
COS 126 Midterm 2 Written Exam Fall 2012

is test has 11 questions, weighted as indicated. e exam is closed book, except that you are 
allowed to use a two-sided cheatsheet. No calculators or other electronic devices are permitted. 
Give your answers and show your work in the space provided. 

Print your name, login ID, and precept number on this page (now), and write out and sign the 
Honor Code pledge before turning in this paper. Note: It is a violation of the Honor Code to 
discuss this midterm exam question with anyone until aer everyone in the class has taken the 
exam. You have 50 minutes to complete the test.

“I pledge my honor that I have not violated the Honor Code during this examination.”
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1. Number Systems (5 points). Java’s bitwise operators ^, &, and | compute the XOR, AND, and 
OR operations, respectively, on the bits of their arguments: the #rst bit of a^b is the exclusive 
or of the #rst bits of a and b; the second bit is the exclusive or of the second bits of a and b, and 
so forth. In the blanks, give the result of performing these operations on the pairs of 
hexadecimal numbers below. Each answer must be a 4-digit hexadecimal number. One of the 
answers is provided for you.

  FF00^00FF  ____FFFF____

  FF00&00FF ____0000____

  FF00|00FF ____FFFF____

  1ABC^8654 ____9CE8____

  1ABC&8654 ___ 0214 ___

  1ABC|8654 ____9EFC____



2. Boolean Algebra and Combinational Circuits (6 points).   

A. (2 points) Fill in the truth table below for the Boolean function p of three variables de#ned 
as follows: p(x, y, z) is true if and only if xyz is a palindrome (reads the same backwards or 
forwards). For example, 010 and 000 are palindromes, but 011 is not. 

x y z p(x, y, z)

0 0 0 1

0 0 1 0

0 1 0 1

0 1 1 0

1 0 0 0

1 0 1 1

1 1 0 0

1 1 1 1

B.  (2 points) Write out the sum-of products form of p.

     
   x’y’z’ + x’yz’ + xy’z + xyz

C. (2 points) Which of  the circuits below compute p? In each circuit, assume that the inputs 
xyz are provided in that order to the three lines at the upper le and the output is the line at 
bottom right. Circle your answer(s). 
e right image corresponds to the expression from part B. 
e center image corresponds to the simpli#ed form xz + x’z’. 



3. Programming languages (4 points). Write YES  or NO in each of the eight empty boxes below 
to indicate whether or not the indicated programming language has the indicated property. One 
box is #lled in for you. 
 

compile-time type 
checking

objects and
classes

loops and 
conditionals

C YES NO YES

Java YES YES YES

Python NO YES YES



4. Regular languages (6 points).  Consider the following four DFAs

and the following four REs 

   1. 0*  |  0*10* | 0*10*10* | 0*10*10*10* 
   2.  0*(1 | 10*1 | 10*10*1)0* 
   3.  (0|1)*1(0|1)*1(0|1)*1(0|1)* 
   4.  0*10*10*10* 

Match these with the languages described in the #rst column in the following table by writing a 
letter in each box in the DFA column and a number in each box in the RE column.

language DFA RE

binary strings with exactly three 1s B 4

binary strings with at least three 1s D 3

binary strings with at most three 1s A 1

  Note: DFA C accepts binary strings with at most 2 1s. RE 2 generates binary 
             strings with 1, 2, or 3 1s (but not 0 1s).



5. Stacks and Queues (6 points). Suppose that we need a Queue of int values. By mistake, we 
downloaded Stack.java instead of Queue.java, so we decide to simulate the queue with a 
stack and not bother with generics for the queue. Immediately we realize that either enqueue() 
or dequeue() must take time proportional to the number of items in the stack, but we decide to 
live with that because in our application the queue will always be small. Here is a working 
implementation that is missing 6 lines:

public class IntQueue
{
   private Stack<Integer> stack;

   public IntQueue()
   {  stack = new Stack<Integer>();  }

   public void enqueue(int v)
   {
      __C__ // missing line 1

      __E__ // missing line 2

      __D__ // missing line 3

      __A__ // missing line 4

      __F__ // missing line 5

      __B__ // missing line 6

   }

   public int dequeue()
   {  return stack.pop();  }
}

Fill in each of the blanks above with one of the six letters below to indicate how to make a 
working implementation that simulates a Queue with a Stack. Use each letter exactly once.

 A.    stack.push(v);

 B.    stack.push(tempStack.pop());

 C.    Stack<Integer> tempStack = new Stack<Integer>();

 D.    tempStack.push(stack.pop());

 E.     while (!stack.isEmpty())

 F.     while (!tempStack.isEmpty())



6. Abstract Data Types (10 points).  

A. (6 points) Here are six possible ways to create a symbol table using the generic class
     ST<Key, Value>,  where Key and Value are types.
 
 A.    ST<String, ST<String, Integer>>

 B.    ST<String, Integer>

 C.    ST<Integer, String>

 D.    ST<Integer, Queue<Integer>>

 E.     ST<String, Queue<Integer>>

 F.     ST<Integer, Integer>

Match each of the six applications to the one of these types of symbol tables by writing the 
letter of the type on the blank preceding the line describing the application. You should use 
each letter exactly once.

 ____B___  e sizes, in bytes, of each #le in a directory.

 ____C___  e name of the owner of each house number on Nassau Street.
 ____E___  A book’s index, listing all page occurrences of each topic.

 ____F___  A table of values of the factorial function.
 ____A___  For each U.S. state, populations of all cities in that state.
 ____D___  All divisors of the #rst 1000 integers.

B. (2 points) Facebook wants to provide users with the facility to look up the friends that we 
met in each year. For example, this requires a data structure that remembers that in 2011 
we met Quinn, in 2009 we met Trey and Mitsy, and in 2007 we met Caitlin. Why is 
ST<Integer, String> problematic for this purpose?

e key may not be unique, because you may have met multiple people in the same year.

C. (2 points) Fill in the code below with types so that the resulting ST is suitable for this 
purpose.

               ST< ____Integer_____ , ______String[]______  >

 Note: other collections would also be acceptable as values, e.g. Queue<String> or Stack<String>.



7. TOY (9 points).  Give a TOY instruction that performs each of the tasks described below. 
Assume that R[E] contains 0001 and that R[F] contains 0002 (but make no assumptions 
about the contents of R[1] through R[D]). For full credit you must use a different op-code 
(the #rst digit) for each answer. It is better to repeat an op-code (for partial credit) than to leave 
an answer blank. Answers which exactly match a previous answer will be treated as blank.  
Each answer should be a single 4-digit hexadecimal TOY instruction, written in one of the 
boxes provided. For your reference, the TOY cheat-sheet is on the next page.

A, B. Two ways to double the contents of R[2].

Acceptable answers: 522E, 1222

C, D, E. ree ways to set R[2] to zero.

Acceptable answers: 1200, 22XX, 32EF, 32FE, 320X, 32X0
42XX, 520X, 620X, 62EE, 62EF, 62FF
7200

F. Copy R[2] to R[3].

Acceptable answers: 1302, 1320, 2320, 3322, 4302, 4320
5320, 6320

G. Set R[3] to the negative of the value in R[2].

Acceptable answers: 2302

Reminder: For full credit, make sure your op-codes above are distinct.



                    TOY REFERENCE CARD

INSTRUCTION FORMATS             

             | . . . . | . . . . | . . . . | . . . .|

  Format 1:  | opcode  |    d    |    s    |    t   |  (0-6, A-B)

  Format 2:  | opcode  |    d    |       addr       |  (7-9, C-F)

ARITHMETIC and LOGICAL operations

    1: add              R[d] <- R[s] +  R[t]

    2: subtract         R[d] <- R[s] -  R[t]

    3: and              R[d] <- R[s] &  R[t]

    4: xor              R[d] <- R[s] ^  R[t]

    5: shift left       R[d] <- R[s] << R[t]

    6: shift right      R[d] <- R[s] >> R[t]

TRANSFER between registers and memory

    7: load address     R[d] <- addr

    8: load             R[d] <- mem[addr]

    9: store            mem[addr] <- R[d]

    A: load indirect    R[d] <- mem[R[t]]

    B: store indirect   mem[R[t]] <- R[d]

CONTROL

    0: halt             halt

    C: branch zero      if (R[d] == 0) pc <- addr

    D: branch positive  if (R[d] >  0) pc <- addr

    E: jump register    pc <- R[d]

    F: jump and link    R[d] <- pc; pc <- addr

Register 0 always reads 0.

Loads from mem[FF] come from stdin.

Stores to mem[FF] go to stdout.



8. Name game (8 points). Match the following names with an associated phrase. Use each letter 
once and only once.

A.  Steve Cook    ___C___        Stored programs

B. Alan Turing    ___E___        Reductions

C.  John von Neumann    ___B___        Universality

D.  James Gosling   ___G___        MS Word

E.  Richard Karp    ___A___        SAT is NP-complete

F.  Alan Kay    ___H___        C++

G.  Charles Simonyi   ___D___        Java

H.  Bjarne Stroustrup   ___F___        Dynabook



9. Universality (6 points).  In the blanks provided, mark each of the statements below as true (T) 
or false (F).

A.  __T__  A Universal Turing Machine (UTM) can simulate any app on your smartphone.

B.  __F__  If a quantum computer is successfully built, it could provide a counterexample to   
                     the Church-Turing thesis.
   Note: It could provide a counterexample to the Extended C-T esis
C.  __T__  A UTM can simulate the operation of any Turing machine, including itself.

D.  __F__  No Turing machine can decide whether a given DFA halts.
   Note: All DFAs halt. (Also, a TM could simulate a DFA.)
E.  __T__  A UTM can decide whether a given string is in the language described by a given
                     regular expression.
   Note: RE/DFA duality, and see note for part D.
F.  __T__  e Church-Turing thesis implies that no computer can solve the
                      halting problem.
   Note: is is true, because Turing proved that no TM can solve the Halting
   Problem, so if the Church-Turing thesis is true, then no computer can
   solve it either.

10. Intractability (5 points).  Match each of the statements on the le with the best statement on 
on the right by writing 1, 2, 3, or 4 in each of the blanks provided.

A.    __1__  Some instances of TSP can be  
                solved in polynomial time on a
                deterministic Turing machine.
Note: e.g. colinear points, or a convex hull

B.    __4__ All instances of 3-SAT can be
               solved in polynomial time on a
               deterministic Turing machine.
Note: 3-SAT is NP-Complete, so this is only true if P=NP.

C.    __4__  Every problem in NP is also in P
Note: We know P is a subset of NP, so this is only true if P=NP.

D.    __3__  P ≠ NP 
Note: If some NP-complete problem is in P, all NP problems are in P, so P=NP.

E.    __2__  No problem is in both P and NP
Note: We know ALL problems in P are in NP.

1.  True
2.  False
3.  False if some NP-complete   
      problem is in P

4.  True if some NP-complete 
      problem is in P.



11. Circuits (5 points).  Mark each of the circuits below as combinational (no feedback loops) or 
sequential (maintains state) by writing C or S, respectively, in the blanks provided.

A.  SR %ip-%op  ___S___       

B. multiplexer  ___C___      

C.  memory bit  ___S___       

D.  decoder  ___C___       

E.  adder   ___C___       

F.  register  ___S___       

G.  ALU   ___C___        

H.  program counter ___S___       


