
12/13/15

1

1

Signals
Jennifer Rexford

Goals of this Lecture

Help you learn about:
•  Sending and handling signals
• … and thereby …
•  How the OS exposes the occurrence of

some exceptions to application processes
•  How application processes can control their

behavior in response to those exceptions

2

Agenda
Unix Process Control

Signals

Sending Signals

Handling Signals

Alarms

(If time) Race Conditions and Critical Sections

(If time) Blocking Signals

(If time) Interval Timers
3

Unix Process Control

Non-Existing
Process

Running
Foreground

Process

Stopped
Background

Process

Running
Background

Process

↓ command
↑ Ctrl-c

 ↓ Ctrl-z
 ↑ fg

↓ kill -20 pid
↑ bg

↓ command &
↑ kill –2 pid

↑ kill –2 pid

 ← fg

4 [Demo 1]

Process Control Implementation
Exactly what happens when you:

Type Ctrl-c?
•  Keystroke generates interrupt
•  OS handles interrupt
•  OS sends a 2/SIGINT signal

Type Ctrl-z?
•  Keystroke generates interrupt
•  OS handles interrupt
•  OS sends a 20/SIGTSTP signal

5

Process Control Implementation (cont.)

Exactly what happens when you:

Issue a kill –sig pid command?
• kill command executes trap
•  OS handles trap
•  OS sends a sig signal to the process whose id is pid

Issue a fg or bg command?
• fg or bg command executes trap
•  OS handles trap
•  OS sends a 18/SIGCONT signal (and does some other

things too!)

6

12/13/15

2

Agenda
Unix Process Control

Signals

Sending Signals

Handling Signals

Alarms

(If time) Race Conditions and Critical Sections

(If time) Blocking Signals

(If time) Interval Timers
 7

Signals

Signal: A notification of an exception

Typical signal sequence:
•  Process P is executing
•  Exception occurs (interrupt, trap, fault, or abort)
•  OS gains control of CPU
•  OS wishes to inform process P that something significant

happened
•  OS sends a signal to process P

•  OS sets a bit in pending bit vector of process P
•  Indicates that OS is sending a signal of type X to

process P
•  A signal of type X is pending for process P 8

Signals

Typical signal sequence (cont.):
•  Sometime later…
•  OS is ready to give CPU back to process P
•  OS checks pending for process P, sees that signal of type X is

pending
•  OS forces process P to receive signal of type X

•  OS clears bit in process P’s pending
•  Process P executes action for signal of type X

•  Normally process P executes default action for that signal
•  If signal handler was installed for signal of type X, then process

P executes signal handler
•  Action might terminate process P; otherwise…

•  Process P resumes where it left off

9

Examples of Signals
User types Ctrl-c

•  Interrupt occurs
•  OS gains control of CPU
•  OS sends 2/SIGINT signal to process
•  Process receives 2/SIGINT signal
•  Default action for 2/SIGINT signal is “terminate”

Process makes illegal memory reference
•  Segmentation fault occurs
•  OS gains control of CPU
•  OS sends 11/SIGSEGV signal to process
•  Process receives 11/SIGSEGV signal
•  Default action for 11/SIGSEGV signal is “terminate” 10

Signals as Callbacks

11

Application
Process

Operating
System

Trap

Signal

Fault

Abort

Interrupt
Weak analogy:
 Trap (and fault and abort) is similar to function call
 App process requests service of OS
 Signal is similar to function callback
 OS informs app process that something happened

Agenda
Unix Process Control

Signals

Sending Signals

Handling Signals

Alarms

(If time) Race Conditions and Critical Sections

(If time) Blocking Signals

(If time) Interval Timers
12

12/13/15

3

Sending Signals via Keystrokes

User can send three signals from keyboard:

•  Ctrl-c => 2/SIGINT signal

•  Default action is “terminate”
•  Ctrl-z => 20/SIGTSTP signal

•  Default action is “stop until next 18/SIGCONT”
•  Ctrl-\ => 3/SIGQUIT signal

•  Default action is “terminate”

13

Sending Signals via Commands
User can send any signal by executing command:

kill command
• kill -sig pid
•  Send a signal of type sig to process pid
•  No –sig option specified => sends 15/SIGTERM signal

•  Default action for 15/SIGTERM is “terminate”
•  You must own process pid (or have admin privileges)
•  Commentary: Better command name would be sendsig

Examples
• kill –2 1234
• kill -SIGINT 1234
•  Same as pressing Ctrl-c if process 1234 is running in foreground

14

Sending Signals via Function Calls
Program can send any signal by calling function:

raise() function
• int raise(int iSig);
•  Commands OS to send a signal of type iSig to calling

process
•  Returns 0 to indicate success, non-0 to indicate failure

Example
• iRet = raise(SIGINT);

•  Send a 2/SIGINT signal to calling process

15

Sending Signals via Function Calls

kill() function
• int kill(pid_t iPid, int iSig);
•  Sends a iSig signal to the process iPid
•  Equivalent to raise(iSig) when iPid is the id of

current process
•  You must own process pid (or have admin privileges)
•  Commentary: Better function name would be
sendsig()

Example
• iRet = kill(1234, SIGINT);

•  Send a 2/SIGINT signal to process 1234 16

Agenda
Unix Process Control

Signals

Sending Signals

Handling Signals

Alarms

(If time) Race Conditions and Critical Sections

(If time) Blocking Signals

(If time) Interval Timers
 17

Handling Signals

Each signal type has a default action
•  For most signal types, default action is “terminate”

A program can install a signal handler
•  To change action of (almost) any signal type

18

12/13/15

4

Uncatchable Signals

Special cases: A program cannot install a signal
handler for signals of type:

•  9/SIGKILL

•  Default action is “terminate”

•  19/SIGSTOP
•  Default action is “stop until next 18/SIGCONT”

19

Installing a Signal Handler

signal() function

• sighandler_t signal(int iSig,
 sighandler_t pfHandler);

•  Install function pfHandler as the handler for signals of
type iSig

• pfHandler is a function pointer:
 typedef void (*sighandler_t)(int);
•  Return the old handler on success, SIG_ERR on error
•  After call, (*pfHandler) is invoked whenever process

receives a signal of type iSig
20

Signal Handling Example 1
Program testsignal.c:

#define _GNU_SOURCE /* Use modern handling style */
#include <stdio.h>
#include <signal.h>

static void myHandler(int iSig)
{ printf("In myHandler with argument %d\n", iSig);
}

int main(void)
{ signal(SIGINT, myHandler);
 printf("Entering an infinite loop\n");
 for (;;)
 ;
 return 0; /* Never get here. */
}

21

Error handling code omitted
in this and all subsequent
programs in this lecture

Signal Handling Example 2
Program testsignalall.c:

 #define _GNU_SOURCE
#include <stdio.h>
#include <signal.h>

static void myHandler(int iSig)
{ printf("In myHandler with argument %d\n", iSig);
}

int main(void)
{ int i;
 /* Install myHandler as the handler for all kinds of signals. */
 for (i = 1; i < 65; i++)
 signal(i, myHandler);
 printf("Entering an infinite loop\n");
 for (;;)
 ;
 return 0; /* Never get here. */
}

22

Will fail:
signal(9, myHandler)
signal(19, myHandler)

Signal Handling Example 3
Program generates lots of temporary data

•  Stores the data in a temporary file
•  Must delete the file before exiting

…

int main(void)

{ FILE *psFile;

 psFile = fopen("temp.txt", "w");

 …
 fclose(psFile);
 remove("temp.txt");

 return 0;
}

23

Example 3 Problem

What if user types Ctrl-c?
•  OS sends a 2/SIGINT signal to the process
•  Default action for 2/SIGINT is “terminate”

Problem: The temporary file is not deleted
•  Process terminates before remove("temp.txt") is

executed

Challenge: Ctrl-c could happen at any time
•  Which line of code will be interrupted???

Solution: Install a signal handler
•  Define a “clean up” function to delete the file
•  Install the function as a signal handler for 2/SIGINT 24

12/13/15

5

Example 3 Solution
…

static FILE *psFile; /* Must be global. */

static void cleanup(int iSig)

{ fclose(psFile);

 remove("temp.txt");

 exit(0);

}

int main(void)

{ …

 psFile = fopen("temp.txt", "w");

 signal(SIGINT, cleanup);

 …

 cleanup(0); /* or raise(SIGINT); */
 return 0; /* Never get here. */
}

25

SIG_DFL
Predefined value: SIG_DFL

Use as argument to signal() to restore default action

Subsequently, process will handle 2/SIGINT signals using
default action for 2/SIGINT signals (“terminate”)

int main(void)
{ …
 signal(SIGINT, somehandler);
 …
 signal(SIGINT, SIG_DFL);
 …
}

26

SIG_IGN
Predefined value: SIG_IGN

Use as argument to signal() to ignore signals

Subsequently, process will ignore 2/SIGINT signals

int main(void)
{ …
 signal(SIGINT, SIG_IGN);
 …
}

27

SIG_IGN Example
Program testsignalignore.c:

#define _GNU_SOURCE
#include <stdio.h>
#include <stdlib.h>
#include <signal.h>

int main(void)
{ signal(SIGINT, SIG_IGN);
 printf("Entering an infinite loop\n");
 for (;;)
 ;
 return 0; /* Never get here. */
}

28

Agenda
Unix Process Control

Signals

Sending Signals

Handling Signals

Alarms

(If time) Race Conditions and Critical Sections

(If time) Blocking Signals

(If time) Interval Timers
29

Alarms

alarm() function
• unsigned int alarm(unsigned int uiSec);
•  Send 14/SIGALRM signal after uiSec seconds
•  Cancel pending alarm if uiSec is 0
•  Use wall-clock time

•  Time spent executing other processes counts
•  Time spent waiting for user input counts

•  Return value is irrelevant for our purposes

Used to implement time-outs

30

12/13/15

6

Alarm Example 1
Program testalarm.c:

#define _GNU_SOURCE
#include <stdio.h>
#include <signal.h>
#include <unistd.h>

static void myHandler(int iSig)
{ printf("In myHandler with argument %d\n", iSig);
 alarm(2); /* Set another alarm */
}

int main(void)
{ signal(SIGALRM, myHandler);
 alarm(2); /* Set an alarm. */
 printf("Entering an infinite loop\n");
 for (;;)
 ;
 return 0; /* Never get here. */
}

31

Alarm Example 2
Program testalarmtimeout.c:

#define _GNU_SOURCE
#include <stdio.h>
#include <stdlib.h>
#include <signal.h>
#include <unistd.h>

static void myHandler(int iSig)
{ printf("\nSorry. You took too long.\n");
 exit(EXIT_FAILURE);
}

int main(void)
{ int i;
 signal(SIGALRM, myHandler);
 printf("Enter a number: ");
 alarm(5);
 scanf("%d", &i);
 alarm(0);
 printf("You entered the number %d.\n", i);
 return 0;
}

32

Agenda
Unix Process Control

Signals

Sending Signals

Handling Signals

Alarms

(If time) Race Conditions and Critical Sections

(If time) Blocking Signals

(If time) Interval Timers
 33

Race Conditions and Critical Sections

Race condition
•  A flaw in a program whereby the correctness of the

program is critically dependent on the sequence or
timing of events beyond the program’s control

Critical section
•  A part of a program that must execute atomically (i.e.

entirely without interruption, or not at all)

34

Race Condition Example

int iBalance = 2000;

…

static void addBonus(int iSig)

{ iBalance += 50;

}

int main(void)

{ signal(SIGINT, addBonus);

 …

 iBalance += 100;

 …

35

Race Condition Example (cont.)

int iBalance = 2000;

…

void addBonus(int iSig)

{ iBalance += 50;

}

int main(void)

{ signal(SIGINT, addBonus);

 …

 iBalance += 100;

 …

Race condition example in assembly language

movl iBalance, %eax

addl $100, %eax

movl %eax, iBalance

movl iBalance, %ecx

addl $50, %ecx

movl %ecx, iBalance

Let’s say the compiler generates that assembly language code
36

12/13/15

7

Race Condition Example (cont.)

int iBalance = 2000;

…

void addBonus(int iSig)

{ iBalance += 50;

}

int main(void)

{ signal(SIGINT, addBonus);

 …

 iBalance += 100;

 …

(1) main() begins to execute

movl iBalance, %eax

addl $100, %eax

movl %eax, iBalance

movl iBalance, %ecx

addl $50, %ecx

movl %ecx, iBalance

2000

2100

37

Race Condition Example (cont.)

int iBalance = 2000;

…

void addBonus(int iSig)

{ iBalance += 50;

}

int main(void)

{ signal(SIGINT, addBonus);

 …

 iBalance += 100;

 …

(2) SIGINT signal arrives; control transfers to addBonus()

movl iBalance, %eax

addl $100, %eax

movl %eax, iBalance

movl iBalance, %ecx

addl $50, %ecx

movl %ecx, iBalance

2000

2100

2000

2050

2050

38

Race Condition Example (cont.)

int iBalance = 2000;

…

void addBonus(int iSig)

{ iBalance += 50;

}

int main(void)

{ signal(SIGINT, addBonus);

 …

 iBalance += 100;

 …

(3) addBonus() terminates; control returns to main()

movl iBalance, %eax

addl $100, %eax

movl %eax, iBalance

movl iBalance, %ecx

addl $50, %ecx

movl %ecx, iBalance

2000

2050

2050

Lost $50 !!!

2000

2100

2100

39

Critical Sections

int iBalance = 2000;

…

void addBonus(int iSig)

{ iBalance += 50;

}

int main(void)

{ signal(SIGINT, addBonus);

 …

 iBalance += 100;

 …

Solution: Must make sure that critical sections of code
are not interrupted

Critical
section

Critical
section

40

Agenda
Unix Process Control

Signals

Sending Signals

Handling Signals

Alarms

(If time) Race Conditions and Critical Sections

(If time) Blocking Signals

(If time) Interval Timers
41

Blocking Signals

Blocking signals
•  A process can block a signal type to prohibit signals of

that type from being received (until unblocked at a later
time)

•  Differs from ignoring a signal

Each process has a blocked bit vector in the
kernel
•  OS uses blocked to decide which signals to force the

process to receive
•  User program can modify blocked with
sigprocmask() 42

12/13/15

8

Function for Blocking Signals
sigprocmask() function
• int sigprocmask(int iHow,
 const sigset_t *psSet,
 sigset_t *psOldSet);

• psSet: Pointer to a signal set
• psOldSet: (Irrelevant for our purposes)
• iHow: How to modify the blocked bit vector
• SIG_BLOCK: Add signals in psSet to blocked
• SIG_UNBLOCK: Remove psSet signals from blocked
• SIG_SETMASK: Install psSet as blocked

•  Returns 0 iff successful

Functions for constructing signal sets
• sigemptyset(), sigaddset(), … 43

Blocking Signals Example
int main(void)

{ sigset_t sSet;

 signal(SIGINT, addBonus);

 …

 sigemptyset(&sSet);

 sigaddset(&sSet, SIGINT);

 sigprocmask(SIG_BLOCK, &sSet, NULL);

 iBalance += 100;

 sigprocmask(SIG_UNBLOCK, &sSet, NULL);

 …

}

Critical
section

Block SIGINT signals

Unblock SIGINT signals

44

Blocking Signals in Handlers

How to block signals when handler is executing?
•  While executing a handler for a signal of type X, all

signals of type X are blocked automatically
•  When/if signal handler returns, block is removed

void addBonus(int iSig)

{ iBalance += 50;

}

SIGINT signals
automatically
blocked in
SIGINT handler

45

Agenda
Unix Process Control

Signals

Sending Signals

Handling Signals

Alarms

(If time) Race Conditions and Critical Sections

(If time) Blocking Signals

(If time) Interval Timers
46

Interval Timers
setitimer() function

int setitimer(int iWhich,
 const struct itimerval *psValue,
 struct itimerval *psOldValue);

•  Send 27/SIGPROF signal continually
• psValue specifies timing
• psOldValue is irrelevant for our purposes
•  Use CPU time

•  Time spent executing other processes does not count
•  Time spent waiting for user input does not count

•  Return 0 if successful, -1 otherwise

Used by execution profilers

47

Interval Timer Example
Program testitimer.c:
#define _GNU_SOURCE
#include <stdio.h>
#include <stdlib.h>
#include <signal.h>
#include <sys/time.h>

static void myHandler(int iSig)
{ printf("In myHandler with argument %d\n", iSig);
}
int main(void)
{ struct itimerval sTimer;
 signal(SIGPROF, myHandler);
 sTimer.it_value.tv_sec = 1; /* Send first signal in 1 second */
 sTimer.it_value.tv_usec = 0; /* and 0 microseconds. */
 sTimer.it_interval.tv_sec = 1; /* Send subsequent signals in 1 sec */
 sTimer.it_interval.tv_usec = 0; /* and 0 microsecond intervals. */
 setitimer(ITIMER_PROF, &sTimer, NULL);
 printf("Entering an infinite loop\n");
 for (;;)
 ;
 return 0; /* Never get here. */
}

48

12/13/15

9

Summary
List of the predefined signals:

See Bryant & O’Hallaron book for default actions, triggering exceptions
Application program can define signals with unused values

 49

$ kill -l
 1) SIGHUP 2) SIGINT 3) SIGQUIT 4) SIGILL
 5) SIGTRAP 6) SIGABRT 7) SIGBUS 8) SIGFPE
 9) SIGKILL 10) SIGUSR1 11) SIGSEGV 12) SIGUSR2
13) SIGPIPE 14) SIGALRM 15) SIGTERM 17) SIGCHLD
18) SIGCONT 19) SIGSTOP 20) SIGTSTP 21) SIGTTIN
22) SIGTTOU 23) SIGURG 24) SIGXCPU 25) SIGXFSZ
26) SIGVTALRM 27) SIGPROF 28) SIGWINCH 29) SIGIO
30) SIGPWR 31) SIGSYS 34) SIGRTMIN 35) SIGRTMIN+1
36) SIGRTMIN+2 37) SIGRTMIN+3 38) SIGRTMIN+4 39) SIGRTMIN+5
40) SIGRTMIN+6 41) SIGRTMIN+7 42) SIGRTMIN+8 43) SIGRTMIN+9
44) SIGRTMIN+10 45) SIGRTMIN+11 46) SIGRTMIN+12 47) SIGRTMIN+13
48) SIGRTMIN+14 49) SIGRTMIN+15 50) SIGRTMAX-14 51) SIGRTMAX-13
52) SIGRTMAX-12 53) SIGRTMAX-11 54) SIGRTMAX-10 55) SIGRTMAX-9
56) SIGRTMAX-8 57) SIGRTMAX-7 58) SIGRTMAX-6 59) SIGRTMAX-5
60) SIGRTMAX-4 61) SIGRTMAX-3 62) SIGRTMAX-2 63) SIGRTMAX-1
64) SIGRTMAX

Summary

Signals
•  Sending signals

•  From the keyboard
•  By calling function: raise() or kill()
•  By executing command: kill

•  Catching signals
• signal() installs a signal handler
•  Most signals are catchable

Alarms
•  Call alarm() to send 14/SIGALRM signals in wall-clock

time
•  Alarms can be used to implement time-outs 50

Summary (cont.)

Race conditions
• sigprocmask() blocks signals in any critical section

of code
•  Signals of type x automatically are blocked while handler

for type x signals is running

Interval Timers
•  Call setitimer() to deliver 27/SIGPROF signals in

CPU time
•  Interval timers are used by execution profilers

51

Summary (cont.)

For more information:

Bryant & O’Hallaron, Computer Systems:
A Programmer’s Perspective, Chapter 8

52

Course Summary
We have covered:

Programming in the large
•  The C programming language
•  Testing
•  Building
•  Debugging
•  Program & programming style
•  Data structures
•  Modularity
•  Performance

53

Course Summary
We have covered (cont.):

Under the hood
•  Number systems
•  Language levels tour

•  Assembly language
•  Machine language
•  Assemblers and linkers

•  Service levels tour
•  Exceptions and processes
•  Storage management
•  Dynamic memory management
•  Process management
•  I/O management
•  Signals

54

12/13/15

10

The Rest of the Course

Assignment 7
•  Due on Dean’s Date at 5PM
•  Cannot submit late (University regulations)
•  Cannot use late pass

Office hours and exam prep sessions
•  Will be announced on Piazza

Final exam
•  When: Tuesday 1/19, 1:30-4:20pm
•  Where: McCosh Hall 50
•  Closed book, no electronic devices, one page of notes

55

Thank you!

56

