COS 126 General Computer Science Fall 2013

Programming Exam 2

This programming exam has 2 parts, weighted as indicated. The exam is semi-open: you may
use the course website, the booksite, any direct links from those two, the textbook, any printed or
written notes, and your past coursework on your computer. You may not use other websites. No
communication is permitted, except with course staff members.

Upload your code to the dropbox. As with the COS 126 assignments, you can submit your code
multiple times for testing, but only the last version will be graded.

Your code will be graded primarily on correctness. You will lose a substantial number of points if
your program does not compile or has the wrong API. However, efficiency, clarity, and code style
are also factors in your grade. Remember to include headers and comments in your code. Headers
MUST include your name, netID and precept number.

Print your name, netID, and precept number on this page (now), and write out and sign the Honor
Code pledge before turning in this paper. It is a violation of the Honor Code to discuss this exam
until everyone in the class has taken the exam. You have 90 minutes to complete the test. Do not
remove this exam from the exam room.

Write out and sign the Honor Code pledge before turning in the test:
“I pledge my honor that I have not violated the Honor Code during this examination.”

Pledge:

Signature: Name:
PO1 12:30 TTh Donna Gabai NetID:
PO1A 12:30 TTh David Pritchard
P01B 12:30 TTh Aleksey Boyko Precept:

P02 1:30 TTh Doug Clark
P02A 1:30 TTh Sachin Ravi
P02B 1:30 TTh Aleksey Boyko Problem Point Value
P02C 1:30 TTh Borislav Hristov
P03 2:30 TTh Doug Clark

MiniPro 22
P0O4 7:30 TTh Kevin Lee
P05 1:30 WF Donna Gabai o
POSA 1:30 WF Judi Isracl MiniPro2 8
P05B 1:30 WF Dave Pritchard
P06 2:30 WF Kevin Lai Total 30

PO6A 2:30 WF Judi Israel

In this exam you will create an interpreter that is capable of simulating programs in a very simple
programming language called MiniPro. MiniPro only handles integer arithmetic with 32-bit two’s
complement integers, the same as Java’s int type.

In Part 1, you will handle storing and printing variables. In Part 2, you will handle calculations
and a control flow statement. You can submit Part 1 without doing Part 2. But because the two
parts are related, you may want to briefly skim Part 2 before starting to implement Part 1.

Part 1

For this part, you will deal with programs that only have two kinds of statements: assignment
statements, and println statements. Here is a sample MiniPro program with these two kinds of
statements.

x = 13 (this is line 0)
y =X (this is line 1)
x = 39 (this is line 2)
x println (this is line 3)
y println (this is line 4)

This particular program defines a variable x and sets its value equal to 13. Then it defines y equal
to x (which will define a variable y and set the value of y to 13). It then redefines the value of x
to be 39. Finally, it prints the value of x and the value of y — so executing the program prints 39,
then 13, on separate lines.

You will create a class that allows the user to execute the lines of the program one at a time.

In order to make your work more straightforward, we will assume that the client has already broken
the program into lines, with each line broken into space-separated tokens (variables, commands, or
integers). For example, the above program will be represented as

String[][] sampleProgram = {{"x", "=", "13"},
{uyn’ u=u, "X"},
{IIXII’ ||=ll’ "39“},

{"X", “println“},
{uyn, "println“}};

So each token is a String, each line is a String[], and the whole program is a String[] []. (Note:
the number of lines in the whole program can be determined using sampleProgram.length which
is 5 in this example. To determine the number of tokens on line i, use sampleProgram[i] .length.)

You must create a class MiniPro with the API below.

MiniPro(Stringl[] [1 program) // Create interpreter for this program (don’t execute it yet!)
int valueOf (String v) // Return the current value of the variable named v. If no

// such variable is currently defined, throw a RuntimeException.
int programCounter() // Return the number of the line that will execute next.

void step() // Execute the line whose number equals the value of the
// program counter. Then, increment the program counter.
boolean isDomne() // Is the program done?

We give an electronic version of the API, that you may copy, at:

http://www.cs.princeton.edu/~cos126/docs/data/MiniPro

You may add a test main () method to help with debugging if you like (but it is completely optional).
Here is one sample test main() you may use; it executes the sampleProgram mentioned previously.

public static void main(String[] args) {

String[][] sampleProgram = // the program in a format ready for the interpreter:
{{"x", "=, n13"}, // line 0
{ryn, v=n, vxt}, // line 1
{vg", m=n, n39n}, // line 2
{"x", "println"}, // line 3
{"y", "println"}}; // line 4

MiniPro mp = new MiniPro(sampleProgram) ;
StdOut.println(mp.isDone()); // should print false
StdOut.println(mp.programCounter()); // should print O (0 always first line)

// run thru program

mp.step(); // line O sets x = 13
StdOut.println("currently x is " + mp.value0f("x")); // prints "currently x is 13"
mp.step(); // line 1 sets y = 13

mp.step(); // line 2 sets x = 39

mp.step(); // line 3 prints x value which is 39
mp.step(); // line 4 prints y value which is 13
StdOut.println(mp.isDone()); // should print true (program is finished)

¥

The URL given earlier has a link to this test main() code. Here is the output of a sample run:

% java-introcs MiniPro
false

0

currently x is 13

39

13

true

In defining the class and constructor, note that each MiniPro instance needs to remember:

e the program counter (the number of the line that will be executed next).
e the table of names and values of all variables defined so far.
e the program. We do not require you to make a defensive copy of the program.

In implementing step (), you will have to examine the line to be executed and take an appropriate
action based on its contents. For part 1, each line is a String[], with one of these two forms:

e {<variable name>, "=", <integer or variable name>}
e {<variable name>, "println"}

One way of distinguishing assignment statements (= statements) from println statements is to
examine the second token. Remember that you should not use == with String objects. Use the
.equals() method of String objects instead.

Variable names will consist of one or more lower-case characters. For the assignment statement,
step() will need to determine whether the third token is a variable name or an integer. Using the
regular expression [a-z]+ with the matches () method of the String class can help you distinguish
integers from variable names — here is an example just to illustrate.

String aVarName = "sum";
StdOut.println(aVarName.matches("[a-z]+")); // true
String aNumber = "126";
StdOut.println(aNumber.matches (" [a-z]+")); // false

You do not have to check for invalid syntax. You do not have to check for programs that would
crash due to undefined variables; e.g., we do not care what happens when your interpreter runs

String[][] badProgram = {{"undefinedvar", "println"}};

We won’t try to call programCounter () or step() on any MiniPro instance that is done.

The above test main(), and more test clients including one that reads from StdIn, are provided at
http://www.cs.princeton.edu/~cos126/docs/data/MiniPro

These are the same tests that we run when you upload MiniPro. java to the dropbox. Submit your
code using the link on the Assignments page.

Part 2

You will now write a more advanced version of the class you wrote for Part 1. The API will be the
same, using the class name MiniPro2 instead. The new commands that MiniPro2 can handle are:
three arithmetic commands +=, -=, and *=; and one control flow command pos?jump.

Lines using the arithmetic commands +=, -= and *= will have the syntax

{<variable name>, "+=", <integer or variable name>}
: n_—n : :
b b
{<variable name> <integer or variable name>}
{<variable name>, "*=", <integer or variable name>}

They should behave the same as in Java: x += y means “add y to x,” x —-= y means “subtract y
from x,” and x *= y means “multiply x by y.” Here is a sample execution demonstrating this.

String[] [l mathProgram = {{"x", "=", "7"},
{||yll, "=||’ "10"},
{"X", n+=||, "Y"},
{"X", "*:Il’ "3"}’
{“X" S "println"}};
MiniPro2 mp2 = new MiniPro2(mathProgram) ;
while ('mp2.isDone()) mp2.step(Q);

This program should print out 51, because (7+10)*3 is 51.

The other new command is called pos?jump. Its syntax is
{<variable name>, "pos7jump", <integer or variable name>}

The meaning of x pos?jump v is the following: if x is positive, “jump” v lines; if the variable x
is less than or equal to 0, take no special action. “Jumping” means to move forward v lines (or
backward if v is negative — an example is given later on).

Here is an example MiniPro2 program to compute the absolute value; there is a version at the left
and one at the right, with two different initial values.

x = -10 x = 126

X pos?jump 2 X pos?jump 2
x *x= -1 x *x= -1

X println X println

In the left version, x is not positive so the pos?jump command does nothing special, then x is
multiplied by —1 (giving 10), and 10 is printed. In the right version, x is positive so we jump
forward 2 lines (instead of the normal 1). The x *= -1 line is never executed. The interpreter
therefore prints 126.

Here is an example program to compute the sum 10 +9 +8 4 - + 1:

sum = O

sum += i
i-=1

i pos?jump -2
sum println

When i is positive, we jump back to the sum += i line. Executing this program will cause it to
print out 55 (which is 10+ 9+ 8+ --- 4+ 1).

If you happen to jump to beyond the end of the program or before the beginning, subsequent calls
to the isDone () method should return true.

Tests including the above examples are provided at
http://www.cs.princeton.edu/~cos126/docs/data/MiniPro

These are the same tests that we run when you upload MiniPro2. java to the dropbox. Submit
your code using the link on the Assignments page.

