
COS 226 Algorithms and Data Structures Fall 2014

Midterm

This test has 9 questions worth a total of 55 points. You have 80 minutes. The exam is closed
book, except that you are allowed to use a one page cheatsheet. No calculators or other electronic
devices are permitted. Give your answers and show your work in the space provided. Write out
and sign the Honor Code pledge just before turning in the test.

“I pledge my honor that I have not violated the Honor Code during this examination.”

Problem Score Problem Score
0 5
1 6
2 7
3 8
4

Sub 1 Sub 2

Total

Name:

netID:

Room:

Precept: P01 F 9 Andy Guna
P02 F 10 Jérémie Lumbroso
P03 F 11 Josh Wetzel
P03A F 11 Jérémie Lumbroso
P04 F 12:30 Robert MacDavid
P04A F 13:30 Shivam Agarwal

1



2 PRINCETON UNIVERSITY

0. Initialization. (2 points)

In the space provided on the front of the exam, write your name and Princeton netID; circle
your precept number; write the name of the room in which you are taking the exam; and
write and sign the honor code.

1. Memory and data structures. (5 points)

Suppose that you implement a left-leaning red-black BST using the following representation:

public class RedBlackBST<Key extends Comparable<Key>, Value> {

private Node root; // root of BST

private int N; // number of key-value pairs

private class Node {

private Key key; // symbol table key

private Value value; // symbol table value

private Node left; // left child

private Node right; // right child

private boolean color; // color of link from parent

private int count; // number of nodes in subtree rooted at this node

}

...

}

Using the 64-bit memory cost model from lecture and the textbook, how much memory (in
bytes) does a RedBlackBST object use as a function of the number of key-value pairs N?
Use tilde notation to simplify your answer.

Include all memory except for the Key and Value objects themselves (because you do not know
their types).

∼ bytes



COS 226 MIDTERM, FALL 2014 3

2. Seven sorting algorithms and a shuffling algorithm. (8 points)

The column on the left contains an input array of 24 strings to be sorted or shuffled; the
column on the right contains the strings in sorted order. Each of the other 8 columns contain
the contents at some intermediate step during one of the 8 algorithms listed below.

Match up each algorithm by writing its number under the corresponding column. Use each
number exactly once.

0 left hash left flow byte byte lifo byte byte byte

1 hash flip left hash find exch miss exch ceil ceil

2 flip heap left flip flip find flow find edge edge

3 heap byte heap heap hash flip sink flip exch exch

4 byte find hash byte heap flow left hash find find

5 find edge find find left hash heap heap flip flip

6 sort ceil flow edge sink heap left left flow flow

7 sink exch edge left sort left hash lifo hash hash

8 miss flow byte ceil exch left prim miss heap heap

9 lifo left flip left flow lifo trie sink left left

10 exch left ceil exch left miss find size left left

11 size left exch left lifo prim flip sort left left

12 prim prim lifo prim miss sink sort ceil lifo lifo

13 flow size load size prim size exch edge load load

14 left trie loop lifo size sort size flow loop loop

15 trie push miss trie trie trie byte left miss miss

16 push lifo path push ceil push push left push path

17 ceil miss prim miss edge ceil ceil load sink prim

18 left rank push sink left left left loop trie push

19 rank load rank rank load rank rank path rank rank

20 load loop sink load loop load load prim sort sink

21 loop path size loop path loop loop push prim size

22 path sink sort path push path path rank path sort

23 edge sort trie sort rank edge edge trie size trie

---- ---- ---- ---- ---- ---- ---- ---- ---- ----

0 9

(0) Original input

(1) Selection sort

(2) Insertion sort

(3) Mergesort
(top-down)

(4) Mergesort
(bottom-up)

(5) Quicksort
(standard, no shuffle)

(6) Quicksort
(Dijkstra 3-way, no shuffle)

(7) Heapsort

(8) Knuth shuffle

(9) Sorted



4 PRINCETON UNIVERSITY

3. Analysis of algorithms. (6 points)

Suppose that you have an array of length N consisting of replications of the string BBBA.
For example, below is the array for N = 16: four replications of BBBA.

B B B A B B B A B B B A B B B A

(a) How many compares does selection sort make to sort the array as a function of N?
Use tilde notation to simplify your answer.

∼ compares

(b) How many compares does insertion sort make to sort the array as a function of N?
Use tilde notation to simplify your answer.

∼ compares

(c) How many compares does mergesort make to sort the array as a function of N?
You may assume N is a power of 4. Use tilde notation to simplify your answer.

∼ compares



COS 226 MIDTERM, FALL 2014 5

4. Balanced search trees. (6 points)

Consider the following left-leaning red-black BST.

Midterm, Fall 2014

6

4

12

18

10

red link

8

28

22

20

24

32

26

16

30

2

14

Suppose that you insert the given keys below into the LLRB above. For each insertion, give
the number of color flips, the number of (left or right) rotations, and the key that appears in
the root node immediately after the insertion.

The insertions are not cumulative—you are inserting each key into the LLRB above.

insertion
key

number of
color flips

number of
rotations

key in root
after insertion

17

1

31

19 0 0 18



6 PRINCETON UNIVERSITY

5. Hash tables. (5 points)

Suppose that the following keys are inserted into an initially empty linear-probing hash table,
but not necessarily in the order given,

key hash

A 1

D 5

L 6

M 0

N 1

S 6

X 4

and it result in the following hash table:

0 1 2 3 4 5 6

S M N A X D L

Assuming that the initial size of the hash table was 7 and that it did not grow or shrink,
circle all possible keys that could have been the last key inserted.

A D L M N S X



COS 226 MIDTERM, FALL 2014 7

6. Problem identification. (7 points)

You are applying for a job at a new software technology company. Your interviewer asks
you to identify the following tasks as either possible (with algorithms and data structures
introduced in this course), impossible, or an open research problem. You may use each letter
once, more than once, or not at all.

−−−−− Determine whether there are any intersections among a set of N
axis-aligned rectangles in N logN time in the worst case.

−−−−− Stably sort a singly linked list of N comparable keys using only
a constant amount of extra memory and ∼ N log2N compares.

−−−−− Given a binary heap of N distinct comparable keys, create a
binary search tree on the same set of N keys, using at most 2N
compares.

−−−−− Uniformly shuffle an array in linear time using only constant
memory (other than the input array), assuming access to a ran-
dom number generator.

−−−−− Find the kth smallest key in a left-leaning red-black BST in
logarithmic time in the worst case.

−−−−− Implement a FIFO queue using a resizing array, in constant
amortized time per operation.

−−−−− Given an array a[] of N ≥ 2 distinct comparable keys (not nec-
essarily in sorted order) with a[0] < a[N-1], find an an index
i such that a[i] < a[i+1] in logarithmic time.

I. Impossible

P. Possible

O. Open



8 PRINCETON UNIVERSITY

7. Multiway merge. (8 points)

Given k sorted arrays containing a total of N comparable keys, print the N keys in sorted
order.

(a) Describe your algorithm in the box below. Your answer will be graded on correctness,
efficiency, and clarity. For full credit, your algorithm should run in time proportional to
N log k in the worst case and use extra space proportional to at most k.

(b) What is the order of growth of the worst-case running time of your algorithm as a
function of N and k? Circle your answer.

N k logN N log k N logN Nk Nk lgN

(c) What is the order of growth of the extra space that your algorithm uses (beyond the k
input arrays) as a function of N and k? Circle your answer.

1 log k logN k N Nk



COS 226 MIDTERM, FALL 2014 9

8. Move-to-front. (8 points)

A move-to-front data type is a data type that stores a sequence of items. It supports inserting
an item at the front of the sequence (add); accessing the item at index i in the sequence (item-
at-index); and moving the item at index i to the front of the sequence (move-to-front), as
documented in the following API:

35

Midterm Fall 2014:  Move-to-Front API

public class MoveToFront<Item>public class MoveToFront<Item>public class MoveToFront<Item>

MoveToFront() create an empty move-to-front data structure

void add(Item item)
add the item at the front (index 0) of the sequence
(thereby increasing the index of every other item)

Item itemAtIndex(int i) the item at index i

void mtf(int i)
move the item at index i to index 0
(thereby increasing the index of items 0 through i – 1)

All operations should take time proportional to logN in the worst case, where N is the number
of items in the data structure.

Here is an example,

MoveToFront<String> mtf = new MoveToFront<String>();

mtf.add("A"); // A [ add A ]

mtf.add("B"); // B A [ add B ]

mtf.add("C"); // C B A [ add C ]

mtf.add("D"); // D C B A [ add D ]

mtf.add("E"); // E D C B A [ add E ]

mtf.itemAtIndex(1); // E D C B A [ return D ]

mtf.mtf(1); // D E C B A [ move-to-front D ]

mtf.itemAtIndex(3); // D E C B A [ return B ]

mtf.mtf(3); // B D E C A [ move-to-front B ]

Give a crisp and concise English description of your data structure. Your answer will be
graded on correctness, efficiency, and clarity.



10 PRINCETON UNIVERSITY

(a) Declare the instance variables for your MoveToFront data type in the box below.

public class MoveToFront {

}

(b) Brief describe how to implement each of the operations, using either prose or code.

• void add(Item item):

• Item itemAtIndex(int i)

• void mtf(int i):


