COS 226, FALL 2015

ALGORITHMS
AND
DATA STRUCTURES

SZYMON RUSINKIEWICZ

™ PRINCETON
N UNIVERSITY

http:/ /www.princeton.edu/~co0s226

COS 226 course overview

What is COS 2267
« Intermediate-level survey course.
« Programming and problem solving, with applications.

o Algorithm: sequence of instructions for solving a problem.
« Data structure: layout + rules for organizing information.

o Application Programming Interface (APl): software component with
well-defined interfaces, encapsulating algorithms + data structures.

. . _ Algorithms +
“ Algorithms + Data Structures = Programs. ” — Niklaus Wirth g;lia'
Tuctures =

Programs

COS 226 course overview

What is COS 2267

data structures and algorithms

data types stack, queue, bag, union-find, priority queue
sorting quicksort, mergesort, heapsort, radix sorts
searching BST, red-black BST, hash table
graphs BFS, DFS, Prim, Kruskal, Dijkstra
strings KMP, regular expressions, tries, data compression

advanced B-tree, kd-tree, suffix array, maxflow

Why study algorithms?

el B¢ o

FOLLOW US ﬁ y B ®IG DATA
‘TheUpsnux

G TV UPSHOT N YO VB0

ROBO RECRUITING

?
Can an Algorithm Hire Better Than a Human

————ml
Algorithm That Tells the Boss Who Might Quit

See Which Workers Are Likely to Leave or

AGORITIONS TARE CovTROL 0f
VAL SrRgy ™ COVTHOL OF

\
Wal-Mart Credit Suisse Crunch Data to

~ | s e msfor” | -
| il uter algorl i V'S
, turn to comp : ve? eHarmony ‘
deciding who to parole Can maths find you lov
idis F - ey .
E., — ve algor Is Algorith
— flove alg s AlGOrithm Knoys yo.

. N Your
ou love? The dating Fnends Do FHCQbOOk

claim to have

"?" | The Algorithm Economy Heads To Amazon

ton (@0annyCrichton
Us€ e

' DEDDEER0E
v

For all bitcoin's growing pains, it represel

TECHNOLOGY
money and global finance.

© AtUPS, the Algorithm Is the Driver

Turn right, turn left, turn right: inside Orion, the 10-year effort to Squeeze every penny f

By STEVEN ROSENBUSH and LAURA STEVENS
Feb. 16, 2015 8:28 pmM.ET

Why study algorithms?

They may unlock the secrets of life and of the universe.

“ Computer models mirroring real life have become crucial for most

advances made in chemistry today.... Today the computer is just as

»

important a tool for chemists as the test tube.
— Royal Swedish Academy of Sciences
(Nobel Prize in Chemistry 2013)

Martin Karplus, Michael Levitt, and Arieh Warshel

Why study algorithms?

To solve problems that could not otherwise be addressed.

http:/ /www.youtube.com/watch?v=ua7YIN4elL w

Why study algorithms?

Old roots, new opportunities.
« Study of algorithms dates at least to Euclid.
 Named after Muhammad ibn Musa al-Khwarizmt.
« Formalized by Church and Turing in 1930s.
« Some important algorithms were discovered
by undergraduates in a course like this!

AloEmohiGhimsdims hesitage(@omh Alan Turing

300 BCE
825
1920s
1930s
1940s
1950s
1960s
1970s
1980s
1990s
2000s

Why study algorithms and data structures?

For intellectual stimulation.

THE JoY OF ALGORITHMS

“ For me, great algorithms are the poetry of computation. Just

FrancisSullvan, Associate Edtorin-Chiel
n r I \HE THE HIS FIRST-OF-THE-CENTURY ISSUE OF COMPUTING IN
A L

Y
f ¥

like verse, they can be terse, allusive, dense, and even mysterious.

But once unlocked, they cast a brilliant new light on some

aspect of computing. ” — Francis Sullivan

DEAR MYSTERY ALGORITHM THAT HOGGED GLOBAL
FINANCIAL TRADING LAST WEEK: WHAT DO YOU WANT?

ON FRIDAY, A SINGLE MYSTERIOUS PROGRAM WAS RESPONSIBLE FOR 4 PERCENT
OF ALL STOCK QUOTE TRAFFIC AND SUCKED UP 10 PERCENT OF THE NASDAQ'S
TRADING BANDWIDTH. THEN IT DISAPPEARED.

By Clay Dillow

£
T J

Why study algorithms and data structures?

To become a proficient programmer.

“Iwill, in fact, claim that the difference between a bad programmer
and a good one is whether he considers his code or his data structures
more important. Bad programmers worry about the code. Good
programmers worry about data structures and their relationships. ”

— Linus Torvalds (creator of Linux)

Why study algorithms and data structures?

For fun and profit. p Clsco SYSTEMS
‘ aceboo

Apple Computer
Google

C)

Ninfendo’ JANE

SIR[[1

<||II

AN RSA
MOrgan Stanley N E T I: I' | X Adobe SECURITY"
e | o
DEShaw&Co ORACLE C

YaHOoO! amazoncom Microsoft: r - X A R

Lectures

TTh 11-12:20 Friend 101 Szymon Rusinkiewicz see web

Traditional lectures. Introduce new material.

Electronic devices. Permitted only to enhance lecture
(e.g., viewing lecture slides and taking notes).

Lectures

Flipped lectures. Learn at your own pace.

TTh 11-12:20 Friend 101 Szymon Rusinkiewicz see web

40 0Z-¢T-I1T Yyll 100 pia119YysS eunn Apuy (oM 995

Video lectures and online learning tools.
Tuesdays: “film days” with instructor
answering questions online in real time.

Thursdays: "flipped" class sessions to discuss

ideas and do collaborative problem solving.
Same exercises, programming assignments, exams.

Apply via web by 11:00 PM today, results tomorrow, 2-week shopping.

12

Precepts

Discussion, problem-solving, background for assignments.

F 9-9:50 Friend 108 Andy Guna t see web
P02 F 10-10:50 Friend 108 Andy Guna t see web
PO2A F 10-10:50 Friend 109 Elena Sizikova see web
PO3 F11-11:50 Friend 108 Maia Ginsburg 1 see web
PO3A F11-11:50 Friend 109 Nora Coler see web
P04 F 12:30-1:20 Friend 108 Maia Ginsburg t see web
PO4A F 12:30-1:20 Friend 109 Miles Carlsten see web
PO5 F 1:30-2:20 Friend 112 Tom Wu see web

1 co-lead preceptors

Coursework and grading

Programming assignments. 45%

e Due at 11pm on Wednesdays via electronic submission.

« Collaboration/lateness policies: see web.

Exercises. 10%
« Due at 11pm on Sundays via Blackboard.
o Collaboration/lateness policies: see web.

Exams. 15% + 25%
« Midterm (in class on Tuesday, Oct 27).
e Final (to be scheduled by the registrar).

Participation. 5%
« Attend and participate in precept/lecture.
« Answer questions on Piazza.

Participation

Midterm
Exam

Programming
Assignments

14

icker

L]
[»C

Required device for lecture. save serial number
 Any hardware version of irclicker. 4+~ tomaintain resale value
(sorry, insufficient WiFi in this room to support irclicker GO)

« Available at Labyrinth Books ($25).

« Use default frequency AA.

 You must register your irclicker in Blackboard.

iclicker#

5
¢

Which model of irclicker are you using?

A. irclicker. 60
@ °
B. irclicker+. é
Y -
c
C. irclicker 2. -
D. [Idon't know. ™
=
E. [Idon't have one yet. (Ummm.. how are you answering this?) S

15

Resources (textbook)

Required reading. Algorithms 4th edition by R. Sedgewick and K. Wayne,
Addison-Wesley Professional, 2011, ISBN 0-321-57351-X.

4th adition (2011)

Available in hardcover and Kindle.
e« Online: Amazon ($60 hardcover, $55 Kindle, $50 rent), ...
e Brick-and-mortar: Labyrinth Books (122 Nassau St.).
« On reserve: Engineering library.

16

Resources (web)

Course content.
e Course info.
e Lecture slides.
e Flipped lectures.
e Programming assignments.
« EXercises.
« Exam archive.

Booksite.
e Brief summary of content.
« Download code from book.
« APIs and Javadoc.

v PRINCETON CoMPUTER SciENCE 226
UNIVERSITY ALGORITHMS AND DATA
STRUCTURES

Course Information | Lectures | Fipped | Assignments | Exercises | Exams

COURSE INFORMATION

Description. This course surveys the most important algonthms and data structures in use on
computers today. Particular emphasis is given to algorithms for sorting, searching, and string
processing. Fundamental algorithms in a number of other areas are covered as wel, including geometric
and graph algerithms. The course will concentrate on developing implementations, understanding their
performance characteristics, and estimating their potential effectiveness in applications.

http:/ /www.princeton.edu/~co0s226

ALGORITHMS, 4TH EDITION

essential information that
every serious programmer
needs to know about
algorithms and data structures

Algorithms

Textbook. The textbook Algorithms, 4th Edition by Robert Sedgewick and Kevin
Wayne [Amazon - Addison-Wesley] surveys the most important algorithms and
data structures in use today, The textbook is organized into six chapters:

ALcormems, 4TH EDMON) R a)
o Chapter 1: Fundamentals imrodyces a sciemific and engineering basis for

1. Fundamentais comparing algorithms and making predictions. It also includes our
programming model.

2. Serting
e Chapter 2: Sorting considers several classic sorting algorithms, including
3. Searching insertion sort, mergesort, and quicksort, It also includes a binary heap
4, Graphs Implementation of a priority gueuve.
5. Strings o Chapter 3: Searching describes several classic symbol table
—t— implementations, including binary search trees, red-black trees, and hash
6. Context tables.

-

http://algs4.cs.princeton.edu

17

Resources (people)

Piazza discussion forum.
« Low latency, low bandwidth.
« Mark solution-revealing questions
as private.

Office hours.
« High bandwidth, high latency.
« See web for schedule.

Lab TAs.
« For help with debugging.
« See web for schedule.

h

ttp:

azza.com/princeton/fall2015/cos22

http:/ /labta.cs.princeton.edu

6

18

What's ahead?

Today. Attend lecture.

Friday. Attend precept. m

for (int week = 1; week < reading_period; week++) { g

if (week != fall_break) { _— VoS, EVE ol TEEE =

Sunday: two sets of exercises due.
yes, even for week ==

Tuesday: traditional/flipped lecture.

Wednesday: programming assignment due. « be sure to start early!

Thursday: traditional/flipped lecture. \

Friday: precept. RS MEERS 7o
really!

\ start early!

19

Q+A

Not registered? Go to any precept this week.

Registered but not continuing? Drop as soon as possible.

Change precept? Use TigerHub.

All possible precepts closed? See Colleen Kenny-McGinley in CS 210.

Haven't taken COS 1267 See COS placement officer.
Placed out of COS 1267 Review Sections 1.1-1.2 of Algorithms 4/e.

1@ w \

lvl |

1
\

’

‘

20

A 1 g Oor 1 t h Ims ROBERT SEDGEWICK | KEVIN WAYNE

1.5 UNION-FIND

» dynamic-connectivity problem
» quick find

» quick union

Algpritl}ﬂrp(é

O URTH g,

» Improvements

» applications

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

Subtext of today’s lecture (and this course)

Steps to developing a usable algorithm to solve a computational problem.

model the
problem

design an tryagain

algorithm \

understand
why not

correct?
efficient?

yes

v

solve the
problem

1.5 UNION-FIND

» dynamic-connectivity problem

Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

Dynamic-connectivity problem

Given a set of N elements, support two operations:
« Connect two elements with an edge.
e Query: is there a path connecting two elements?

connect 4 and 3
connect 3 and 8
connect 6 and 5 @ G e e e
connect 9 and 4

connect 2 and 1

are 8 and 9 connected? v e 6 a ° e

are 5 and 7 connected? X

connect 5 and 0
connect 7 and 2
connect 6 and 1
connect 1 and 0

are 5 and 7 connected? v

A larger connectivity example

Q. Is there a path connecting elements p and ¢ ?

A.

Yes.

o, Xa R

L I I
L B S L L e I L D L B L B L I L L I DL B I I T I I IR L R I

L i L T S I T I T L L S e T I T I L S L L S I S L L I S L S I

L e I e e L e I e

L L B o e

L B S o o I R S I e S S e L

*

L e L I L S e S e TR S e L S S e L S I B I I S I e L S

L I I S e e L S e e e
L R e TR L S L I S e

® P9 9 O ¢

LI e I L e L L T B e B B e R e e

LI I R e
O PPl Gup=® § S=Pp=g @ P=0=9 ¢ ¢ O=9 S=@ Oo=0 9 ¢

LI

LI I T e S I I e e e e L L S L L S e S I R T L e e e I I B I

L T S S S S
T L = = TS e

e e e e I e e e e I e I e I e e

.

TR RN N L A A 2 B B B T R T TR N T I R)

LI I R e I I e e e I e e Ik =

L
L e L e e e L e S B e e e T

L e L I I e A e

¢

9o =0 GO PrPuPpPuhud=9 ©

L 2

LI N T I I I
L e S T S e L S e I S N I R S o e R L T S R R e L

L L I L L B)

L I I

L e e e L e
e R = I I S

LI S R I S I I e

L e I I e e I e e e I e I e e

> o
L 2 I I S

L L L L S S A B S B S L S e e e S S e T e e e e L e e S L e e

L e B e L L e L L e

PO O P=P=® § =0 P=O® P=0=b =9 09 S-9

L e e B e L L s e I S B L L L I D I e e L I e

P e R E)

LR = B

B S T I I = ==

" e 4

L I e e B L S S e S L I S e e B S e e I S

L e o S e S L J

L L I e e T B S e L R S I S B L R e I S T S e B S e I

.
.
.
.
-
’
L
.
.
>
*
-
.
*
-
*
*
-
.
.
Ll
*
.
-
.
.
.
-
.
*
.
-
.
.
.
.
.
d

-
.
-
-
.
-
-
*
-
.
>
.
-
.
-

L L I I I S A I TR I

L R B T B I T I I I

-
L4
-
.
.
-
-
-
-
-
-
.
-
.
-
-
-
-
-
-
-
-
£
.
-
-
-
-
-
L4
.
-

L

L L R e =
Pl I I I T R e e T e e e R s I s e eamr—

¢ e

.
.
-
.
-
-

L L S o S L I L S

L I e s I S R

=Pl S=9 S=0=9 ¢ @ =9 =9 =0 9 P=P=8 =9

L

L L S B e

000000000000000000000,000000

S S B L I B I B S L B S L L R S S e L o e L B L B e B B

I I I e S

-

L 3
L I S I L S e e S I S I S

L o o B I S e e L S e A e S S L L S S S S

.

L B L B L B I I S L L B I e L I B

LR T T TR I T I T N T T T T TR T T T TR TR TR N TR I R T T T TR BT R T T T T B R R T T

.
.
-
. L]
. *
- .
- .
. i
. -
-
>
. .
.
L L
. o o
. 0.
. 0
L
L .
LS .
. -
> -
S .
* b .
+ . -
.. -
* e .
..o .
L L 2 -
. L] -

LI S o L L S S L I S I S e I S I S e o L I e

)
* e

-

L

L I S e o o L L e

L R I S e I R I S

L L S I S o e L S e
L L S I S L S S e I L S L S T L I S e e e L L L S B e

" e L

L e I e A e e e T A

.

TR I
e e ea e

LI e L I I L I L L L B i A

L L L 2 L I e I

*—9—0—0—9—0—9

P @ @ PPupud O=9=0 ¢ ¢

L e T L L e R e

.
e o LR
L = I .
.- e e
LR T R
L I e
. e ﬂd
e Bk o
LI)
L B L
L L o
99 &8 o9
LR . .
L L 4
*er .
. L
LI S
L 2
. .- e
. L
. L L S
. e . o o 0
00114 .
LI L e B
L N
L S o B
SR I O
L e e L 2
- L B R
prympy—
* 4 0 "
. L
,00.000
L o=9 ¢
L I I B N
L S e e B S
. o o 0 e 00
.- o .
e
L I S I
L e SR R e 2
LR S B S o I
R E)
L I L
. o0 L d
- —a 0 o
=0 O=9 $—9
L I
L L I S I I
LR N

PP =9 =0 &

D T I)

*

=9 P=0—p
L S L L S A B L B B T e L D I S B e

L e B L L e L

L R

-
L S I e o e B

L 4

L B J

*—9—0—9—9—0—9

e e e I e e I e I e e I e I e I I I e e I I e e L e e e I e e

L I e I I e e I e I I e e I e e e L I e e e e I I e e e e I e e e L S S e T S e S IR S

L L TR e TR I R N R I S e T I S I IR S B
L L I L IR T T T L I T I T I e BN L N . I TR T R R T T e D I S LN I

L S I I S e L S e

)

(finding the path explicitly is a harder problem
stay tuned for graph algorithms in a few weeks)

Modeling the elements

Applications involve manipulating elements of all types.

Pixels in a digital photo.

Computers in a network.

Friends in a social network.
Transistors in a computer chip.
Elements in a mathematical set.
Variable names in a Fortran program.
Metallic sites in a composite system.

When programming, convenient to name elements O to N - 1.

Use integers as array index.
Suppress details not relevant to union-find.

N

can use symbol table to translate from site
names to integers (stay tuned for Chapter 3)

Modeling the connections

We model "is connected to" as an equivalence relation:

« Reflexive: p is connected to p.
 Symmetric: if p is connected to ¢, then g is connected to p.

e Transitive: if p is connected to ¢ and ¢ is connected to r,

then p is connected to r.

Connected component. Maximal set of mutually-connected elements.

{0}ry{1, 451412, 3,6, 7}

3 disjoint sets

(connected components)

Two core operations on disjoint sets

Union. Replace set p and g with their union.
Find. In which set is element p?

union(2, 5) find(5) == find(6) v

{0}r{1,4,5}r4{2, 3,6, 7} {0}r{1,2,3,45,6,7}

3 disjoint sets 2 disjoint sets

Modeling the dynamic-connectivity problem using union-find

Q. How to model the dynamic-connectivity problem using union-find?
A. Maintain disjoint sets that correspond to connected components.
 Connect elements p and ¢: union.
* Are elements p and g connected? find.

union(2, 5) find(5) == find(6) v
{0}r{1,4,5%}r{2, 3,6, 7} {or{1, 2, 3, 4, 5, 6, 7}
3 disjoint sets 2 disjoint sets
connect 2 and 5 are 5 and 6 connected?

3 connected components 2 connected components

Union-find data type (API)

Goal. Design a union-find data type.

public class UF

UF(int N)

void union(int p, 1nt q)

int find(int p)

initialize union-find data structure

with N singleton sets (Oto N — 1)

merge sets containing

elements p and g

identifier for set containing

elementp (OtoN — 1)

10

Union-find data type (API)

Goal. Design an efficient union-find data type.

« Number of elements N can be huge.

« Number of operations M can be huge.
« Union and find operations can be intermixed.

public class

UF

void

int

UF(int N)

union(int p, 1nt q)

find(int p)

initialize union-find data structure

with N singleton sets (Oto N — 1)

merge sets containing

elements p and q

identifier for set containing

elementp (OtoN — 1)

11

Dynamic-connectivity client

« Read in number of elements N from standard input.

e Repeat:

— read in pair of integers from standard input

— if they are not yet connected, connect them and print pair

public static void main(String[] args)

{

int N = StdIn.readInt();
UF uf = new UF(N);
while (!StdIn.isEmpty())

{
int p = StdIn.readInt();
int q = StdIn.readInt();
it (uf.find(p) != uf.find(q))
{
uf.union(p, q);
StdOut.printin(p + " " + q);
}
¥

% more tinyUF.txt

10

N O O W b

vl
o

= A~ U1 00 W

N

already connected
(don't print these)

12

1.5 UNION-FIND

» quick find
Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

Quick-find [eager approach]

Data structure.
e Integer array id[] of length N.
« Interpretation: id[p] identifies the set containing element p.

idfl] 0 1 1 8 8 0 O 1 8 8

1d[1] =0 1d[1] =1 1d[1] =8

TN TN AN

{0,5 6} {1, 2,7} {3, 4,38, 9}

3 disjoint sets

Q. How to implement find(p)?
A. Easy, just return id[p].

14

Quick-find [eager approach]

Data structure.
e Integer array id[] of length N.
« Interpretation: id[p] identifies the set containing element p.

union(6, 1)

1'd[]nl 18 8““1 8 8
1 11

problem: many values can change

Q. How to implement union(p, q)?

A. Change all entries whose identifier equals id[p] to id[q].

15

Quick-find demo

d[] 0 I 2 3 4 5 6 7 8 9

Quick-find: Java implementation

public class QuickFindUF

{

private int[] 1d;

public QuickFindUF(int N)

{
1d = new 1nt[N];
for (int 1 = 0; 1 < N; 1++)
1d[1] = 1;
}

public int find(int p)
{ return id[pl; }

public void union(int p, int q)
{
int pid = 1d[p];
int gid = 1d[q];
for (Aint 1 = 0; 1 < i1d.length; 1++)
if (id[i] == pid) id[i] = qid;

set id of each element to itself
(N array accesses)

return the id of p
(1 array access)

change all entries with id[p] to id[q]
(N+2 to 2N+2 array accesses)

17

Quick-find is too slow

Cost model. Number of array accesses (for read or write).

T

quick-find

number of array accesses (ignoring leading constant)

Union is too expensive. Processing a sequence of N union operations
on N elements takes more than N2 array accesses.

\

quadratic

18

Quadratic algorithms do not scale

Rough standard (for now).
. i hl
» 109 operations per second. e (e
. 109 words of main memory. J/

« Touch all words in approximately 1 second.

Ex. Huge problem for quick-find.
e« 109 union commands on 109 elements.
e Quick-find takes more than 10'8 operations.
e 30+ years of computer time!

Quadratic algorithms don't scale with technology.
« New computer may be 10x as fast.
« But, has 10x as much memory =
want to solve a problem that is 10x as big.
« With quadratic algorithm, takes 10x as long!

quadratic

limit on
available time

[
linear

inearithmic

size — 1K 2K

I
8K

1.5 UNION-FIND

» quick union

Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

Quick-union [lazy approach]

Data structure.
« Integer array parent[] of length N, where parent[i] is parent of i in tree.
e Interpretation: elements in a tree corresponding to a set.

()
01 9@®0@® 6 6 7 8 (9 © O b © 0

p 3
find(i) =9 parent of 3 is 4

A root of 3is 9
{for{1}r4{2,3,4,9}r{5,6}{7} {8}

3 disjoint sets (3 trees)

Q. How to implement find(p) operation?
A. Return root of tree containing p.

21

Quick-union [lazy approach]

Data structure.
« Integer array parent[] of length N, where parent[i] is parent of i in tree.
e Interpretation: elements in a tree corresponding to a set.

ONORRO @ ®
O

b

union(3, 5) O 1 9 4 9 6 6 7 8 9

Q. How to implement union(p, q)?
A. Set parent of p's root to parent of g's root.

22

Quick-union [lazy approach]

Data structure.
« Integer array parent[] of length N, where parent[i] is parent of i in tree.
e Interpretation: elements in a tree corresponding to a set.

union(3,5)019496678n © O ONORO
T (9) P «q

only one value changes

Q. How to implement union(p, q)?
A. Set parent of p's root to parent of g's root.

23

Quick-union demo

O

ONORORORORORORORONO

o 1 2 3 4 5 o6 7 8 9

Quick-union: Java implementation

public class QuickUnionUF

{

private int[] parent;

public QuickUnionUF(int N)
{
parent = new int[N];
for (int i = 0; i < N; i++)
parent[i1] = 1;

}
public int find(int p)
{
while (p !'= parent[p])
p = parent[pl;
return p;
}
public void union(int p, int q)
{
int 1 = find(p);
int Jj = find(q);
parent[i] = 7J;
}

set parent of each element to itself
(N array accesses)

chase parent pointers until reach root
(depth of p array accesses)

change root of p to point to root of g
(depth of p and g array accesses)

25

Quick-union is also too slow

Cost model. Number of array accesses (for read or write).

T

quick-find
quick-union N NT N <«—— worst case
1 includes cost of finding two roots
worst-case input
: : 4 :

Quick-find defect. (4 union(o, 1
union(0, 2)

 Union too expensive (more than N array accesses). @) union(, 3)
union(0, 4)

« Trees are flat, but too expensive to keep them flat.

Quick-union defect.
™

« Trees can get tall.
. Find too expensive (could be more than N array accesses). ()

1.5 UNION-FIND

Algorithms

» Improvements

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

Weighting

Weighted quick-union.
« Modify quick-union to avoid tall trees.

o Keep track of size of each tree (number of elements).

« Always link root of smaller tree to root of larger tree.

quick-union @

smaller
tree

~—_ might put the
larger tree lower

smaller
tree

larger
tree

weighted
always chooses the
@\/ better alternative / @
larger smaller smaller

@
®/

N

reasonable alternative:
union by height/rank

28

Weighted quick-union quiz

Suppose that the parent[] array during weighted quick union is:

parentff] 0 O O O O O 7 8 8 8 t

Which parent[] entry changes during union(2, 6)?

A. parent[0]

parent[2]

B.
C. parent[6]
D.

parent[8]

Quick-union vs. weighted quick-union: larger example

quick-union
o o e o 0 o o o
=
average distance to root: 5.11
weighted

average distance to root: 1.52

Quick-union and weighted quick-union (100 sites, 88 union() operations)

30

Weighted quick-union: Java implementation

Data structure. Same as quick-union, but maintain extra array size[i]
to count number of elements in the tree rooted at 1, initially 1.

Find. ldentical to quick-union.
Union. Modify quick-union to:

« Link root of smaller tree to root of larger tree.
« Update the size[] array.

int 1 = find(p);
int j = find(q);

1f (1 == j) return;
if (size[i] < size[j]) { parent[i] = j; size[j] += size[il; }
else { parent[j] = 1; size[i] += size[j]; }

31

Weighted quick-union analysis

Running time.
 Find: takes time proportional to depth of p.
« Union: takes constant time, given two roots.

Proposition. Depth of any node x is at most Ig N. <— g means base-2 logarithm

N=10
depth(x) =3 < IgN

32

Weighted quick-union analysis

Running time.
 Find: takes time proportional to depth of p.

« Union: takes constant time, given two roots.

Proposition. Depth of any node x is at most Ig N. <— g means base-2 logarithm

Pf. What causes the depth of element x to increase?

Increases by 1 when root of tree 71 containing x is linked to root of tree 7».
« The size of the tree containing x at least doubles since | T>| = | T1|.
« Size of tree containing x can double at most Ig N times. Why?

>~ N =

>IgN

o R

N J

33

Weighted quick-union analysis

Running time.
 Find: takes time proportional to depth of p.
« Union: takes constant time, given two roots.

Proposition. Depth of any node x is at most lg V.

T

quick-find
quick-union N Nt N
weighted QU N log N7 log N

1 includes cost of finding two roots

34

Summary

Key point. Weighted quick union makes it possible to solve problems that
could not otherwise be addressed.

quick-find M N
quick-union M N
weighted QU N+ MlogN

order of growth for M union-find operations on a set of N elements

Ex. [109%9 unions and finds with 10° elements]
« WQUPC reduces time from 30 years to 6 seconds.
« Supercomputer won't help much; good algorithm enables solution.

35

1.5 UNION-FIND

Algorithms

» applications

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

Union-find applications

e Percolation.
« Games (Go, Hex).
e Least common ancestor.
v Dynamic-connectivity problem.
« Equivalence of finite state automata.
« Hoshen-Kopelman algorithm in physics.
« Hinley-Milner polymorphic type inference.
e Kruskal's minimum spanning tree algorithm.
« Compiling equivalence statements in Fortran.
« Morphological attribute openings and closings.

« Matlab's bwlabel() function in image processing.

37

Percolation

An abstract model for many physical systems:
« N-by-N grid of sites.

« Each site is open with probability p (and blocked with probability 1 - p).

« System percolates iff top and bottom are connected by open sites.

N

if and only if

percolates does not percolate
. blocked

site

N

open —

site - \

open site connected to top

I

no open site connected to top

38

Percolation

An abstract model for many physical systems:
e N-by-N grid of sites.
e Each site is open with probability p (and blocked with probability 1 - p).
« System percolates iff top and bottom are connected by open sites.

electricity material conductor insulated conducts

fluid flow material empty blocked porous

social interaction population person empty communicates

39

Likelihood of percolation

Depends on grid size N and site vacancy probability p.

p low (0.4) p medium (0.6) p high (0.8)
does not percolate percolates? percolates

-

empty open site full open site
(not connected to top) (connected to top)

Percolation phase transition

When N is large, theory guarantees a sharp threshold p*.
« p > p*: almost certainly percolates.
e p < p*: almost certainly does not percolate.

Q. What is the value of p* ?

percolation
probability

O—I @ @ @ I

|
0 0.593 1

N 100 site vacancy probability p

41

Monte Carlo simulation

e Determining the threshold p*
is difficult in theory

e Instead, conduct many random
simulations, compile statistics.

Le Casino de Monte-Carlo

42

Monte Carlo simulation

Initialize all sites in an N-by-N grid to be blocked.
Declare random sites open until top connected to bottom.

Vacancy percentage estimates p*.
Repeat many times to get more accurate estimate.

full open site
(connected to top)

empty open site
(not connected to top)

. blocked site

N =20 135 open sites

Dynamic-connectivity solution to estimate percolation threshold

Q. How to check whether an N-by-N system percolates?
A. Model as a dynamic-connectivity problem problem and use union-find.

open site

. blocked site

44

Dynamic-connectivity solution to estimate percolation threshold

Q. How to check whether an N-by-N system percolates?
e« Create an element for each site, named 0 to N2 — 1.

open site

. blocked site

45

Dynamic-connectivity solution to estimate percolation threshold

Q. How to check whether an N-by-N system percolates?
* Create an element for each site, named 0 to N2 - 1.
o Add edge between two adjacent sites if both open.

4 possible neighbors: left, right, top, bottom

.ol
..

I

open site

. blocked site

46

Dynamic-connectivity solution to estimate percolation threshold

Q. How to check whether an N-by-N system percolates?

e« Create an element for each site, named 0 to N2 — 1.

o Add edge between two adjacent sites if both open.

« Percolates iff any site on bottom row is connected to any site on top row.

open site

. blocked site

brute-force algorithm: N 2 connected queries

o—o o ® toprow
e o o ®
®© o o

® © 0 ©

® 0@ oitomrow

47

Dynamic-connectivity solution to estimate percolation threshold

Clever trick. Introduce 2 virtual sites (and edges to top and bottom).
« Percolates iff virtual top site is connected to virtual bottom site.

N

more efficient algorithm: only 1 connected query

virtual top site

ves —eo o ® torrow
e o o ®
e o o
® © 0 ©

® 0@ rotomrow

open site

virtual bottom site

. blocked site
48

Dynamic-connectivity solution to estimate percolation threshold

Q. How to model opening a new site?

open this site

.ol
l .

I

open site

. blocked site

49

Dynamic-connectivity solution to estimate percolation threshold

Q. How to model opening a new site?
A. Mark new site as open; add edge to any adjacent site that is open.

N

adds up to 4 edges

open this site

open site

. blocked site

50

Percolation threshold

Q. What is percolation threshold p* ?

A. About 0.592746 for large square lattices.
N

constant known only via simulation

percolation
probability

O—I @ @ @ I

I
0 0.593 1

N 100 site vacancy probability p

Fast algorithm enables accurate answer to scientific question.

51

Subtext of today’s lecture (and this course)

Steps to developing a usable algorithm.

Model the problem.

Find an algorithm to solve it.

Fast enough? Fits in memory?

If not, figure out why.

Find a way to address the problem.
Iterate until satisfied.

The scientific method.

Mathematical analysis.

52

