COS126

Written Exam 2 (Spring 2015)

There are 8 questions on this exam, weighted as indicated below. This exam is closed book.
You may use a single-page two-sided hand-written cheatsheet. There is a blank page intended

for scratch paper at the end of the exam. No calculators or other electronic devices are

allowed. Give your answers and show your work in the space provided. You will have 50

minutes to complete this test.

Print your name, login, and precept information on this page (now). Write out and sign the

Honor Code pledge. As you know, it is a violation of the Honor Code to discuss the contents of
this exam with anyone until after the solutions have been posted.

NAME:

LOGIN:

PRECEPT:

SOLUTION

“I pledge my honor that | have not violated the Honor Code during this examination.”

SIGNATURE:
#1 #2 #3 #4 #5 #6 #7 #8
/10 /5 /10 /8 /14 /10 /8

/5 /70

1. Object Oriented Programming (10 points). Fill in the boxes below with the letter

corresponding to the best description of that part of the program.

A. initialize object D. invoke method
B. local variable E. constructor
C. instance method F. invoke constructor

iprivate double rx, ry; // position:
iprivate double q; // charge

G. instance variables

H. class name

l. testclient

+++

return

k * g / Math.sqrt(dx*dx + dy*dy);

i rx = x@; |
Ty = ye; S
! q = g9; 5
) !
ipublic double potentialAt(double x, double y) {|
double k = 8.99e89; !
double dx = X - rx; :
ou e X x X , Text PR
dy =y - ry; !

i double

.publlc String toString() {

: return

q + " at " + l!(lf + Fx + y

,puhllc static void main(String[] args) {
x = Double.parseDouble(args[@]);
y = Double.parseDouble(args[1]);

double
double

Charge

double
double

System.
System.

StdOut.

|||||||||||||

______i"_

_________ cl = new Charge(.51, .63, 21.3)3e--croovvoeee
2 ={new Charge(.13, .94, 81.9) e - tutueesess
out.println(c1); |
out.println(c2); j
vl =iclotertialAt(x, v); :
v2 = {c2.potentialAt(y, ¥); i
println(vi+v2); e

2. Abstract Data Types (5 points). Choose the best data type for the following situations.

A. ST<String[], String>

B. ST<String, Queue<String>>

C. ST<Integer, Integer>

D. Queue<String>

E. ST<String, ST<String, int[]>
F. ST<Integer, Point>

G. Stack<Point>

H. Queue<Point>

1. For each precept of COS 126 (named P01, P02, PO2A, etc.), store the grades
that each student (netID) gets for Assignments 0 through 8. E

2. Keep track of all your U.S. friends by state.

B
3. For each day of a given month, record the number of COS 126 students who
have an exam on that day. C
4. Make a list of all the books you plan to read this summer. (Assume that
there are at least 2 books.) D
5. In a graph of Points, after finding the shortest path from some Point start
to another Point finish, find the Point-by-Point directions for the path from G

finish backto start.

3. Regular Expressions (10 points). Choose the regular expression that matches the

following languages. The alphabet of all of these languages is {0, 1}.

A. 1*001*

B. (01)*| (10)*

C. (01)+]|(10)+

D. 1*01+01*

E. (0]1)*000

F. (011) (0]1)*(0|1)

G. 0111 (0(0[1)*0)|(1(0]1)*1)
H. 0100 ((0]1)*000)

I. (0]1)*01+0(0|1)*

1. All strings beginning and ending with the same character (including the

strings “0” and “1").

2. All strings containing at least two nonconsecutive 0's.

3. All strings containing exactly two nonconsecutive 0's and no other 0's.

4. All strings that correspond to binary numbers divisible by 8.

5. All even length strings with only alternating 1's and 0's, including the empty
string.

4. Linked Lists (8 points). Consider the following code for a null-terminated linked list.

public class GuitarList {
private Node start; // first node in the linked list

private class Node {
private GuitarString value;
private Node next;

public GuitarList() { start = null; }

// puts n at the end of the linked list
public void insertAfterLast(Node n) {

if (start null) { //
start = n; return;

}
// finish this method

special case

Which of the following would be a successful implementation of insertAfterLast()?

Node i = start; for (Node i = start; i.next != null; i = 1d.next);
do { i.next = n;
i = 1 .next;
} while (i != null); 1ves ¥ NoO A
i.next = n; This code won’t compile.
Do you see why?
T YEs & NO
Node i = start;
boolean keepGoing = true;
while (keepGoing) {
Node i = start; Node next = i.next;
Node j = start; if (next == null)
while (i != null) { keepGoing = false;
j o= 1; else
i = d.next; i = next;
} }
j.next = n; i.next = n;
v YEs [NO v/YEs (] NO

5. Theory (14 points). For each statement below, check all that apply.

The Boolean Travelling
Halting Factoring Sorting Satisfiability Salesperson
Problem (SAT) Problem

1. These problems are

decidable/computable. [] o rd M M

2. As far as we know, only these
problems are in P. [] M

[
[
[

3. As far as we know, these problems
are in NP but not in P. []

4. These problems can be reduced to

L K K

SAT. 0 r.d
5. As far as we know, these problems
are not in P and not NPC. v OJ [] []
. TOY with
Turlrlg Regul.ar sufficient DFA's None of
Machines Expressions these
memory
6. If the Church-Turing thesis holds,
these models can perform any M] @(L L
possible computation.
7. These models cannot express some O M 0 B(O
Java programs.
8. These models cannot be simulated 0 (] (] 0 M
in Java.
9. These models always halt on all 0 M] B(]
finite inputs.

10. These models can always correctly
check whether an arbitrary Java L]] L E’f
program halts on some finite input.

6. Circuits (10 points). First, a reminder of the shape of the following logic gates:

e

In the left column below, there are circuits that use only AND, OR, and NOT gates.

In the right column below, there are circuits that use only XOR gates.

AND

Fill in the boxes on the left with the letter of the equivalent circuit on the right.

If no circuit on the right matches, put the letter “F” in the box.

AND

A

F

=)
-

NONE OF THE ABOVE

TOY REFERENCE CARD

INSTRUCTION FORMATS
|

Format 1: | opcode | d | S | t
Format 2: | opcode | d | addr

ARITHMETIC and LOGICAL operations

1: add R[d] <= R[s] + RI[t]
2: subtract R[d] <= R[s] - RI[t]
3: and R[d] <- R[s] & RI[t]
4: xor R[d] <- R[s] ©~ RI[t]
5: shift left R[d] <= R[s] << R[t]
6: shift right R[d] <= R[s] >> R[t]

TRANSFER between registers and memory

7: load address R[d] <- addr
8: load R[d] <- mem[addr]
9: store mem[addr] <- R[d]
A: load indirect R[d] <- mem[R[t]]
B: store indirect mem[R[t]] <- R[d]
CONTROL
0: halt halt
C: branch zero if (R[d] == 0) pc <- addr
D: branch positive if (R[d] > 0) pc <- addr
E: jump register pc <- RI[d]
F: jump and link R[d] <- pc; pc <- addr

Register 0 always reads O.

Loads from mem[FF] come from stdin.
Stores to mem[FF] go to stdout.

pc starts at 10

16-bit registers
16-bit memory locations
8-bit program counter

7. TOY architecture (8 points). Check all the boxes that correspond to the datapaths needed

to fetch and execute the following TOY instructions.

!
Tt

A

P!
<t

O

rd

Cond| =0
0 Registers | | | 52! |55
X2 W Data
Memory A Data
:[/\r~—|=|:: Addr B Data
A W Addr
I R Data AAddr
‘W Data B Addr
: w
. ? I
T
L.::
B C D E
AND
R[d] <- R[s] & R[t] = = g g
LOAD
R[d] <- mem[addr] [E(. U EZ,
LOAD ADDRESS o
R[d] <- addr H . U
STORE
O v O i

mem[addr] <- R[d]

8. Turing Machines (5 points). The Turing Machine below will perform integer division on
unary numbers, discarding the remainder. As you will recall, unary numbers are represented
by consecutive ones. For example 4 + 2 = 2, in unary, is expressed as follows: 1111 + 11 =11.
Your task is to fill in the blank squares below so that this machine will work. As usual, we omit

arrows that stay in the same state and don't change the symbol.

For example, if the tape is configured as follows, with the tape head on the + symbol.

##lllllll|+|lll=####

The final state of the tape should be:

#|#|1|1|1|1 |1 |1 |1 |+ |1|1|1|=|1]|1|#]|®#

This page is provided as scratch paper. Tear it out and return it inside the exam when finished.

NAME:

LOGIN:

PRECEPT:

