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1 Introduction

Managing a large communication network is a complex task handled by a group of human operators.
These operators track the state of the network to detect equipment failures and shifts in traffic load.
After detecting and troubleshooting a problem, they may change the configuration of the equipment
to improve the utilization of network resources and the performance experienced by end users.
The ability to detect, diagnose, and fix problems depends on the information available from the
underlying network. These tasks are easier if the equipment provides reliable and predictable service
and retains detailed information about the resources consumed by the ongoing data transfers. In
diagnosing potential performance problems, operators benefit from having an accurate and timely
view of the flow of traffic across the network. As part of fixing a problem, operators need to know
in advance how changes in configuration might affect the distribution of traffic and the performance

experienced by end users.

The goals of network operators are in direct conflict with the design of the Internet Protocol (IP).
The primary goal in the design of the ARPAnet in the late 1960s was to make efficient use of existing
data networks through the use of packet switching [9]. End hosts divide data into packets that flow
through the network independently. In forwarding packets toward their destinations, the network
routers do not retain information about ongoing transfers and do not provide fine-grain support
for performance guarantees. As a result, packets may be corrupted, lost, delayed, or delivered out

of order. This complicates the efforts of network operators to provide predictable communication



Figure 1: Shortest path routing within a domain based on OSPF/IS-IS link weights.

performance for their customers. Rather than having complexity inside the network, the end hosts
have the responsibility for the reliable, ordered delivery of data between applications. Implemented
on end hosts, the Transmission Control Protocol (TCP) plays an crucial role in providing these
services and adapting to network congestion. Inside the network, the routers implement routing
protocols that adapt to equipment failures by computing new paths for forwarding IP packets.
These automatic and distributed reactions to congestion and failures make it difficult for network

operators to detect, diagnose, and fix potential problems.

The commercial realities of today’s Internet introduce additional challenges for network operators.
The Internet consists of around 13,000 Autonomous Systems (ASes), where each AS is a collection
of routers and links managed by an single institution, such as a company, university, or Internet
Service Provider (ISP). Within an AS, the routers communicate via an intradomain routing protocol
such as OSPF (Open Shortest Path First) or IS-IS (Intermediate System-Intermediate System).
The operators configure each unidirectional link with an integer weight, and the routers distribute
these weights and use them to compute shortest paths through the network, as shown in Figure 1.
Neighboring ASes use the Border Gateway Protocol (BGP) to exchange information about how to
reach destinations throughout the Internet, without sharing the details of their network topologies
and routing policies. Much of the traffic flowing through the Internet must traverse multiple ASes.
As such, the operators of any individual AS do not have end-to-end control of the distribution
of traffic. The lack of end-to-end control makes it difficult for operators to detect and diagnose

performance problems, and predict the impact of changes in network configuration.

Traffic measurement plays a crucial role in providing operators with a detailed view of the state of



their networks. Operators detect congestion based on periodic summaries of traffic load and packet
loss on individual links. By sending active probes between pairs of points in the network, operators
can identify parts of the network that exhibit high delay or loss, or detect routing anomalies
such as forwarding loops. Measurement also helps identify which traffic is responsible for network
congestion, and whether the additional packets stem from a denial-of-service attack, a popular event
or service on the Web, or a routing change caused by an equipment failure or a reconfiguration
in a different AS. Finally, measurement can assist operators in evaluating possible changes to the
network configuration. Operators may alleviate congestion by changing the parameters that control
the allocation of resources in the network. For example, changing one or more OSPF /IS-IS weights
would trigger the selection of new paths, which could result in a more efficient flow of traffic
through the network. Operators may also change the configuration of the buffer management or

link scheduling parameters, or install a packet filter to discard malicious traffic.

Diagnosing performance problems and evaluating the effectiveness of corrective actions depends on
having accurate information about the flow of traffic through the network. In Section 2, we present
three models that provide a network-wide view of the traffic in an AS. We define the path, traffic,
and demand matrices and describe how operators can use these models to diagnose and fix per-
formance problems in their networks. Populating these models requires collecting extensive traffic
measurements from multiple locations in an operational network. However, most IP networking
equipment does not include the necessary support for collecting this data. In Section 3 we survey
existing techniques for collecting traffic statistics in IP networks. We present a brief overview of
SNMP/RMON;, packet monitoring, and flow-level measurement. Constructing a network-wide view
of the traffic requires new measurement techniques or the careful combination of several types of
measurement data from multiple locations in the network. In Section 4, we describe recent research
work on computing path, traffic, and demand matrices. We conclude the paper in Section 5 with

a summary and a discussion of future research directions.

2 Network-Wide Traffic Models

Network-wide representations of the traffic are necessary to drive network-wide control actions, such

as routing changes, traffic classification and filtering, and capacity planning. In this section, we



introduce three canonical spatial representations of the traffic—the path matriz, the traffic matriz,
and the demand matriz—and discuss the application of these models in managing an IP network.
These representations cover a spectrum from descriptive, i.e., capturing precisely the current state
of the network and the current flow of traffic, to predictive, i.e., enabling the prediction of the state

of the network after taking hypothetical control actions.

2.1 Path, Traffic, and Demand Matrices

To motivate these three canonical representations, consider how a network operator would perform
traffic engineering if he had complete, end-to-end control over the Internet. There are two natural
representations of the traffic that would help the operator detect and diagnose problems and eval-
uate potential control actions. The first representation is the path matriz, which specifies a data
volume V(P) over some time interval of interest for every path P between every source host S
and destination host D', as shown in Figure 2(a). The path matrix captures the current state and
behavior of the network, by providing a detailed description of the spatial flow of traffic through

the network.

The second representation is the traffic matriz, which specifies a data volume V'(S, D) per source-
destination pair (S, D), as shown in Figure 2(b). The traffic matrix captures the offered load
on the network. This representation is based on the idealized assumption that the offered load
is inwvariant to the state and behavior of the network. As such, in combination with a network
model, the traffic matrix allows the operator to predict the flow of traffic through the network after
hypothetical changes have been made. The operator can decide on a control action that will have

the desired impact on the traffic flow.

In practice, a network operator only has control over a small portion, or Autonomous System
(AS), of the Internet. Capturing the traffic in a single AS suggests a slightly richer set of models.
The first two representations are directly inspired by the path and traffic matrix, with the caveat
that the path matrix only covers the set of paths within the AS and the traffic matrix is expressed
between ingress-egress nodes rather than source-destination hosts. These two representations would

suffice in a situation where interdomain and intradomain routing were completely decoupled, i.e.,

1Strictly speaking, given that packets can be dropped at routers inside the network, the path matrix should also
include every path from a source S to an internal node (router) R.
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Figure 2: Network-wide traffic models: (a) path matrix (volume for every path between every
ingress-egress pair); (b) traffic matrix (volume for every ingress-egress pair); (c¢) demand matrix
(volume from every ingress to every set of egress points).

if local control actions could have no impact on where traffic enters and leaves the AS. Under this
assumption, managing a single AS is conceptually similar to managing the Internet end-to-end,
albeit at a smaller scale. However, in reality, interdomain and intradomain routing interact with
each other. Routing between ASes depends on the Border Gateway Protocol (BGP) [36], a path-
vector protocol that computes routes at the AS level for blocks of destination IP addresses. BGP
computes a sink tree spanning ASes all over the Internet for each prefix. Each block (or, prefir)
consists of a 32-bit address and a mask length (e.g., 192.0.2.0/24 refers to the IP addresses ranging
from 192.0.2.0 to 192.0.2.255).

An AS learns routes to various destination prefixes from neighboring domains. Each router in the
AS selects a best path for each destination prefix based on the BGP advertisements and the local
routing policies. The crucial point is that the BGP routing process may select a set of egress points
for a given prefix, rather than a single egress point [13, 12]. The selection of a single egress point
at any given router depends on the relative proximity to these egress points, as defined by the
configuration of the intradomain routing protocol, such as OSPF or IS-IS. For example, suppose
that AS A advertises a route to 192.0.2.0/24 to AS B in San Francisco and in New York. Then,
routers “close” (in the OSPF/IS-IS sense) to San Francisco would select the egress point in San
Francisco, and routers close to New York would select the egress point in New York, as shown in
Figure 3. This implies that changing the intradomain routing parameters, such as OSPF /IS-IS

weights, may affect which egress point is used to reach the destination prefix from a particular



Figure 3: Forwarding traffic to the closest egress point.

ingress point. To accurately predict the effect of such a control action, the load on the network
domain has to be expressed as volume V (S, { Dy, ..., D,}) per ingress node S and set of egress nodes

{D1,...,D,}) [14]. We refer to this abstraction as the demand matriz, as shown in Figure 2(c)2.

2.2 Network Operations Tasks

The path, traffic, and demand matrices provide a sound basis for detecting and diagnosing problems,
and for “what-if” analysis to evaluate potential control actions. This is important for a variety of

important tasks in managing an IP network.

Generating traffic reports for customers: A service provider typically generates basic traffic
reports for customers, often as part of billing for access to the network. A large customer may
connect to the provider via multiple access links in different parts of the country. The provider
can use the traffic matrix to generate reports of the volume of traffic between each pair of access
links for these customers. The path matrix can be used to demonstrate how traffic to/from the

customer flows through the provider’s backbone by focusing on the subset of paths that start or

2 Alternatively, volume could be expressed as point to point, but over an extended topology that adds virtual,
zero-weight, output links from the set of possible egress points to a virtual end node representing the set of destination
prefixes sharing the same egress set.



end at the customer’s access link(s). The path matrix also allows the provider to determine if the
customer’s traffic traverses any congested links. This analysis allows the provider to identify the
customers that may be experiencing bad performance during a congestion event, or to demonstrate
that a customer’s performance problem arises in some other part of the end-to-end path, outside

of the provider’s network.

Diagnosing the cause of congestion: Network operators typically monitor aggregate statistics
about traffic volume and packet loss on a per-link basis, as discussed later in Section 3.1. Although
these measurements are sufficient to identify overloaded links, diagnosing the cause of the congestion
requires fine-grained information about the flow of traffic into and out of the link. The path matrix
allows the operator to determine the set of paths and their associated traffic intensities (and possibly
other attributes). For example, a distributed denial-of-service (DDoS) attack would cause patterns
that resemble a sink tree, with a large amount of traffic entering at multiple ingress points, and
leaving at only one or a small number of egress points, probably towards a single destination
address. On the other hand, congestion caused by a forwarding loop would manifest itself through

the presence of cyclic paths that contain the overloaded link.

Tuning intradomain routing to alleviate congestion: Suppose that the network operators
have identified a set of ingress-egress pairs responsible for congestion on one or more links in
the backbone. The operators could examine the evolution of the traffic matrix over time to assess
whether the heavy load for these ingress-egress pairs is a persistent (and perhaps worsening) problem
and whether it arises at certain times of the day. The operators can fix the problem by reconfiguring
the OSPF/IS-IS weights or MPLS (Multi-Protocol Label Switching) label-switched paths to move
some traffic off of the congested links. The traffic or demand matrix is a crucial part of evaluating
potential configuration changes. For a proposed set of link weights W, say, the demand matrix
allows the operator to predict the load on each link I as s p).uep(s,pw) V (S, D), where p(S, D, W)
is the shortest path between S and D under link weights W. The traffic matrix is sufficient if the
routing change, say the rerouting of an MPLS label-switched path, would not effect how traffic

exits the network.

Planning changes to the network topology: At a longer time scale (weeks to months), the
path, traffic, and demand matrices can drive capacity planning decisions. Studying the evolution

of the path matrix over time can help identify potential bottleneck links that should be upgraded



to higher capacity. The traffic and demand matrices over time can be used to evaluate how the
deployment of new routers and links would affect the flow of traffic in the network. The demand
matrix can be used to evaluate decisions about whether and where to add another link (i.e., new
egress points) to an existing peer or customer. In addition, these predictive models can be used
to evaluate the impact of adding a new customer to the network. This would involve augmenting
the existing traffic or demand matrix with estimates of the traffic volumes introduced by the new

customer.

2.3 Practical Challenges

Several comments about the three canonical representations are in order. First, these represen-
tations rely on a decoupling into an invariant external or offered load, described by the traffic
and demand matrices, and the spatial flow of the traffic resulting from this load, described by the
path matrix. This decomposition is an idealized assumption. In fact, the Internet has many closed
control loops that adapt the load to the network behavior itself. For example, TCP congestion
control throttles the transmission rate in response to packet loss on a relatively small time scale;
Content Distribution Networks (CDNs) may redirect requests for Web pages to alternate servers in
response to network conditions; and end users themselves adapt their behavior, perhaps abandon-
ing a Web transfer if the response time is unacceptably long. Therefore, the decoupling inherent
in the representations described above is a simplification, and the precision of predictions based on

such a load characterization may have some inherent inaccuracy.

Second, the path, traffic, and demand matrices can be very large objects, especially in a large
IP backbone. For example, the set of all ingress-egress pairs is on the order of n? in a network
with n nodes; the path matrix can potentially be very much larger, depending on the frequency
of route changes and the existence of multiple shortest paths between ingress-egress nodes. The
demand matrix could be even larger, depending on the number of different egress sets that arise
in practice. Thus, the representations as described here are mainly conceptually appealing; in
most practical settings, they would not actually be fully instantiated, but only populated partially,
depending on the specific operational applications they drive (e.g., DDoS attack detection, service-
level agreement (SLA) verification, routing). Defining compact and useful partial representations

for specific applications is an important practical challenge, which has to rely on a diverse set of



expertise and technology, such as databases, statistics, and algorithms.

Third, we have simplified the discussion of the path, traffic, and demand matrices in that we have
implicitly assumed that the only attribute of interest is the traffic volume as a function of time. In
the simplest case, the traffic volume represents the average load over some time scale (e.g., on a
per-hour basis); however, other bandwidth measures, such as peak rate or effective bandwidth [21],
are also possible. In practice, the network operators may need to focus their analysis on a particular
subset of traffic, such as the path matrix for Web traffic or a particular customer. Alternatively,
the operators may want to have a separate element in the traffic for each application (say, based
on the TCP port numbers). This adds another dimension to these representations, reinforcing our
point that efficient storage and querying of such large, high-dimensional objects is a challenging

and important research problem.

3 Passive Measurement of IP Traffic

This section reviews the state-of-the-art in techniques for collecting traffic measurements in large
IP backbone networks. We focus on passive measurement techniques that accumulate information
about the traffic as it travels through the network. First, we discuss how operators can collect
aggregate traffic statistics using SNMP and highlight some of the advanced features available for
local-area networks (LANSs) using RMON. Next, we describe how operators can collect detailed
IP packet traces on individual links in the network. Then, we describe techniques for monitoring
traffic at the flow level to provide relatively detailed traffic statistics with fewer measurement
records. Throughout the section, we consider the limitations of each measurement technique in
providing a detailed, network-wide view of the prevailing traffic. Also, although the main focus of
this chapter is on measurements to populate domain-wide traffic representations, each subsection

briefly discusses other, more direct, uses of the different types of passive measurement data.

3.1 SNMP/RMON

The Simple Network Management Protocol (SNMP) is an Internet Engineering Task Force (IETF)

standard for the representation of management information, and the communication of such in-



formation between management stations and management agents for the purpose of monitoring
and affecting network elements [35, 34]. Both the structure of the Management Information Base
(MIB) and the communication protocol itself are kept as simple as possible: MIB information uses
a hierarchical naming structure, where a leaf of the naming tree can be of one of only two types: a
simple scalar variable, or a table. The communication protocol supports only three primitives: get
(i.e., reading of an agent variable by the management station), set (i.e., changing such a variable
by the management station), and get-next (i.e., reading the next item in lexicographical order,
which facilitates reading a table). There is also support in the protocol for automatic notifications
from the agent to the management system. The first version of SNMP has since been extended in

various ways; some of its original simplicity has inevitably been lost in the process [33].

The main standardized MIB containing traffic-related data is called MIB-II. It is organized in a set
of groups (subtrees) that monitor the execution of various protocols on the network element, such
as IP, TCP/UDP, BGP, OSPF, etc. Most of this information is either status information (e.g., the
operational status of the interfaces on a router), or highly aggregated (e.g., per-interface counters
of bytes and packets inbound and outbound). There is no support for fine-grained measurements

required to populate the representations presented in the previous section.

The advantage of MIB-II is that it is almost universally supported in routers and other network
elements, even on high-speed interfaces. A drawback lies in the absence of a certification authority
to ensure correct implementations. Unfortunately, many vendors seem to do an insufficient job in

testing MIB-II implementations, which results in measurement errors and resultant artifacts.

RMON is another standardized SNMP MIB, whose goal is to facilitate remote monitoring of LANs
[29]. Its main advantages are (1) to enable a single agent to monitor an entire shared LAN; (2) to
endow the agent with local intelligence and memory to enable it to compute higher-level statistics
and to buffer these statistics in the case of outages; (3) to define alarm conditions and the actions
that should be taken in response, such as generating notifications to the network management
system; (4) to define packet filtering conditions and the actions that should be taken in response,

such as capturing and buffering the content of these packets.

RMON offers great flexibility in combining the above primitives into sophisticated agent monitoring
functions. However, this flexibility makes a full RMON agent implementation costly. Thus, RMON

has only been implemented (at least partially) for LAN router interfaces, which are relatively

10



low-speed. Implementations for high-speed backbone interfaces have proved to be infeasible or
prohibitively expensive. Instead, router vendors have opted to develop more limited monitoring
capabilities for high-speed interfaces. The next two subsections describe the two main classes of

such methods, packet monitoring and flow measurement.

Direct uses. MIB-II information is useful to verify overall operational health of a network, by
monitoring variables related to traffic (e.g., link utilization, fraction of packets dropped due to
checksum errors), router health (e.g., CPU and memory load of the router’s central processor),
and network state and protocol performance (e.g., resets on BGP sessions). Such variables are
typically monitored continuously, but on a relatively slow time-scale (e.g., minutes to hours), by a
central network management system. This management system issues alarms to human operators
if monitored variables are outside their predefined ranges. For many failure scenarios, however,
MIB-II information is too highly aggregated to be sufficient for diagnosis. For example, if a link
is overloaded due to a denial-of-service attack, the operator requires more fine-grained traffic mea-

surements (such as packet or flow measurements) to determine the origin of the attack.

RMON gives access to much more fine-grained measurements, and provides more flexibility in how
these measurements are collected. For example, it enables a network element to collect a traffic
matrix at the MAC-address (the layer-2 Medium Access Control address) level directly and to
report those host pairs that exchange the most traffic to the network management system. Such
a functionality would be very useful in the example of a denial-of-service attack. RMON also
allows the agent to accumulate a time-series of samples of a variable, and to perform limited local
processing on this time-series (e.g., alarm thresholding). RMON embodies support for monitoring
of packets that match a filter criterion; fields of interest of these packets can be reported back to

the network management system.

In fact, if RMON were universally deployed on high-speed interfaces, it would essentially obviate
the need for additional packet and flow monitoring support. However, its complexity appears to
prohibit implementation other than in LAN environments, which relegate RMON to the edge of

the network. It is not widely used by the operators of large backbone networks.
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Figure 4: Tapping a link to collect packet traces.

3.2 Packet Monitoring

A packet monitor passively collects a copy of the packets traversing a link and records information
at the IP, TCP/UDP, or application layers. Collecting packet traces requires an effective way to tap
a link in the operational network. This is relatively easy in a local area network (LAN) consisting of
a shared media, such as an Ethernet, a FDDI ring, or a wireless network. As shown in Figure 4(a),
the packet monitor may be a regular computer connecting to the LAN with a network interface
card configured to run in promiscuous mode to make a local copy of every packet. Tapping a link
is more difficult in a large backbone consisting of routers connected via high-speed point-to-point
links. Traces may be collected by splitting each unidirectional link into two parts in order to direct
a copy of each packet to the monitor, as shown in Figure 4(b). Alternatively, the router could
include support for collecting packet traces. As traffic reaches the router, the interface card can

make a local copy of the packets.

Copying and analyzing the entire contents of every packet is extremely expensive, especially on the
high-bandwidth links common in large backbone networks. Limiting the processing load and the
volume of measurement data is crucial. Packet monitors employ three main techniques to reduce
the overhead of collecting the data. First, the monitor can capture and record a limited number of
bytes for each packet. For example, the monitor could record the IP header (typically 20 bytes) or
the IP and TCP headers (typically 40 bytes) instead of the entire contents of the IP packet. Second,
the monitor may be configured to focus on a specific subset of the traffic, based on the fields in
the IP and TCP or UDP headers. For example, the monitor could capture packets based on the
source and destination TP addresses or port numbers. Third, the monitor may perform sampling
to limit the fraction of packets that require further processing. For example, the monitor could
be configured to record information for one out of every hundred packets. Routers that support

packet-level measurement, typically employ sampling to reduce the overhead on the interface card
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and avoid degrading packet-forwarding performance.

Packet monitoring is an effective way to acquire fine-grain information about the traffic traversing
a link. PC-based monitoring platforms are quite common in LAN environments. Many of these
packet monitors run the popular, public-domain tcpdump software [22] using the Berkeley Packet
Filter [26]. Extensions to this software support the collection of application-level information
inside the IP packets to analyze Web or multimedia traffic or detect possible intruders [15, 38, 28|.
However, collecting packet traces on high-speed links is challenging without dedicated hardware
support. Several monitors have been developed by research groups to collect traces on selected
links [19, 7, 23]. In addition, several companies offer packet monitoring products that can collect
traces on a variety of different types of links. Network operators can use these products to collect
traces on key links that connect to important customers or services. Recognizing the importance of
fine-grain traffic measurements to service providers, major router vendors have begun to support
packet sampling directly in their interface cards and the IETF has started to define a small set of
standard features [11].

Direct uses. A packet monitor can provide network operators with detailed information about
the traffic traversing a link. First, the traces can be aggregated to generate reports of the volume of
traffic in terms of key fields in the packet headers. For example, computing traffic volumes by source
and destination IP addresses allows operators to identify the end hosts responsible for the bulk of
the load on the network. Considering the traffic mix by TCP or UDP port number is useful for
identifying the most popular applications (e.g., Web, peer-to-peer transfers, etc.). Second, packet
traces can provide information about the performance experienced by users. For example, the traces
can be analyzed to compute the throughput for individual TCP connections or source-destination
pairs. With accurate timestamps, the operators can combine traces from multiple locations in the
network to compute latency statistics. Flags in the TCP header may be useful for identifying when
a user aborts an ongoing transfer or for detecting certain kinds of denial-of-service attacks. Third,
the traces can provide insight into the fine-grain characteristics of the traffic, such as packet sizes,

the burstiness of the stream of packets traversing the link, and typical transfer sizes.
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Figure 5: Accessing the flow cache with a key computed from the packet header.

3.3 Flow Measurement

Flow-level measurement involves collecting aggregate traffic statistics for related packets that ap-
pear close together in time. The abstraction of a flow mimics the notion of a call or connection in
circuit-switched networks. Since IP networks do not retain state about individual data transfers,
the grouping of packets into a flow depends on a set of rules applied by the measurement device.
The rules identify the attributes that must match across all the packets in a flow, as well as re-
strictions on the spacing between packets in a flow. For example, a flow could be defined as all
packets that have the same source and destination IP addresses, where successive packets have an
interarrival time less than 30 seconds. Alternatively, a flow could be defined as all packets that
match in their IP addresses, port numbers, and protocol, and have an interarrival time less than
60 seconds. The rules for defining a flow depend on the details of the measurement device and may
be configurable. The measurement device reports aggregate information for each flow, such as the
key IP and TCP/UDP header fields that match across the packets, the total number of bytes and
packets in the flow, and the timestamps of the first and last packets.

Similar to a packet monitor, a flow-measurement device must tap a link to receive a copy of each
packet. To collect the aggregate traffic statistics, the device maintains a cache of active flows. When
a packet arrives, the device computes an index into the cache by combining the various header fields
that define a flow, as shown in Figure 5. The device accesses the cache to create a new entry or
update an existing entry. Each entry in the cache includes the aggregate traffic statistics, such as

the total number of bytes and packets, as well as the timestamps. The device evicts an entry from
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the cache and exports or records the information. A flow is evicted from the cache if no additional
packets have arrived for a period of time (e.g., 30 or 60 seconds), or if the cache is full. The device
may also evict a flow that has been active for a long period of time (e.g., 30 minutes) to ensure
that information about the long-lived transfer is made available. The arrival of additional packets
with the same index would trigger the creation of a new entry in the cache and, ultimately, another
measurement record. In practice, the device may combine multiple such records into a single unit

for transmission to a separate machine for archiving and analysis.

Flow-level measurements are available from some router vendors, most notably Cisco with its
Netflow feature [1]. For manageable overhead on high-speed links, recent releases of Netflow include
support for sampling and aggregation [4, 3]. Several commercial packet monitors can produce flow-
level measurements, allowing network operators to have a mixture of router support and separate
measurement devices. The IETF has made efforts to define standards for flow-level measurement.
The Real-Time Traffic Flow Meter (RTFM) group [6, 20] provided a formal definition of flows and
described techniques for collecting the measurement data. More recently, the IP Flow Information
Export (IPFIX) working group [2] is defining a format and protocol for delivering flow-level data
from the measurement device to other systems that archive and analyze the information. The
vendor and standardization activity reflects a growing interest in the use of flow-level measurement

as a practical alternative to collecting packet traces.

Direct uses. Flow-level measurements are useful for many of the same purposes as packet traces.
A network operator may use flow-level statistics to compute traffic volumes by IP addresses, port
numbers, and protocols, or basic traffic characteristics such as average packet size. An ISP may use
traffic statistics at the level of individual customers to drive accounting and billing applications.
However, flow-level measurements do not provide the fine-grain timing information available in
packet traces. The flow measurement record provides timestamps for the first and last packet in
the flow, without detailed information about the spacing between successive packets. As such,
flow-level measurements are not useful for studying the burstiness of traffic on a small time scale.
Flow-level measurements can provide some information about the throughput experienced by users,
based on the number of bytes and the time duration of a flow. However, identifying potential
causes of low throughput, such as lost and retransmitted packets, is difficult without more detailed

information.
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4 Populating the Network-Wide Traffic Models

This section describes how the different types of measurement data discussed in Section 3 can be
used to populate the network-wide traffic models described in Section 2. We present these methods
in a progression from coarse-grain traffic statistics to fine-grain packet traces to illustrate how a
finer granularity of measurement data allows us to relax our assumptions about the traffic and

network models. In particular, we discuss the following three scenarios:

e Assumptions on the network and traffic model: First, we assume that only aggregate
traffic statistics, such as traditional SNMP data, are available for each link. In this scenario,
a class of statistical inference methods referred to as network tomography can generate an
estimate of the traffic matrix. The inference techniques rely on assumptions about the state

of the network elements and the statistical properties of the traffic.

e Assumptions on the network model: Second, when more fine-grained traffic measure-
ments, such as flow or packet traces, are available from the links at the edge of the network,
the traffic and path matrix can be derived. In contrast to network tomography, this ap-
proach does not rely on any assumptions about the characteristics of the traffic. However,
the technique does need to model certain aspects of the network in order to “map” the edge

measurements onto the topology.

e No assumptions about network or traffic: Third, we describe methods that directly
observe the path matrix without relying on any assumptions about the traffic or the network.
These methods yield the most faithful observation of the spatial distribution of traffic even in
scenarios where the network state is unknown or changing. However, these techniques require

additional support in routers that is not available in commercial products as of this writing.

4.1 Network and Traffic Model: Tomography

The class of methods we describe in this section apply in a setting where only aggregate traffic
measurements are available. Specifically, these methods assume that the data rate on every link in
the domain is known, averaged over some time interval. The goal is to estimate the traffic matrix,

i.e., the data rate for every ingress-egress pair, without any explicit packet or flow measurements.
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Figure 6: Left: a single observation of aggregate link rates provides no information about the traffic
matrix. Right: multiple observations of the link rates through repeated measurements over time,
on the other hand, enables the inference of the traffic matrix. Intuitively, when the aggregates rates

on two links are strongly correlated, we expect these two links to carry the same traffic flows.

The basic idea of network tomography is quite intuitive. Consider the simple network in Figure 6,
consisting of four ingress-egress pairs AC', AD, BC, and BD, and four links, on which the aggregate
rate is measured. It is quite clear that with a single measurement, nothing can be said about the
traffic matrix. For example, if the data rate on each link were 1 Mbps, this does not tell us the
relative contributions of AC' and AD on the upper left link. However, if the evolution over time
of link data rates is known, then the traffic matrix can be estimated. For example, given the link
rates in Figure 6(b), we would intuitively conclude that AD and BC are large compared to AC
and BD, because the rate functions for both links on AD and BC resemble each other. In other
words, the correlation between the traffic rate of two links is a measure for the amount of traffic
that traverses both of these links. In this example, we could directly estimate the four-element

traffic matrix in this way.

In more general topologies, the goal of tomography is to combine knowledge of how the traffic of
each ingress-egress pair is routed with measured aggregate link rates to infer the traffic matrix in
analogy to the simple scenario above. Network tomography refers to the statistical framework and
the associated computational methods to address this type of inversion problem. It requires both a
network model and a traffic model. The network model assumes that the routes from every ingress

to every egress pair are stable and known over a time period over which inference is performed.
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The traffic model describes traffic flows as some parameterized stochastic process. Such a traffic
model is central to tomography methods, as they inherently rely on multiple measurements over

time to infer the missing spatial information about traffic flow.

The pioneering work in this area is due to Vardi [39], and inspired by conceptually similar prior work
in transportation networks. We give an overview of his model and of his approach to estimating the
traffic matrix. The subsequent discussion requires that we introduce some notation. Let the vector
Y = (V1,...,Y,) denote an observation of packet counts on all links, where r is the number of links
in the network, and Y; is the number of packets observed on link i. The vector X = (X7,..., X,)
counts the number of packets per ingress-egress pair, where ¢, the number of pairs, is typically
much larger than r. X can be viewed as a snapshot of the traffic matrix. The relationship between

X and Y can be written in matrix form as

Y = AX, (1)

where A is the routing matrix, embodying the fixed and known routing state as follows: the element

A; ; = 1if link ¢ is on the path of ingress-egress pair j, and 0 otherwise.

In general, the number of ingress-egress pairs is much larger than the number of links in the network
(i.e., ¢ > r). As such, a single observation of Y contains very little information about X, in the
sense that the subspace {X : Y = AX, X > 0} of possible X for a given observation Y is of high
dimension. Vardi therefore introduces the following parameterized stochastic model. Assume that
time is slotted, and that for each time slot £, we obtain an independent sample of the traffic matrix
X®)and hence of the observed link rates Y*). For each k, the components of X*) are independent

and have Poisson distribution with mean A = (A1,..., A.),

x® = Poisson(A,) (2)

J

Let us consider the maximum likelihood estimator A of A. It is relatively straightforward to write

down the likelihood function for A,

L) =RAY)= >  PAX). (3)

X:AX=Y,X>0

Unfortunately, the likelihood function is very expensive to compute, because it involves finding all

natural solutions to the equation AX = Y. Vardi proposes an estimator based on the method of
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moments, which is very efficient to compute. Specifically, for large sample size K, the empirical

mean Y of the observation Y, given by

> 1§: (k)
V==Y y® (4)
Kk:l

is approximately Gaussian. Therefore, its distribution depends only on its first and second moments.

By equating the empirical moments of Y with the moments predicted by the model, we obtain the

(5)-(3)

Here, S is the empirical covariance matrix, written as a vector, and the matrix B is a function of

equation

A. The linear system (5) is in general inconsistent because of the noise in the empirical moments,

and cannot be solved directly. Vardi proposes heuristics to eliminate equations from (5), and to

iteratively compute an approximate estimator A

Several papers build on and extend Vardi’s work. For example, Tebaldi and West [37] study the
tomography problem in a Bayesian setting, which allow for the inclusion of prior information into
the estimate. Cao et. al. [8] consider a similar problem setting, but instead of the (discrete) Poisson
traffic model, they assume that the data rate for every ingress-egress pair is Gaussian. Their model
is more flexible than Vardi’s because it parameterizes the scaling relationship between the mean

and variance of the Gaussian marginals.

Network tomography methods have some serious practical limitations. First, they tend to make
strong simplifying assumptions about the traffic model in order to devise tractable solutions. The
assumptions typically include the stationarity and ergodicity of the traffic process in order to
estimate the spatial traffic matrix from multiple temporal samples. Furthermore, it is usually
assumed that consecutive samples are independent. However, network traffic tends to possess
much more complicated structure [25], and can be viewed as stationary only over relatively short
periods of time; also, consecutive samples will not typically be completely independent. Second,
even when the traffic model is accurate, it takes a large number of samples to arrive at sufficient
precision. This is a direct consequence of the fact that in most cases, the number of unknowns (the

elements of the traffic matrix) is much larger than the number of observables (the aggregate rate
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on links.)® Third, given the size of the inversion problem (5), estimating a large traffic matrix is
computationally challenging. An interesting research question therefore concerns the inference of

a subset of the traffic matrix, depending on the application it is driving.

These limitations suggest that tomography methods are not applicable to large-scale traffic man-
agement problems. However, they may very well turn out to be useful in limited applications. For
example, suppose an operator wishes to obtain a “local” traffic matrix at a single router. Tomog-
raphy may work well in such a limited setting, and could turn out to be an interesting alternative
to collecting detailed packet or flow traces from that router. Another promising approach of recent
interest reduces the number of unknowns by making additional assumptions about the form of the
traffic matrix. For example, [27] and [30] adopt gravity models, where each ingress and egress node
is assumed to possess a “mass”. The amount of traffic between an ingress and an egress node is
then assumed to be proportional to the product of the respective masses, similar to the force of
gravity between two physical points of mass. This assumption dramatically reduces the number
of unknowns (from O(c?) to O(c)). However, further study is required to determine to what ex-
tent gravity models fit real traffic matrices. Finally, a more limited use of tomography consists in
complementing other types of traffic measurements. For example, if in a network domain, only a
subset of edge routers were capable of obtaining packet or flow measurements, then tomography
methods might be useful for inferring the missing components of the traffic matrix. While such a

complementary use of tomography is promising, it requires further research.

4.2 Network Model: Traffic Mapping

Developing simple and accurate statistical models of Internet traffic is difficult in practice. Packet
and flow-level measurements offer a way to construct the path, traffic, and demand matrices without
simplifying assumptions about the characteristics of the traffic. However, collecting fine-grain traces
for every link in a large network would be expensive given the limitations of today’s technology.
Even if the interface cards have direct support for traffic measurement, this functionality may not
be uniformly available and, in some cases, may degrade the throughput of the router. In addition,
many routers do not provide effective, tunable ways to limit the volume of measurement data.

Given these constraints, it is appealing to have a way to construct the path, traffic, and demand

3Vardi presents some numerical examples using a 5-node topology that illustrate this problem.
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matrices based on a limited collection of fine-grain measurements. For example, monitoring every
ingress point into the domain provides a way to collect fine-grain statistics for all of the traffic
without enabling measurement functionality in the core of the network. However, computing the
spatial distribution of traffic from these measurements depends on having an accurate model of

routing in the underlying network.

Populating the network-wide models involves collecting fine-grain measurements at each ingress
point and aggregating this data to the level of the path, egress point, or the set of possible egress
points. The forwarding of traffic through the network depends on the IP prefix associated with
each packet’s destination IP address. Each router combines information from the intradomain and
interdomain routing protocols to construct a forwarding table that is used to select the next-hop

interface for each incoming packet. For example, a forwarding table has entries such as:

12.128.0.0/9  10.126.212.1 POS2/0
172.12.4.0/24 10.1.2.118  Seriall/0/0:1
192.0.2.0/24  10.47.35.56  P0S3/0

The third entry directs packets destined for 192.0.2.0/24 to interface POS3/0 (a packet-over-SONET
link in slot 3 of the router) to reach the next hop with IP address 10.47.35.56. When a packet
arrives, the router performs a longest prefix match on the destination address to find the appropriate

forwarding-table entry for the packet. For example, the router could associate the IP address

192.0.2.38 with the prefix 192.0.2.0/24.

Most routers have a command-line interface that allows network operators to view the current
state of the forwarding table; operators may run scripts that dump these tables periodically. These
dumps provide the list of prefixes and their associated interfaces. The routers that connect to
neighboring domains have forwarding tables that indicate the egress point(s) associated with each
destination prefix. For example, suppose the Seriall/0/0:1 interface (in the forwarding table listed
above) connects to a customer’s network; then, the destination prefix 172.12.4.0/24 would have this
interface in its set of egress points. Other routers might have forwarding table entries that direct
traffic to an interface to another router inside the AS; these interfaces would not be included in the
egress set. Constructing the set of egress interfaces for a destination prefix involves extracting the
entries from each forwarding table and identifying the next-hop interfaces that are associated with

neighboring domains. Based on this information, the fine-grain traffic measurements collected at
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the ingress points can be associated with the longest matching destination prefix and, in turn, the

set of egress points [14].

On the surface, the demand matrix may seem like an unwieldy representation that has a large
number of elements. A typical forwarding table in a large IP network contains more than 100,000
prefixes, and this number is increasing as the Internet continues to grow. In addition, the number
of egress sets could be exponential in the number of distinct egress points. In practice, however,
many destination prefixes have the same egress set. Many organizations, such as companies or
universities, announce multiple blocks of IP address to their Internet Service Providers. Another
AS in the Internet would tend to route all traffic for these destination prefixes in the same manner,
since the BGP advertisements would have all the same attributes. In addition, most combinations
of egress points do not arise in practice. Typically, an egress set would consist of all links to a
particular neighboring domain, such as a customer or peer. For example, a network may connect
to another AS in six different locations. These six links would tend to appear together in egress
sets for various destination prefixes. This tends to result in a relatively small number of different

egress sets, ensuring a compact representation for the demand matrix.

The demand matrix can be used to compute the path and traffic matrices. Each element in the
demand matrix corresponds to a single ingress point and set of egress points. The traffic from
that ingress point travels to a particular egress point over one or more paths through the domain.
The selection of a particular egress point depends on the intradomain routing configuration (e.g.,
OSPF or IS-IS weights), as discussed earlier in Section 2.1. The chosen egress point and the path(s)
through the domain can be determined in two main ways. First, by dumping the forwarding table
for each router in the domain, it is possible to identify the interfaces that would carry the packets
as they travel from one router to another. Second, these paths can be computed based on a
network-wide view of the topology and the intradomain routing configuration (e.g., by computing
the shortest path(s) based on the OSPF/IS-IS weights) [13]. In practice, operational networks may
have multiple shortest paths from the ingress point to the chosen egress point. Most commercial
routers split traffic over these multiple paths, dividing the traffic evenly when multiple next-hop

interfaces lie along a shortest path, as shown in Figure 7.
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Figure 7: Traffic splitting across multiple shortest paths.

4.3 No Model: Direct Observation

The methods presented so far are all indirect to a certain degree, in that they rely on some assump-
tions on the traffic and on the network behavior to populate the various domain-wide measurement
representations. These assumptions are embodied in the traffic and network models. Indirect mea-
surement methods thus suffer from the inherent uncertainty associated with the physical and logical

state of large, heterogeneous networks. This uncertainty has several sources:

e The exact behavior of a network element, such as a router, is not exactly known to the
service provider and depends on vendor-specific design choices. For example, the algorithm

for splitting traffic among several shortest paths in OSPF is not standardized.

e The network has deliberate sources of randomness to prevent accidental synchronization, e.g.,

through randomized timers in routing protocols [17].

e [P packets may be lost as they travel through the network. Predicting whether a packet
measured in one location was successful in traversing the entire path through the domain is

difficult in practice.

e Some of the behavior of the network depends on events outside of the control of the domain.
For example, how traffic is routed within an Autonomous System (AS) depends in part on

the dynamics of BGP route advertisements from neighboring domains [24].

e The interaction between adaptive schemes operating at different time-scales and levels of
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locality (e.g., QoS routing, end-to-end congestion control) may simply be too complex to

characterize and predict [18].

e Equipment failures can disrupt the normal operation of the network. Traffic measurement is
one of the tools for detecting and diagnosing such problems; however, this benefit is mitigated

if traffic measurement depends on the correct operation of the network.

Rather than relying on a network model and an estimation of its state and its expected behavior,
direct methods observe the traffic as it travels through the network. In this subsection, we describe
two techniques for direct observation of the path matrix—trajectory sampling and IP traceback.
Trajectory sampling is a method for network-wide packet sampling; conceptually, it directly pro-
vides an estimator of the path matrix. IP traceback is also a sampling-based method, but it is
tailored to a particular traffic management application: the detection of distributed denial of ser-
vice (DDoS) attacks. This can be viewed as estimating a particular slice of interest of the full path

matrix.

4.3.1 Trajectory Sampling

Trajectory sampling [10] involves sampling packets that traverse each link (or a subset of these
links) within a measurement domain. The subset of sampled packets over a certain period of time

can then be used as a representative of the overall traffic.

If packets were simply randomly sampled at each link, then we would be unable to derive the precise
path that a sampled packet has followed through the domain from the ingress to the egress point.
The key idea in trajectory sampling is therefore to base the sampling decision on a deterministic
hash function over the packet’s content. If the same hash function is used throughout the domain
to sample packets, then we are ensured that a packet is either sampled on every link it traverses,
or on no link at all. In other words, we effectively are able to collect trajectory samples of a subset
of packets. The choice of an appropriate hash function will obviously be crucial to ensure that this
subset is not statistically biased in any way. For this, the sampling process, although a deterministic

function of the packet content, has to resemble a random sampling process.

A second key ingredient of trajectory sampling is that of packet labeling. Note that to obtain

trajectory samples, we are not interested in the packet content per se; we simply need to know that
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Figure 8: Trajectory sampling relies on two hash functions computed over the invariant fields of the
packet’s header and payload. The sampling hash function serves to decide whether a packet should
be sampled or not; the label hash function stamps a unique identity on the packet for trajectory

reconstruction.

some packet has traversed a set of links. But to know this, it is sufficient to obtain a unique packet
identifier, or label, for each sampled packet within the domain and within a measurement period.
Because the label is unique, we will know that a packet has traversed the set of links which have
reported that particular label. Trajectory sampling relies on a second hash function to compute
packet labels that are, with high probability, unique within a measurement period. While the size
of the packet labels obviously depends on the specific situation, it has been shown that labels can
in practice be quite small (e.g., 20 bits). As the measurement traffic that has to be collected from
nodes in the domain only consists of such labels (plus some auxiliary information), the overhead

to collect trajectory samples is small.

Trajectory sampling has several important advantages. It is a direct method for traffic measure-
ment, and as such does not require any network status information. A set of trajectory samples
is basically a sample of the path matrix. Trajectory sampling does not require router state (e.g.,
per-flow cache entries) other than a small label buffer. The amount of measurement traffic neces-
sary is modest and can be precisely controlled. Multicast packets require no special treatment—the
trajectory associated with a multicast packet is simply a tree instead of a path. Finally, trajectory
sampling can be implemented using state-of-the art digital signal processors (DSPs) even for the

highest interface speeds available today.
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Figure 9: Schematic representation of trajectory sampling. A measurement system collects packet
labels from all the links within the domain. Labels are only collected from a pseudo-random subset
of all the packets traversing the domain. Both the decision whether to sample a packet or not, and

the packet label, are a function of the packet’s invariant content.

4.3.2 IP Traceback

The second domain-wide measurement method that does not rely on a network model or a traffic
model is IP traceback [31]. The main goal of IP traceback is detecting and diagnosing distributed
denial of service (DDoS) attacks. In such an attack, a potentially large number of hosts (which may
have been subverted) overwhelm a victim host, such as a Web server, with so much traffic that it
becomes inoperable. Defending against such an attack is difficult, because the source addresses of
the attack packets are often spoofed, i.e., they do not correspond to the real originator of the packet.
Therefore, such packets contain no information about the originator. The goal of IP traceback is to
infer the originator(s) of such an attack, or to at least partially infer the paths from the originator
to the victim. This allows operators to take countermeasures, such as blocking traffic on certain

links, and isolating “hijacked” hosts used in the attack.

IP traceback is an end-to-end and interdomain solution to this problem. It is end-to-end because
the victim does not require any explicit help from its network operator to infer the attack sink
tree. It is interdomain because no specific coordination across domain boundaries is required to
infer a sink tree spanning multiple domains. These properties enable a gradual and widespread

deployment of IP traceback.

26



We describe IP traceback by first introducing a very crude scheme to solve this inference problem,
and then successively refining it. A straightforward solution to the traceback problem would consist
in having every router add its identity to a list carried with the packet. This would allow the
recipient of the packet to determine the exact path followed by the packet. Of course, such a

scheme would incur prohibitive processing and communication overhead.

To limit this overhead, it is desirable to allocate only a small, fixed field in each packet to IP
traceback. Clearly, this prohibits fully reporting the path traversed by each packet. A possible
solution consists in having packets sample the set of routers encountered along their path, and
using the field to report the last sampled router to the recipient (cf. Fig. 10). In practice, this can
be implemented by routers flipping a coin for each packet, and writing their IP address into the
traceback field with probability p. As the defining property of a denial of service attack is that the
victim receives a large number of attack packets from the same host or set of hosts, the victim can
construct a histogram of router addresses observed in received packets. In the idealized case of a
single attacker and attack path, the observed frequencies of router addresses directly yield the set
of routers on the path, the most frequently observed address corresponding to the router closest to

the attacker, and vice versa.
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Figure 10: Node sampling. The attack path is reconstructed simply through the observed frequency

of node identities.

The above approach has two problems. First, it is possible for the attacker to perturb the inferred
attack path, by preloading the traceback field of all the packets it sends with some forged IP address
(or possibly several addresses). This forged address will show up in the frequency histogram; the
victim has no way to tell forged and real samples apart. The only way to avoid this effect would be
by using a very high sampling rate of p > 1/2. However, this would preclude inferring reasonably
long paths, as the probability for a sample to survive decreases very quickly with router distance

from the victim. Second, the node-based scheme cannot distinguish multiple attack paths, as the
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path is simply inferred from sample frequencies.

To remedy these two problems, the scheme can be slightly extended to sample edges instead of
nodes. This can be achieved through three fields, edge_start, edge_end, and dist (cf. Fig. 11). Each
router again flips a coin with probability p. In case of a hit, it writes its address into the field
edge_start, and sets dist to zero. The next router, because it receives a packet with dist=0, writes
its identity into edge_end, and increments dist.s Every downstream router will simply increment dist
(provided it does not start an edge sample itself). Therefore, the receiver will effectively receive a

sampled edge (edge start, edge end), along with the distance dist of that edge from itself.
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Figure 11: Edge sampling. The attack path or tree is explicitly reconstructed from sampled edges.

It is straightforward to see that the attack sink tree can be fully reconstructed from edge samples.
However, the edge-based scheme just described would require 64 bits for edge startand edge_end,
plus the bits required for dist. The main challenge addressed in [31] is how to compress this
information so that it fits into the 16 bit identification field of the IP header. The authors propose

several clever tricks to achieve this compression.

Related proposals for the diagnosis of DDoS attacks rely on out-of-band methods (specifically, ICMP
packets) to carry samples [5], and hash-based IP traceback [32], a method that keeps compressed
path information within routers. The latter method is similar to trajectory sampling, in that it
relies on a hash computed over invariant packet fields to associate unique labels with packets. In
contrast to trajectory sampling, however, the method keeps track of all the packets traversing a

router.
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5 Conclusion

Traffic measurement plays an important role in managing large IP networks. Existing passive
measurement techniques provide operators with coarse-grain traffic statistics for the entire network
and fine-grain traces for individual links and routers. SNMP is widely available and provides
aggregated information about link load and packet loss on the scale of minutes. Packet monitoring
and flow-level measurements allow operators to have a more detailed view of the traffic; however,
these techniques are not uniformly available in existing IP routers. Operators need a network-wide
view of the spatial distribution of traffic to detect and diagnose performance problems, and to
evaluate potential control actions. The path, traffic, and demand matrices provide a sound basis
for a variety of common tasks, such as identifying the customers affected by an overloaded link and

tuning the routing configuration to alleviate the congestion.

Populating these traffic models requires collecting measurement data from multiple locations in the
network. The path and traffic matrices can be estimated from traditional SNMP measurements,
under certain assumptions about the statistical properties of the traffic and knowledge of routing
inside the backbone. Collecting fine-grain packet or flow-level measurements at the edge of the
network makes it possible to compute the path, traffic, and demand matrices without any simpli-
fying assumptions about the traffic. With additional support for packet sampling in the routers,
the path matrix can be observed directly without depending on additional information from the

routers.

The existing work on these network-wide representations suggest several avenues for future research:

e Trade-off between efficiency and accuracy: Populating the traffic models involves col-
lecting a large amount of measurement data from multiple locations in the network. The
accuracy of these models depends on the assumptions underlying the techniques and the
granularity of the measurement data. Although accuracy may be crucial for some applica-
tions (such as billing), rough estimates of the path, traffic, and demand matrices may be
sufficient for many important tasks (such as selecting routing parameters to balance load in
the network). Future work should identify how well certain applications can tolerate inac-
curacy in the traffic estimates and explore how to exploit these observations to reduce the

measurement overhead, e.g., through sampling techniques.
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e Uniform support for traffic measurement: Support for traffic measurement has tradi-
tionally been an afterthought in the design of IP routers. Although SNMP is a standard
protocol, most routers provide relatively limited, coarse-grained load statistics; the fine-grain
measurements defined in RMON are not available on high-speed backbone links. Instead, ven-
dors selectively provide proprietary support for packet sampling and flow-level measurement.
Ultimately, IP equipment needs to evolve to include more advanced measurement function-
ality in a uniform manner. The recent IETF activities surrounding packet sampling [11] and
flow export [2] are positive steps in this direction. Future work should consider effective hard-
ware support for collecting fine-grain measurements on high-speed links and ways to estimate

important statistics about the traffic based on sampled data.

e Network-wide models of the traffic: The path, traffic, and demand matrices are helpful
abstractions that can drive a variety of important tasks in operating a large IP network. In
practice, individual applications may warrant tailored ways of populating (parts of) these
views. For example, although the complete path matrix may be a very large data structure,
traffic statistics for a small subset of these paths may be sufficient to diagnose a DoS attack.
The existing models focus primarily on operational tasks within a single network, without
considering how the traffic flows through the rest of the Internet. In practice, the Internet is
an extremely complex “network of networks”, and most traffic must traverse several domains
en route to its destination. While there is no hope of modeling this large-scale complex system
exhaustively, new models should incorporate enough detail to predict the impact of domain-
local control actions. As these control actions become more wide-ranging and sophisticated
(e.g., traffic differentiation, explicit routing through MPLS, failover protection), more fine-
grained traffic models will become necessary. Specifically, future work should investigate

models that capture the influence of operator actions on neighboring domains.

Progress in these areas of research would be extremely valuable in helping operators run their

networks more efficiently.
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