search hit search miss / insert

probes for search hit is about 3/2
probes for search miss is about 5/2

Goal. Average length of list N / M ≤ ½.

・Double size of array M when N / M ≥ ½.

・Halve size of array M when N / M ≤ ⅛.

・Need to rehash all keys when resizing.

36

Resizing in a linear-probing hash table

keys[]

0 1 2 3 4 5 6 7

E S R A

1 0 3 2vals[]

keys[]

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

A S E R

2 0 1 3vals[]

after resizing

before resizing

Q. How to delete a key (and its associated value)?

A. Requires some care: can't just delete array entries.

37

Deletion in a linear-probing hash table

keys[]

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

P M A C S H L E R X

10 9 8 4 0 5 11 12 3 7vals[]

before deleting S

keys[]

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

P M A C H L E R X

10 9 8 4 5 11 12 3 7vals[]

after deleting S ?

doesn't work, e.g., if hash(H) = 4

ST implementations: summary

38

* under uniform hashing assumption

implementation

guaranteeguaranteeguarantee average caseaverage caseaverage case
ordered

ops?
key

interface
implementation

search insert delete search hit insert delete

ordered
ops?

key
interface

sequential search
(unordered list) N N N N N N equals()

binary search
(ordered array) log N N N log N N N ✔ compareTo()

BST N N N log N log N √ N ✔ compareTo()

red-black BST log N log N log N log N log N log N ✔ compareTo()

separate chaining N N N 1 * 1 * 1 *
equals()
hashCode()

linear probing N N N 1 * 1 * 1 *
equals()
hashCode()

39

3-SUM (REVISITED)

3-SUM. Given N distinct integers, find three such that a + b + c = 0.

Goal. N 2 expected time case, N extra space.

Hashing-based solution to 3-SUM.

・Insert each integer into a hash table.

・For each pair of integers a and b, search hash table for c = −(a + b).
(assuming c ≠ a and c ≠ b)

http://algs4.cs.princeton.edu

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

‣ hash functions

‣ separate chaining

‣ linear probing

‣ context

3.4 HASH TABLES

41

War story: algorithmic complexity attacks

Q. Is the uniform hashing assumption important in practice?

A. Obvious situations: aircraft control, nuclear reactor, pacemaker, HFT, …

A. Surprising situations: denial-of-service attacks.

Real-world exploits. [Crosby-Wallach 2003]

・Bro server: send carefully chosen packets to DOS the server,

using less bandwidth than a dial-up modem.

・Perl 5.8.0: insert carefully chosen strings into associative array.

・Linux 2.4.20 kernel: save files with carefully chosen names.

malicious adversary learns your hash function
(e.g., by reading Java API) and causes a big pile-up

in single slot that grinds performance to a halt

0

1

2

3

st[]

4

5

6

7

42

War story: algorithmic complexity attacks

A Java bug report.

Description

Comment 2

Comment 11

Format For Printing - XML - Clone This Bug - Last CommentBug 750533 - (CVE-2012-2739) CVE-2012-2739 java: hash table collisions
CPU usage DoS (oCERT-2011-003)

Status: ASSIGNED

Aliases: CVE-2012-2739 (edit)

Product: Security Response
Component: vulnerability (Show other bugs)

Version(s): unspecified
Platform: All Linux

Priority: medium Severity: medium
Target Milestone: ---

Target Release: ---
Assigned To: Red Hat Security Response Team
QA Contact:

URL:
Whiteboard: impact=moderate,public=20111228,repor...

Keywords: Reopened, Security

Depends On:
Blocks: hashdos/oCERT-2011-003 750536

 Show dependency tree / graph

Reported: 2011-11-01 10:13 EDT by Jan Lieskovsky
Modified: 2012-11-27 10:50 EST (History)

CC List: 8 users (show)

See Also:
Fixed In Version:

Doc Type: Bug Fix
Doc Text:
Clone Of:

Environment:
Last Closed: 2011-12-29 07:40:08

Attachments (Terms of Use)
Add an attachment (proposed patch, testcase, etc.)

Groups: None (edit)

Jan Lieskovsky 2011-11-01 10:13:47 EDT

Julian Wälde and Alexander Klink reported that the String.hashCode() hash function is not sufficiently collision
resistant. hashCode() value is used in the implementations of HashMap and Hashtable classes:

http://docs.oracle.com/javase/6/docs/api/java/util/HashMap.html
http://docs.oracle.com/javase/6/docs/api/java/util/Hashtable.html

A specially-crafted set of keys could trigger hash function collisions, which can degrade performance of HashMap
or Hashtable by changing hash table operations complexity from an expected/average O(1) to the worst case O(n).
Reporters were able to find colliding strings efficiently using equivalent substrings and meet in the middle
techniques.

This problem can be used to start a denial of service attack against Java applications that use untrusted inputs
as HashMap or Hashtable keys. An example of such application is web application server (such as tomcat, see bug
#750521) that may fill hash tables with data from HTTP request (such as GET or POST parameters). A remote
attack could use that to make JVM use excessive amount of CPU time by sending a POST request with large amount
of parameters which hash to the same value.

This problem is similar to the issue that was previously reported for and fixed
in e.g. perl:
 http://www.cs.rice.edu/~scrosby/hash/CrosbyWallach_UsenixSec2003.pdf

Jan Lieskovsky 2011-11-01 10:18:44 EDT

Acknowledgements:

Red Hat would like to thank oCERT for reporting this issue. oCERT acknowledges Julian Wälde and Alexander Klink
as the original reporters.

Tomas Hoger 2011-12-29 07:23:27 EST

This issue was presented on 28C3:
http://events.ccc.de/congress/2011/Fahrplan/events/4680.en.html

Details were posted to full-disclosure:
http://seclists.org/fulldisclosure/2011/Dec/477

Goal. Find family of strings with the same hashCode().

Solution. The base-31 hash code is part of Java's String API.

43

Algorithmic complexity attack on Java

2N strings of length 2N that hash to same value!

key hashCode()

"AaAaAaAa" -540425984

"AaAaAaBB" -540425984

"AaAaBBAa" -540425984

"AaAaBBBB" -540425984

"AaBBAaAa" -540425984

"AaBBAaBB" -540425984

"AaBBBBAa" -540425984

"AaBBBBBB" -540425984

key hashCode()

"BBAaAaAa" -540425984

"BBAaAaBB" -540425984

"BBAaBBAa" -540425984

"BBAaBBBB" -540425984

"BBBBAaAa" -540425984

"BBBBAaBB" -540425984

"BBBBBBAa" -540425984

"BBBBBBBB" -540425984

key hashCode()

"Aa" 2112

"BB" 2112

44

Diversion: one-way hash functions

One-way hash function. "Hard" to find a key that will hash to a desired

value (or two keys that hash to same value).

Ex. MD4, MD5, SHA-0, SHA-1, SHA-2, WHIRLPOOL, RIPEMD-160, ….

Applications. Crypto, message digests, passwords, Bitcoin, ….

Caveat. Too expensive for use in ST implementations.

known to be insecure

String password = args[0];
MessageDigest sha1 = MessageDigest.getInstance("SHA1");
byte[] bytes = sha1.digest(password);

/* prints bytes as hex string */

Separate chaining vs. linear probing

Separate chaining.

・Performance degrades gracefully.

・Clustering less sensitive to poorly-designed hash function.

Linear probing.

・Less wasted space.

・Better cache performance.

45

Hashing with separate chaining for standard indexing client

st[]
0

1

2

3

4

S 0X 7

E 12A 8

P 10L 11

R 3C 4H 5M 9

S 2 0

E 0 1

A 0 2

R 4 3

C 4 4

H 4 5

E 0 6

X 2 7

A 0 8

M 4 9

P 3 10

L 3 11

E 0 12

null

key hash value

keys[]

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

P M A C S H L E R X

10 9 8 4 0 5 11 12 3 7vals[]

Hashing: variations on the theme

Many improved versions have been studied.

Two-probe hashing. [separate-chaining variant]

・Hash to two positions, insert key in shorter of the two chains.

・Reduces expected length of the longest chain to ~ lg ln N.

Double hashing. [linear-probing variant]

・Use linear probing, but skip a variable amount, not just 1 each time.

・Effectively eliminates clustering.

・Can allow table to become nearly full.

・More difficult to implement delete.

Cuckoo hashing. [linear-probing variant]

・Hash key to two positions; insert key into either position; if occupied,

reinsert displaced key into its alternative position (and recur).

・Constant worst-case time for search.
46

Hash tables vs. balanced search trees

Hash tables.

・Simpler to code.

・No effective alternative for unordered keys.

・Faster for simple keys (a few arithmetic ops versus log N compares).

・Better system support in Java for String (e.g., cached hash code).

Balanced search trees.

・Stronger performance guarantee.

・Support for ordered ST operations.

・Easier to implement compareTo() correctly than equals() and hashCode().

Java system includes both.

・Red-black BSTs: java.util.TreeMap, java.util.TreeSet.

・Hash tables: java.util.HashMap, java.util.IdentityHashMap.

47

linear probing separate chaining

ROBERT SEDGEWICK | KEVIN WAYNE

F O U R T H E D I T I O N

Algorithms

http://algs4.cs.princeton.edu

Algorithms ROBERT SEDGEWICK | KEVIN WAYNE

Last updated on Mar 4, 2015, 10:04 AM

3.5 SYMBOL TABLE APPLICATIONS

‣ sets

‣ dictionary clients

‣ indexing clients

‣ sparse vectors

http://algs4.cs.princeton.edu

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

‣ sets

‣ dictionary clients

‣ indexing clients

‣ sparse vectors

3.5 SYMBOL TABLE APPLICATIONS

3

Set API

Mathematical set. A collection of distinct keys.

Q. How to implement efficiently?

 public class SET<Key extends Comparable<Key>> public class SET<Key extends Comparable<Key>> public class SET<Key extends Comparable<Key>>

SET() create an empty set

void add(Key key) add the key to the set

boolean contains(Key key) is the key in the set?

void remove(Key key) remove the key from the set

int size() number of keys in the set

Iterator<Key> iterator() all keys in the set

・Read in a list of words from one file.

・Print out all words from standard input that are { in, not in } the list.

4

Exception filter

application purpose key in list

spell checker identify misspelled words word dictionary words

browser mark visited pages URL visited pages

parental controls block sites URL bad sites

chess detect draw board positions

spam filter eliminate spam IP address spam addresses

credit cards check for stolen cards number stolen cards

・Read in a list of words from one file.

・Print out all words from standard input that are not in the list.

5

Exception filter: Java implementation

public class BlackList
{
 public static void main(String[] args)
 {
 SET<String> set = new SET<String>();

 In in = new In(args[0]);
 while (!in.isEmpty())
 set.add(in.readString());

 while (!StdIn.isEmpty())
 {
 String word = StdIn.readString();
 if (!set.contains(word))
 StdOut.println(word);
 }
 }
}

print words not in list

create empty set of strings

read in whitelist

http://algs4.cs.princeton.edu

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

‣ sets

‣ dictionary clients

‣ indexing clients

‣ sparse vectors

3.5 SYMBOL TABLE APPLICATIONS

Dictionary lookup

Command-line arguments.

・A comma-separated value (CSV) file.

・Key field.

・Value field.

Ex 1. DNS lookup.

7

% more ip.csv
www.princeton.edu,128.112.128.15
www.cs.princeton.edu,128.112.136.35
www.math.princeton.edu,128.112.18.11
www.cs.harvard.edu,140.247.50.127
www.harvard.edu,128.103.60.24
www.yale.edu,130.132.51.8
www.econ.yale.edu,128.36.236.74
www.cs.yale.edu,128.36.229.30
espn.com,199.181.135.201
yahoo.com,66.94.234.13
msn.com,207.68.172.246
google.com,64.233.167.99
baidu.com,202.108.22.33
yahoo.co.jp,202.93.91.141
sina.com.cn,202.108.33.32
ebay.com,66.135.192.87
adobe.com,192.150.18.60
163.com,220.181.29.154
passport.net,65.54.179.226
tom.com,61.135.158.237
nate.com,203.226.253.11
cnn.com,64.236.16.20
daum.net,211.115.77.211
blogger.com,66.102.15.100
fastclick.com,205.180.86.4
wikipedia.org,66.230.200.100
rakuten.co.jp,202.72.51.22
...

% java LookupCSV ip.csv 0 1
adobe.com
192.150.18.60
www.princeton.edu
128.112.128.15
ebay.edu
Not found

% java LookupCSV ip.csv 1 0
128.112.128.15
www.princeton.edu
999.999.999.99
Not found

domain name is key IP is value

domain name is key URL is value

Dictionary lookup

Command-line arguments.

・A comma-separated value (CSV) file.

・Key field.

・Value field.

Ex 2. Amino acids.

8

% more amino.csv
TTT,Phe,F,Phenylalanine
TTC,Phe,F,Phenylalanine
TTA,Leu,L,Leucine
TTG,Leu,L,Leucine
TCT,Ser,S,Serine
TCC,Ser,S,Serine
TCA,Ser,S,Serine
TCG,Ser,S,Serine
TAT,Tyr,Y,Tyrosine
TAC,Tyr,Y,Tyrosine
TAA,Stop,Stop,Stop
TAG,Stop,Stop,Stop
TGT,Cys,C,Cysteine
TGC,Cys,C,Cysteine
TGA,Stop,Stop,Stop
TGG,Trp,W,Tryptophan
CTT,Leu,L,Leucine
CTC,Leu,L,Leucine
CTA,Leu,L,Leucine
CTG,Leu,L,Leucine
CCT,Pro,P,Proline
CCC,Pro,P,Proline
CCA,Pro,P,Proline
CCG,Pro,P,Proline
CAT,His,H,Histidine
CAC,His,H,Histidine
CAA,Gln,Q,Glutamine
CAG,Gln,Q,Glutamine
CGT,Arg,R,Arginine
CGC,Arg,R,Arginine
...

% java LookupCSV amino.csv 0 3
ACT
Threonine
TAG
Stop
CAT
Histidine

codon is key name is value

Dictionary lookup

Command-line arguments.

・A comma-separated value (CSV) file.

・Key field.

・Value field.

Ex 3. Class list.

9

% more classlist.csv
13,Berl,Ethan Michael,P01,eberl
12,Cao,Phillips Minghua,P01,pcao
11,Chehoud,Christel,P01,cchehoud
10,Douglas,Malia Morioka,P01,malia
12,Haddock,Sara Lynn,P01,shaddock
12,Hantman,Nicole Samantha,P01,nhantman
11,Hesterberg,Adam Classen,P01,ahesterb
13,Hwang,Roland Lee,P01,rhwang
13,Hyde,Gregory Thomas,P01,ghyde
13,Kim,Hyunmoon,P01,hktwo
12,Korac,Damjan,P01,dkorac
11,MacDonald,Graham David,P01,gmacdona
10,Michal,Brian Thomas,P01,bmichal
12,Nam,Seung Hyeon,P01,seungnam
11,Nastasescu,Maria Monica,P01,mnastase
11,Pan,Di,P01,dpan
12,Partridge,Brenton Alan,P01,bpartrid
13,Rilee,Alexander,P01,arilee
13,Roopakalu,Ajay,P01,aroopaka
11,Sheng,Ben C,P01,bsheng
12,Webb,Natalie Sue,P01,nwebb

⋮

% java LookupCSV classlist.csv 4 1
eberl
Ethan
nwebb
Natalie

% java LookupCSV classlist.csv 4 3
dpan
P01

login is key
first name
is value

login is key
section
is value

public class LookupCSV
{
 public static void main(String[] args)
 {
 In in = new In(args[0]);
 int keyField = Integer.parseInt(args[1]);
 int valField = Integer.parseInt(args[2]);

 ST<String, String> st = new ST<String, String>();
 while (!in.isEmpty())
 {
 String line = in.readLine();
 String[] tokens = line.split(",");
 String key = tokens[keyField];
 String val = tokens[valField];
 st.put(key, val);
 }

 while (!StdIn.isEmpty())
 {
 String s = StdIn.readString();
 if (!st.contains(s)) StdOut.println("Not found");
 else StdOut.println(st.get(s));
 }
 }
}

10

Dictionary lookup: Java implementation

process input file

build symbol table

process lookups
with standard I/O

http://algs4.cs.princeton.edu

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

‣ sets

‣ dictionary clients

‣ indexing clients

‣ sparse vectors

3.5 SYMBOL TABLE APPLICATIONS

Goal. Index a PC (or the web).

File indexing

12

Goal. Given a list of text files, create an index so that you can efficiently

find all files containing a given query string.

13

File indexing

% ls *.txt
aesop.txt magna.txt moby.txt
sawyer.txt tale.txt

% java FileIndex *.txt

freedom
magna.txt moby.txt tale.txt

whale
moby.txt

lamb
sawyer.txt aesop.txt

% ls *.java
BlackList.java Concordance.java
DeDup.java FileIndex.java ST.java
SET.java WhiteList.java

% java FileIndex *.java

import
FileIndex.java SET.java ST.java

Comparator
null

Which data type below would be the best choice to represent the file index?

A. SET<ST<File, String>>

B. SET<ST<String, File>>

C. ST<File, SET<String>>

D. ST<String, SET<File>>

E. I don't know.

14

Searching applications: quiz 1

import java.io.File;
public class FileIndex
{
 public static void main(String[] args)
 {
 ST<String, SET<File>> st = new ST<String, SET<File>>();

 for (String filename : args) {
 File file = new File(filename);
 In in = new In(file);
 while (!in.isEmpty())
 {
 String key = in.readString();
 if (!st.contains(key))
 st.put(word, new SET<File>());
 SET<File> set = st.get(key);
 set.add(file);
 }
 }

 while (!StdIn.isEmpty())
 {
 String query = StdIn.readString();
 StdOut.println(st.get(query));
 }
 }
}

File indexing

15

for each word in file,
add file to
corresponding set

list of file names
from command line

process queries

symbol table

Book index

Goal. Index for an e-book.

16

Concordance

Goal. Preprocess a text corpus to support concordance queries:

given a word, find all occurrences with their immediate contexts.

Solution. Key = query string; value = set of indices containing that string.

17

% java Concordance tale.txt
cities
tongues of the two *cities* that were blended in

majesty
their turnkeys and the *majesty* of the law fired
me treason against the *majesty* of the people in
 of his most gracious *majesty* king george the third

princeton
no matches

public class Concordance
{
 public static void main(String[] args)
 {
 In in = new In(args[0]);
 String[] words = in.readAllStrings();
 ST<String, SET<Integer>> st = new ST<String, SET<Integer>>();
 for (int i = 0; i < words.length; i++)
 {
 String s = words[i];
 if (!st.contains(s))
 st.put(s, new SET<Integer>());
 SET<Integer> set = st.get(s);
 set.add(i);
 }

 while (!StdIn.isEmpty())
 {
 String query = StdIn.readString();
 SET<Integer> set = st.get(query);
 for (int k : set)
 // print words[k-4] to words[k+4]
 }
 }
}

Concordance

18

read text and
build index

process queries
and print

concordances

http://algs4.cs.princeton.edu

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

‣ sets

‣ dictionary clients

‣ indexing clients

‣ sparse vectors

3.5 SYMBOL TABLE APPLICATIONS

Matrix-vector multiplication (standard implementation)

20

...
double[][] a = new double[N][N];
double[] x = new double[N];
double[] b = new double[N];
...
// initialize a[][] and x[]
...
for (int i = 0; i < N; i++)
{
 sum = 0.0;
 for (int j = 0; j < N; j++)
 sum += a[i][j]*x[j];
 b[i] = sum;
}

nested loops
(N2 running time)

 0 .90 0 0 0

 0 0 .36 .36 .18

 0 0 0 .90 0

.90 0 0 0 0

.47 0 .47 0 0

.05

.04

.36

.37

.19

a[][] x[] b[]

.036

.297

.333

.045

.1927

=

Matrix-vector multiplication

Problem. Sparse matrix-vector multiplication.

Assumptions. Matrix dimension is 10,000; average nonzeros per row ~ 10.

Sparse matrix-vector multiplication

21

 A * x = b

1d array (standard) representation.

・Constant time access to elements.

・Space proportional to N.

Symbol table representation.

・Key = index, value = entry.

・Efficient iterator.

・Space proportional to number of nonzeros.

22

Vector representations

 0 .36 0 0 0 .36 0 0 0 0 0 0 0 0 .18 0 0 0 0 0

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

 1 .36 5 .36 14 .18

key value

st

23

Sparse vector data type

public class SparseVector
{
 private HashST<Integer, Double> v;

 public SparseVector()
 { v = new HashST<Integer, Double>(); }

 public void put(int i, double x)
 { v.put(i, x); }

 public double get(int i)
 {
 if (!v.contains(i)) return 0.0;
 else return v.get(i);
 }

 public Iterable<Integer> indices()
 { return v.keys(); }

 public double dot(double[] that)
 {
 double sum = 0.0;
 for (int i : indices())
 sum += that[i]*this.get(i);
 return sum;
 }
}

empty ST represents all 0s vector

a[i] = value

return a[i]

dot product is constant
time for sparse vectors

HashST because order not important

iterate through indices of
nonzero entries

2D array (standard) matrix representation: Each row of matrix is an array.

・Constant time access to elements.

・Space proportional to N 2.

Sparse matrix representation: Each row of matrix is a sparse vector.

・Efficient access to elements.

・Space proportional to number of nonzeros (plus N).

24

Matrix representations

a

0

1

2

3

4

0 1 2 3 4

0 1 2 3 4

0 1 2 3 4

0 1 2 3 4

0 1 2 3 4

a

0

1

2

3

4

array of double[]objects array of SparseVector objects

st

0.0 .90 0.0 0.0 0.0

0.0 0.0 .36 .36 .18

0.0 0.0 0.0 .90 0.0

.90 0.0 0.0 0.0 0.0

.45 0.0 .45 0.0 0.0
.452

.363 .184.362

st
.903

st
.900

st
.450

st
.901

independent
symbol-table

objects

key value

a[4][2]

Sparse matrix representations

a

0

1

2

3

4

0 1 2 3 4

0 1 2 3 4

0 1 2 3 4

0 1 2 3 4

0 1 2 3 4

a

0

1

2

3

4

array of double[]objects array of SparseVector objects

st

0.0 .90 0.0 0.0 0.0

0.0 0.0 .36 .36 .18

0.0 0.0 0.0 .90 0.0

.90 0.0 0.0 0.0 0.0

.45 0.0 .45 0.0 0.0
.452

.363 .184.362

st
.903

st
.900

st
.450

st
.901

independent
symbol-table

objects

key value

a[4][2]

Sparse matrix representations

Sparse matrix-vector multiplication

25

 ..
 SparseVector[] a = new SparseVector[N];
 double[] x = new double[N];
 double[] b = new double[N];
 ...
 // Initialize a[] and x[]
 ...
 for (int i = 0; i < N; i++)
 b[i] = a[i].dot(x);

linear running time
for sparse matrix

 0 .90 0 0 0

 0 0 .36 .36 .18

 0 0 0 .90 0

.90 0 0 0 0

.47 0 .47 0 0

.05

.04

.36

.37

.19

a[][] x[] b[]

.036

.297

.333

.045

.1927

=

Matrix-vector multiplication

