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ABSTRACT
Multi-tenant datacenters represent an extremely challeng-
ing networking environment. Tenants want the ability
to migrate unmodified workloads from their enterprise
networks to service provider datacenters, retaining the
same networking configurations of their home network.
The service providers must meet these needs without
operator intervention while preserving their own opera-
tional flexibility and efficiency. Traditional networking
approaches have failed to meet these tenant and provider
requirements. Responding to this need, we present the
design and implementation of a network virtualization
solution for multi-tenant datacenters.

1 Introduction
Managing computational resources used to be a time-
consuming task requiring the acquisition and config-
uration of physical machines. However, with server
virtualization – that is, exposing the software abstraction
of a server to users – provisioning can be done in the
time it takes to load bytes from disk. In the past fifteen
years server virtualization has become the dominant
approach for managing computational infrastructures,
with the number of virtual servers exceeding the number
of physical servers globally [2, 18].

However, the promise of seamless management through
server virtualization is only partially realized in practice.
In most practical environments, deploying a new applica-
tion or development environment requires an associated
change in the network. This is for two reasons:

Topology: Different workloads require different network
topologies and services. Traditional enterprise workloads
using service discovery protocols often require flat L2,
large analytics workloads require L3, and web services
often require multiple tiers. Further, many applications
depend on different L4-L7 services. Today, it is difficult
for a single physical topology to support the configuration
requirements of all of the workloads of an organization,
and as a result, the organization must build multiple
physical networks, each addressing a particular common
topology.

Address space: Virtualized workloads today operate in
the same address space as the physical network.1 That is,
the VMs get an IP from the subnet of the first L3 router
to which they are attached. This creates a number of
problems:

• Operators cannot move VMs to arbitrary locations.
• Operators cannot allow VMs to run their own IP

Address Management (IPAM) schemes. This is a
common requirement in datacenters.

• Operators cannot change the addressing type. For
example, if the physical network is IPv4, they
cannot run IPv6 to the VMs.

Ideally, the networking layer would support similar
properties as the compute layer, in which arbitrary
network topologies and addressing architectures could
be overlayed onto the same physical network. Whether
hosting applications, developer environments, or actual
tenants, this desire is often referred to as shared multi-
tenancy; throughout the rest of this paper we refer to this
as a multi-tenant datacenter (MTD).

Unfortunately, constructing an MTD is difficult be-
cause while computation is virtualized, the network is
not. This may seem strange, because networking has long
had a number of virtualization primitives such as VLAN
(virtualized L2 domain), VRFs (virtualized L3 FIB), NAT
(virtualized IP address space), and MPLS (virtualized
path). However, these are traditionally configured on a
box-by-box basis, with no single unifying abstraction
that can be invoked in a more global manner. As a
result, making the network changes needed to support
server virtualization requires operators to configure many
boxes individually, and update these configurations in
response to changes or failures in the network. The
result is excessive operator overhead and the constant
risk of misconfiguration and error, which has led to
painstaking change log systems used as best practice in
most environments. It is our experience in numerous
customer environments that while compute provisioning
is generally on the order of minutes, network provisioning
can take months. Our experience is commonly echoed in
analyst reports [7, 29].
1This is true even with VMware VDS and Cisco Nexus 1k.
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Academia (as discussed in Section 7) and industry
have responded by introducing the notion of network
virtualization. While we are not aware of a formal
definition, the general consensus appears to be that a
network virtualization layer allows for the creation of
virtual networks, each with independent service models,
topologies, and addressing architectures, over the same
physical network. Further, the creation, configuration and
management of these virtual networks is done through
global abstractions rather than pieced together through
box-by-box configuration.

And while the idea of network virtualization is not
new, little has been written about how these systems are
implemented and deployed in practice, and their impact
on operations.

In this paper we present NVP, a network virtualization
platform that has been deployed in dozens of production
environments over the last few years and has hosted tens
of thousands of virtual networks and virtual machines.
The target environment for NVP is enterprise datacenters,
rather than mega-datacenters in which virtualization is
often done at a higher level, such as the application.

2 System Design
MTDs have a set of hosts connected by a physical network.
Each host has multiple VMs supported by the host’s
hypervisor. Each host hypervisor has an internal software
virtual switch that accepts packets from these local VMs
and forwards them either to another local VM or over the
physical network to another host hypervisor.

Just as the hypervisor on a host provides the right
virtualization abstractions to VMs, we build our archi-
tecture around a network hypervisor that provides the
right network virtualization abstractions. In this section
we describe the network hypervisor and its abstractions.

2.1 Abstractions
A tenant interacts with a network in two ways: the
tenant’s VMs send packets and the tenant configures
the network elements forwarding these packets. In
configuring, tenants can access tenant- and element-
specific control planes that take switch, routing, and
security configurations similar to modern switches and
routers, translating them into low-level packet forwarding
instructions. A service provider’s network consists of a
physical forwarding infrastructure and the system that
manages and extends this physical infrastructure, which
is the focus of this paper.

The network hypervisor is a software layer interposed
between the provider’s physical forwarding infrastructure
and the tenant control planes, as depicted in Figure 1.
Its purpose is to provide the proper abstractions both to
tenant’s control planes and endpoints; we describe these
abstractions below:

VM

CP

Network Hypervisor

Physical Forwarding Infrastructure

Control 
Abstraction

L2 L3 L2 VM

CP CP

Packet 
Abstraction

Figure 1: A network hypervisor sits on top of the service provider
infrastructure and provides the tenant control planes with a control
abstraction and VMs with a packet abstraction.

Control abstraction. This abstraction must allow ten-
ants to define a set of logical network elements (or, as we
will call them, logical datapaths) that they can configure
(through their control planes) as they would physical
network elements. While conceptually each tenant has
its own control planes, the network hypervisor provides
the control plane implementations for the defined logical
network elements.2 Each logical datapath is defined
by a packet forwarding pipeline interface that, similar
to modern forwarding ASICs, contains a sequence of
lookup tables, each capable of matching over packet
headers and metadata established by earlier pipeline
stages. At each stage, packet headers can be modified or
the packet can be dropped altogether. The pipeline results
in a forwarding decision, which is saved to the packet’s
metadata, and the packet is then sent out the appropriate
port. Since our logical datapaths are implemented in
software virtual switches, we have more flexibility than
ASIC implementations; datapaths need not hardcode the
type or number of lookup tables and the lookup tables can
match over arbitrary packet header fields.
Packet abstraction. This abstraction must enable pack-
ets sent by endpoints in the MTD to be given the same
switching, routing and filtering service they would have
in the tenant’s home network. This can be accomplished
within the packet forwarding pipeline model described
above. For instance, the control plane might want to
provide basic L2 forwarding semantics in the form of
a logical switch, which connects some set of tenant
VMs (each of which has its own MAC address and is
represented by a logical port on the switch). To achieve
this, the control plane could populate a single logical
forwarding table with entries explicitly matching on
destination MAC addresses and sending the matching
packets to ports connected to the corresponding VMs.
Alternatively, the control plane could install a special
learning flow that forwards packets to ports where traffic
from the destination MAC address was last received
(which will time out in the absence of new traffic)
and simply flood unknown packets. Similarly, it could
broadcast destination addresses with a flow entry that
sends packets to all logical ports (excluding the port on
which the packet was received) on the logical switch.
2In other words, the network hypervisor does not run third-
party control plane binaries but the functionality is part of the
hypervisor itself. While running a third-party control plane stack
would be feasible, we have had no use case for it yet.
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Figure 2: The virtual switch of the originating host hypervisor
implements logical forwarding. After the packet has traversed the
logical datapaths and their tables, the host tunnels it across the physical
network to the receiving host hypervisor for delivery to the destination
VM.

2.2 Virtualization Architecture

The network hypervisor supports these abstractions by
implementing tenant-specific logical datapaths on top of
the provider’s physical forwarding infrastructure, and
these logical datapaths provide the appropriate control
and packet abstractions to each tenant.

In our NVP design, we implement the logical datapaths
in the software virtual switches on each host, leveraging a
set of tunnels between every pair of host-hypervisors (so
the physical network sees nothing other than what appears
to be ordinary IP traffic between the physical hosts). The
logical datapath is almost entirely implemented on the
virtual switch where the originating VM resides; after
the logical datapath reaches a forwarding decision, the
virtual switch tunnels it over the physical network to
the receiving host hypervisor, which decapsulates the
packet and sends it to the destination VM (see Figure 2).
A centralized SDN controller cluster is responsible for
configuring virtual switches with the appropriate logical
forwarding rules as tenants show up in the network.3

While tunnels can efficiently implement logical point-
to-point communication, additional support is needed
for logical broadcast or multicast services. For packet
replication, NVP constructs a simple multicast overlay
using additional physical forwarding elements (x86-based
hosts running virtual switching software) called service
nodes. Once a logical forwarding decision results in the
need for packet replication, the host tunnels the packet
to a service node, which then replicates the packet to
all host hypervisors that need to deliver a copy to their
local VMs. For deployments not concerned about the
broadcast traffic volume, NVP supports configurations
without service nodes: the sending host-hypervisor sends
a copy of the packet directly to each host hypervisor
needing one.

In addition, some tenants want to interconnect their
logical network with their existing physical one. This

3NVP does not control physical switches, and thus does not
control how traffic between hypervisors is routed. Instead, it is
assumed the physical network provides uniform capacity across
the servers, building on ECMP-based load-balancing.
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Figure 3: In NVP, controllers manage the forwarding state at all
transport nodes (hypervisors, gateways, service nodes). Transport nodes
are fully meshed over IP tunnels (solid lines). Gateways connect the
logical networks with workloads on non-virtualized servers, and service
nodes provide replication for logical multicast/broadcast.

is done via gateway appliances (again, x86-based hosts
running virtual switching software); all traffic from the
physical network goes to the host hypervisor through
this gateway appliance, and then can be controlled by
NVP (and vice versa for the reverse direction). Gateway
appliances can be either within the MTD or at the tenant’s
remote site. Figure 3 depicts the resulting arrangement of
host hypervisors, service nodes and gateways, which we
collectively refer to as transport nodes.

2.3 Design Challenges
This brief overview of NVP hides many design challenges,
three of which we focus on in this paper.
Datapath design and acceleration. NVP relies on soft-
ware switching. In Section 3 we describe the datapath
and the substantial modifications needed to support high-
speed x86 encapsulation.
Declarative programming. The controller cluster is
responsible for computing all forwarding state and then
disseminating it to the virtual switches. To minimize
the cost of recomputation, ensure consistency in the face
of varying event orders, and promptly handle network
changes, we developed a declarative domain-specific
language for the controller that we discuss in Section 4.
Scaling the computation. In Section 5 we discuss the
issues associated with scaling the controller cluster.

After we discuss these design issues, we evaluate the
performance of NVP in Section 6, discuss related work
in Section 7, and then conclude in Sections 8 and 9.

3 Virtualization Support at the Edge
The endpoints of the tunnels created and managed by NVP
are in the virtual switches that run on host hypervisors,
gateways and service nodes. We refer to this collection
of virtual switches as the network edge. This section
describes how NVP implements logical datapaths at the
network edge, and how it achieves sufficient data plane
performance on standard x86 hardware.

3.1 Implementing the Logical Datapath
NVP uses Open vSwitch (OVS) [32] in all transport nodes
(host hypervisors, service nodes, and gateway nodes) to
forward packets. OVS is remotely configurable by the

3



206 11th USENIX Symposium on Networked Systems Design and Implementation  USENIX Association

NVP controller cluster via two protocols: one that can
inspect and modify a set of flow tables (analogous to
flow tables in physical switches),4 and one that allows the
controller to create and manage overlay tunnels and to
discover which VMs are hosted at a hypervisor [31].

The controller cluster uses these protocols to implement
packet forwarding for logical datapaths. Each logical
datapath consists of a series (pipeline) of logical flow
tables, each with its own globally-unique identifier.
The tables consist of a set of flow entries that specify
expressions to match against the header of a packet, and
actions to take on the packet when a given expression is
satisfied. Possible actions include modifying a packet,
dropping it, sending it to a given egress port on the logical
datapath, and modifying in-memory metadata (analogous
to registers on physical switches) associated with the
packet and resubmitting it back to the datapath for further
processing. A flow expression can match against this
metadata, in addition to the packet’s header. NVP writes
the flow entries for each logical datapath to a single OVS
flow table at each virtual switch that participates in the
logical datapath. We emphasize that this model of a
logical table pipeline (as opposed to a single table) is the
key to allowing tenants to use existing forwarding policies
with little or no change: with a table pipeline available
to the control plane, tenants can be exposed to features
and configuration models similar to ASIC-based switches
and routers, and therefore the tenants can continue to use
a familiar pipeline-based mental model.

Any packet entering OVS – either from a virtual
network interface card (vNIC) attached to a VM, an
overlay tunnel from a different transport node, or a
physical network interface card (NIC) – must be sent
through the logical pipeline corresponding to the logical
datapath to which the packet belongs. For vNIC and NIC
traffic, the service provider tells the controller cluster
which ports on the transport node (vNICs or NICs)
correspond to which logical datapath (see Section 5);
for overlay traffic, the tunnel header of the incoming
packet contains this information. Then, the virtual
switch connects each packet to its logical pipeline by
pre-computed flows that NVP writes into the OVS flow
table, which match a packet based on its ingress port
and add to the packet’s metadata an identifier for the first
logical flow table of the packet’s logical datapath. As
its action, this flow entry resubmits the packet back to
the OVS flow table to begin its traversal of the logical
pipeline.

The control plane abstraction NVP provides internally
for programming the tables of the logical pipelines is
largely the same as the interface to OVS’s flow table and

4We use OpenFlow [27] for this protocol, though any flow
management protocol with sufficient flexibility would work.

NVP writes logical flow entries directly to OVS, with two
important differences:

• Matches. Before each logical flow entry is written to
OVS, NVP augments it to include a match over the
packet’s metadata for the logical table’s identifier.
This enforces isolation from other logical datapaths
and places the lookup entry at the proper stage of
the logical pipeline. In addition to this forced match,
the control plane can program entries that match
over arbitrary logical packet headers, and can use
priorities to implement longest-prefix matching as
well as complex ACL rules.

• Actions. NVP modifies each logical action sequence
of a flow entry to write the identifier of the next
logical flow table to the packet’s metadata and to
resubmit the packet back to the OVS flow table.
This creates the logical pipeline, and also prevents
the logical control plane from creating a flow entry
that forwards a packet to a different logical datapath.

At the end of the packet’s traversal of the logical
pipeline it is expected that a forwarding decision for that
packet has been made: either drop the packet, or forward it
to one or more logical egress ports. In the latter case, NVP
uses a special action to save this forwarding decision in
the packet’s metadata. (Dropping translates to simply not
resubmitting a packet to the next logical table.) After the
logical pipeline, the packet is then matched against egress
flow entries written by the controller cluster according to
their logical destination. For packets destined for logical
endpoints hosted on other hypervisors (or for physical
networks not controlled by NVP), the action encapsulates
the packet with a tunnel header that includes the logical
forwarding decision, and outputs the packet to a tunnel
port. This tunnel port leads to another hypervisor for
unicast traffic to another VM, a service node in the case
of broadcast and multicast traffic, or a gateway node for
physical network destinations. If the endpoint happens to
be hosted on the same hypervisor, it can be output directly
to the logical endpoint’s vNIC port on the virtual switch.5

At a receiving hypervisor, NVP has placed flow entries
that match over both the physical ingress port for that end
of the tunnel and the logical forwarding decision present
in the tunnel header. The flow entry then outputs the
packet to the corresponding local vNIC. A similar pattern
applies to traffic received by service and gateway nodes.

The above discussion centers on a single L2 datapath,
but generalizes to full logical topologies consisting
of several L2 datapaths interconnected by L3 router
5For brevity, we don’t discuss logical MAC learning or stateful
matching operations, but in short, the logical control plane can
provide actions that create new lookup entries in the logical
tables, based on incoming packets. These primitives allow the
control plane to implement L2 learning and stateful ACLs, in a
manner similar to advanced physical forwarding ASICs.

4
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Figure 4: Processing steps of a packet traversing through two logical switches interconnected by a logical router (in the middle). Physical flows
prepare for the logical traversal by loading metadata registers: first, the tunnel header or source VM identity is mapped to the first logical datapath.
After each logical datapath, the logical forwarding decision is mapped to the next logical hop. The last logical decision is mapped to tunnel headers.

datapaths. In this case, the OVS flow table would hold
flow entries for all interconnected logical datapaths and
the packet would traverse each logical datapath by the
same principles as it traverses the pipeline of a single
logical datapath: instead of encapsulating the packet and
sending it over a tunnel, the final action of a logical
pipeline submits the packet to the first table of the
next logical datapath. Figure 4 depicts how a packet
originating at a source VM first traverses through a
logical switch (with ACLs) to a logical router before
being forwarded by a logical switch attached to the
destination VM (on the other side of the tunnel). This
is a simplified example: we omit the steps required for
failover, multicast/broadcast, ARP, and QoS, for instance.

As an optimization, we constrain the logical topology
such that logical L2 destinations can only be present at
its edge.6 This restriction means that the OVS flow table
of a sending hypervisor needs only to have flows for
logical datapaths to which its local VMs are attached as
well as those of the L3 routers of the logical topology;
the receiving hypervisor is determined by the logical IP
destination address, leaving the last logical L2 hop to be
executed at the receiving hypervisor. Thus, in Figure 4, if
the sending hypervisor does not host any VMs attached to
the third logical datapath, then the third logical datapath
runs at the receiving hypervisor and there is a tunnel
between the second and third logical datapaths instead.

3.2 Forwarding Performance

OVS, as a virtual switch, must classify each incoming
packet against its entire flow table in software. However,
flow entries written by NVP can contain wildcards for any
irrelevant parts of a packet header. Traditional physical
switches generally classify packets against wildcard flows
using TCAMs, which are not available on the standard
x86 hardware where OVS runs, and so OVS must use a
different technique to classify packets quickly.7

To achieve efficient flow lookups on x86, OVS exploits
traffic locality: the fact that all of the packets belonging
to a single flow of traffic (e.g., one of a VM’s TCP
connections) will traverse exactly the same set of flow
entries. OVS consists of a kernel module and a userspace
program; the kernel module sends the first packet of each
6We have found little value in supporting logical routers
interconnected through logical switches without tenant VMs.
7There is much previous work on the problem of packet
classification without TCAMs. See for instance [15, 37].

new flow into userspace, where it is matched against the
full flow table, including wildcards, as many times as the
logical datapath traversal requires. Then, the userspace
program installs exact-match flows into a flow table in
the kernel, which contain a match for every part of the
flow (L2-L4 headers). Future packets in this same flow
can then be matched entirely by the kernel. Existing work
considers flow caching in more detail [5, 22].

While exact-match kernel flows alleviate the challenges
of flow classification on x86, NVP’s encapsulation of all
traffic can introduce significant overhead. This overhead
does not tend to be due to tunnel header insertion, but to
the operating system’s inability to enable standard NIC
hardware offloading mechanisms for encapsulated traffic.

There are two standard offload mechanisms relevant to
this discussion. TCP Segmentation Offload (TSO) allows
the operating system to send TCP packets larger than
the physical MTU to a NIC, which then splits them into
MSS-sized packets and computes the TCP checksums for
each packet on behalf of the OS. Large Receive Offload
(LRO) does the opposite and collects multiple incoming
packets into a single large TCP packet and, after verifying
the checksum, hands it to the OS. The combination
of these mechanisms provides a significant reduction
in CPU usage for high-volume TCP transfers. Similar
mechanisms exist for UDP traffic; the generalization of
TSO is called Generic Segmentation Offload (GSO).

Current Ethernet NICs do not support offloading in the
presence of any IP encapsulation in the packet. That is,
even if a VM’s operating system would have enabled TSO
(or GSO) and handed over a large frame to the virtual NIC,
the virtual switch of the underlying hypervisor would have
to break up the packets into standard MTU-sized packets
and compute their checksums before encapsulating them
and passing them to the NIC; today’s NICs are simply not
capable of seeing into the encapsulated packet.

To overcome this limitation and re-enable hardware
offloading for encapsulated traffic with existing NICs,
NVP uses an encapsulation method called STT [8].8 STT
places a standard, but fake, TCP header after the physical
IP header. After this, there is the actual encapsulation
header including contextual information that specifies,
among other things, the logical destination of the packet.
The actual logical packet (starting with its Ethernet
header) follows. As a NIC processes an STT packet,
8NVP also supports other tunnel types, such as GRE [9] and
VXLAN [26] for reasons discussed shortly.

5
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it will first encounter this fake TCP header, and consider
everything after that to be part of the TCP payload; thus,
the NIC can employ its standard offloading mechanisms.

Although on the wire the STT packet looks like
standard TCP packet, the STT protocol is stateless and
requires no TCP handshake procedure between the tunnel
endpoints. VMs can run TCP over the logical packets
exchanged over the encapsulation.

Placing contextual information into the encapsulation
header, at the start of the fake TCP payload, allows for a
second optimization: this information is not transferred
in every physical packet, but only once for each large
packet sent to the NIC. Therefore, the cost of this context
information is amortized over all the segments produced
out of the original packet and additional information (e.g.,
for debugging) can be included as well.

Using hardware offloading in this way comes with a
significant downside: gaining access to the logical traffic
and contextual information requires reassembling the
segments, unlike with traditional encapsulation protocols
in which every datagram seen on wire has all headers in
place. This limitation makes it difficult, if not impossible,
for the high-speed forwarding ASICs used in hardware
switch appliances to inspect encapsulated logical traffic;
however, we have found such appliances to be rare in
NVP production deployments. Another complication is
that STT may confuse middleboxes on the path. STT
uses its own TCP transport port in the fake TCP header,
however, and to date administrators have been successful
in punching any necessary holes in middleboxes in the
physical network. For environments where compliance
is more important than efficiency, NVP supports other,
more standard IP encapsulation protocols.

3.3 Fast Failovers

Providing highly-available dataplane connectivity is a
priority for NVP. Logical traffic between VMs flowing
over a direct hypervisor-to-hypervisor tunnel clearly
cannot survive the failure of either hypervisor, and must
rely on path redundancy provided by the physical network
to survive the failure of any physical network elements.
However, the failure of any of the new appliances that
NVP introduces – service and gateway nodes – must cause
only minimal, if any, dataplane outage.

For this reason, NVP deployments have multiple
service nodes, to ensure that any one service node
failure does not disrupt logical broadcast and multicast
traffic. The controller cluster instructs hypervisors to load-
balance their packet replication traffic across a bundle of
service node tunnels by using flow hashing algorithms
similar to ECMP [16]. The hypervisor monitors these
tunnels using BFD [21]. If the hypervisor fails to receive
heartbeats from a service node for a configurable period of
time, it removes (without involving the controller cluster)

Hypervisor Hypervisor Gateway
VM1 VM2 VM3 VM4 VLAN VLAN

  ControllerProvisioned
Configuration (2)

Location information (1) and Forwarding State (3)

Network Hypervisor

Logical Control Planes
nlog Logical Datapaths

Figure 5: Inputs and outputs to the forwarding state computation process
which uses nlog, as discussed in §4.3.

the failed service node from the load-balancing tunnel
bundle and continues to use the remaining service nodes.

As discussed in Section 2, gateway nodes bridge
logical networks and physical networks. For the reasons
listed above, NVP deployments typically involve multi-
ple gateway nodes for each bridged physical network.
Hypervisors monitor their gateway tunnels, and fail
over to backups, in the same way they do for service
tunnels.9 However, having multiple points of contact with
a particular physical network presents a problem: NVP
must ensure that no loops between the logical and physical
networks are possible. If a gateway blindly forwarded
logical traffic to the physical network, and vice versa, any
traffic sent by a hypervisor over a gateway tunnel could
wind up coming back into the logical network via another
gateway attached to the same network, due to MAC
learning algorithms running in the physical network.

NVP solves this by having each cluster of gateway
nodes (those bridging the same physical network) elect
a leader among themselves. Any gateway node that is
not currently the leader will disable its hypervisor tunnels
and will not bridge traffic between the two networks,
eliminating the possibility of a loop. Gateways bridging
a physical L2 network use a lightweight leader election
protocol: each gateway broadcasts CFM packets [19]
onto that L2 network, and listens for broadcasts from all
other known gateways. Each gateway runs a deterministic
algorithm to pick the leader, and if it fails to hear
broadcasts from that node for a configurable period
of time, it picks a new leader.10 Broadcasts from an
unexpected gateway cause all gateways to disable their
tunnels to prevent possible loops.

4 Forwarding State Computation
In this section, we describe how NVP computes the
forwarding state for the virtual switches. We focus on a
single controller and defer discussion about distributing
the computation over a cluster to the following section.

4.1 Computational Structure of Controller
The controller inputs and outputs are structured as
depicted in Figure 5. First, hypervisors and gateways
9Gateway and service nodes do not monitor hypervisors, and
thus, they have little per tunnel state to maintain.

10L3 gateways can use ECMP for active-active scale-out instead.

6
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provide the controller with location information for vNICs
over the OVS configuration protocol [31] (1), updating
this information as virtual machines migrate. Hypervisors
also provide the MAC address for each vNIC.11 Second,
service providers configure the system through the NVP
API (see the following section) (2). This configuration
state changes as new tenants enter the system, as logical
network configuration for these tenants change, and when
the physical configuration of the overall system (e.g., the
set of managed transport nodes) changes.

Based on these inputs, the logical control plane com-
putes the logical lookup tables, which the network
hypervisor augments and transforms into physical for-
warding state (realized as logical datapaths with given
logical lookup entries, as discussed in the previous
section). The forwarding state is then pushed to transport
nodes via OpenFlow and the OVS configuration protocol
(3). OpenFlow flow entries model the full logical
packet forwarding pipeline, whereas OVS configuration
database entries are responsible for the tunnels connecting
hypervisors, gateways and service nodes, as well as any
local queues and scheduling policies.12

The above implies the computational model is en-
tirely proactive: the controllers push all the necessary
forwarding state down and do not process any packets.
The rationale behind this design is twofold. First, it
simplifies the scaling of the controller cluster because
infrequently pushing updates to forwarding instructions
to the switch, instead of continuously punting packets to
controllers, is a more effective use of resources. Second,
and more importantly, failure isolation is critical in that
the managed transport nodes and their data planes must
remain operational even if connectivity to the controller
cluster is transiently lost.

4.2 Computational Challenge

The input and output domains of the controller logic
are complex: in total, the controller uses 123 types
of input to generate 81 types of output. A single
input type corresponds to a single configured logical
feature or physical property; for instance, a particular
type of logical ACL may be a single logical input type,
whereas the location of a vNIC may be a single physical
input information type. Similarly, each output type
corresponds to a single type of attribute being configured
over OpenFlow or the OVS configuration protocol; for
example, a tunnel parameter and particular type of ACL
flow entries are both examples of individual output types.

The total amount of input state is also large, being
11The service provider’s cloud management system can provision
this information directly, if available.

12One can argue for a single flow protocol to program the entire
switch but in our experience trying to fold everything into a
single flow protocol only complicates the design.

proportional to the size of the MTD, and the state
changes frequently as VMs migrate and tenants join,
leave, and reconfigure their logical networks. The
controller needs to react quickly to the input changes.
Given the large total input size and frequent, localized
input changes, a naïve implementation that reruns the
full input-to-output translation on every change would
be computationally inefficient. Incremental computation
allows us to recompute only the affected state and push
the delta down to the network edge. We first used
a hand-written state machine to compute and update
the forwarding state incrementally in response to input
change events; however, we found this approach to be
impractical due to the number of event types that need
to be handled as well as their arbitrary interleavings.
Event handling logic must account for dependencies
on previous or subsequent events, deferring work or
rewriting previously generated outputs as needed. In
many languages, such code degenerates to a reactive,
asynchronous style that is difficult to write, comprehend,
and especially test.

4.3 Incremental State Computation with nlog

To overcome this problem, we implemented a domain-
specific, declarative language called nlog for computing
the network forwarding state. It allows us to separate logic
specification from the state machine that implements the
logic. The logic is written in a declarative manner that
specifies a function mapping the controller input to output,
without worrying about state transitions and input event
ordering. The state transitions are handled by a compiler
that generates the event processing code and by a runtime
that is responsible for consuming the input change events
and recomputing all affected outputs. Note that nlog is
not used by NVP’s users, only internally by its developers;
users interact with NVP via the API (see §5.3).

nlog declarations are Datalog queries: a single dec-
laration is a join over a number of tables that produces
immutable tuples for a head table. Any change in the
joined tables results in (incremental) re-evaluation of
the join and possibly in adding tuples to, or removing
tuples from, this head table. Joined tables may be
either input tables representing external changes (input
types) or internal tables holding only results computed by
declarations. Head tables may be internal tables or output
tables (output types), which cause changes external to the
nlog runtime engine when tuples are added to or removed
from the table. nlog does not currently support recursive
declarations or negation.13 In total, NVP has about 1200
declarations and 900 tables (of all three types).

13The lack of negation has had little impact on development
but the inability to recurse complicates computations where the
number of iterations is unknown at compile time. For example,
traversing a graph can only be done up to maximum diameter.
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# 1. Determine tunnel from a source hypervisor
# to a remote, destination logical port.
tunnel(dst_lport_id, src_hv_id, encap, dst_ip) :-

# Pick logical ports & chosen encap of a datapath.
log_port(src_lport_id, log_datapath_id),
log_port(dst_lport_id, log_datapath_id),
log_datapath_encap(log_datapath_id, encap),

# Determine current port locations (hypervisors).
log_port_presence(src_lport_id, src_hv_id),
log_port_presence(dst_lport_id, dst_hv_id),

# Map dst hypervisor to IP and omit local tunnels.
hypervisor_locator(dst_hv_id, dst_ip),
not_equal(src_hv_id, dst_hv_id);

# 2. Establish tunnel via OVS db. Assigned port # will
# be in input table ovsdb_tport. Ignore first column.
ovsdb_tunnel(src_hv_id, encap, dst_ip) :-

tunnel(_, src_hv_id, encap, dst_ip);

# 3. Construct the flow entry feeding traffic to tunnel.
# Before resubmitting packet to this stage, reg1 is
# loaded with ’stage id’ corresponding to log port.
ovs_flow(src_hv_id, of_expr, of_actions) :-

tunnel(dst_lport_id, src_hv_id, encap, dst_ip),
lport_stage_id(dst_lport_id, processing_stage_id),
flow_expr_match_reg1(processing_stage_id, of_expr),
# OF output action needs the assigned tunnel port #.
ovsdb_tport(src_hv_id, encap, dst_ip, port_no),
flow_output_action(port_no, of_actions);

Figure 6: Steps to establish a tunnel: 1) determining the tunnels, 2) creating OVS db entries, and 3) creating OF flows to output packets into tunnels.

The code snippet in Figure 6 has simplified nlog
declarations for creating OVS configuration database
tunnel entries as well as OpenFlow flow entries feeding
packets to tunnels. The tunnels depend on API-provided
information, such as the logical datapath configuration
and the tunnel encapsulation type, as well as the location
of vNICs. The computed flow entries are a part of the
overall packet processing pipeline, and thus, they use
a controller-assigned stage identifier to match with the
packets sent to this stage by the previous processing stage.

The above declaration updates the head table tunnel for
all pairs of logical ports in the logical datapath identified
by log_datapath_id. The head table is an internal table
consisting of rows each with four data columns; a single
row corresponds to a tunnel to a logical port dst_lport_id
on a remote hypervisor dst_hv_id (reachable at dst_ip)
on a hypervisor identified by src_hv_id for a specific
encapsulation type (encap) configured for the logical
datapath. We use a function not_equal to exclude tunnels
between logical ports on a single hypervisor. We will
return to functions shortly.

In the next two declarations, the internal tunnel table
is used to derive both the OVS database entries and
OpenFlow flows to output tables ovsdb_tunnel and
ovs_flow. The declaration computing the flows uses func-
tions flow_expr_reg1 and flow_output_action to compute
the corresponding OpenFlow expression (matching over
register 1) and actions (sending to a port assigned for
the tunnel). As VMs migrate, the log_port_presence
input table is updated to reflect the new locations of
each log_port_id, which in turn causes corresponding
changes to tunnel. This will result in re-evaluation of the
second and third declaration, which will result in OVS
configuration database changes that create or remove
tunnels on the corresponding hypervisors, as well as
OpenFlow entries being inserted or removed. Similarly,
as tunnel or logical datapath configuration changes, the
declarations will be incrementally re-evaluated.

Even though the incremental update model allows
quick convergence after changes, it is not intended for
reacting to dataplane failures at dataplane time scales. For
this reason, NVP precomputes any state necessary for
dataplane failure recovery. For instance, the forwarding

state computed for tunnels includes any necessary backup
paths to allow the virtual switch running on a transport
node to react independently to network failures (see §3.3).

Language extensions. Datalog joins can only rearrange
existing column data. Because most non-trivial programs
must also transform column data, nlog provides extension
mechanisms for specifying transformations in C++.

First, a developer can implement a function table,
which is a virtual table where certain columns of a row
are a stateless function of others. For example, a function
table could compute the sum of two integer columns and
place it in a third column, or create OpenFlow match
expressions or actions (like in the example above). The
base language provides various functions for primitive
column types (e.g., integers, UUIDs). NVP extends these
with functions operating over flow and action types, which
are used to construct the complex match expressions and
action sequences that constitute the logical datapath flow
entries. Finally, the developer is provided with not_equal
to express inequality between two columns.

Second, if developers require more complicated trans-
formations, they can hook an output and an input table
together through arbitrary C++ code. Declarations
produce tuples into the output table, which transforms
them into C++ and feeds them to the output table
C++ implementation. After processing, the C++ code
transforms them back into tuples and passes them to
nlog through the input table. For instance, we use this
technique to implement hysteresis that dampens external
events such as a network port status flapping.

5 Controller Cluster
In this section we discuss the design of the controller
cluster: the distribution of physical forwarding state
computation to implement the logical datapaths, the
auxiliary distributed services that the distribution of the
computation requires, and finally the implementation of
the API provided for the service provider.

5.1 Scaling and Availability of Computation
Scaling. The forwarding state computation is easily par-
allelizable and NVP divides computation into a loosely-
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Figure 7: NVP controllers arrange themselves into two layers.

coupled two-layer hierarchy, with each layer consisting of
a cluster of processes running on multiple controllers. We
implement all of this computation in nlog, as discussed in
the previous section.

Figure 7 illustrates NVP’s two-layer distributed con-
troller cluster. The top layer consists of logical controllers.
NVP assigns the computation for each logical datapath to
a particular live controller using its identifier as a sharding
key, parallelizing the computation workload.

Logical controllers compute the flows and tunnels
needed to implement logical datapaths, as discussed
in Section 3. They encode all computed flow entries,
including the logical datapath lookup tables provided
by the logical control planes and instructions to create
tunnels and queues for the logical datapath, as universal
flows, an intermediate representation similar to OpenFlow
but which abstracts out all transport-node-specific details
such as ingress, egress or tunnel port numbers, replacing
them with abstract identifiers. The universal flows are
published over RPC to the bottom layer consisting of
physical controllers.

Physical controllers are responsible for communicating
with hypervisors, gateways and service nodes. They
translate the location-independent portions of universal
flows using node- and location-specific state, such as IP
addresses and physical interface port numbers (which
they learn from attached transport nodes), as well as
create the necessary configuration protocol instructions
to establish tunnels and queue configuration. The
controllers then push the resulting physical flows (which
are now valid OpenFlow instructions) and configuration
protocol updates down to the transport nodes. Because
the universal-to-physical translation can be executed
independently for every transport node, NVP shards this
responsibility for the managed transport nodes among the
physical controllers.

This arrangement reduces the computational complex-
ity of the forwarding state computation. By avoiding the
location-specific details, the logical controller layer can
compute one “image” for a single ideal transport node
participating in a given logical datapath (having O(N)
tunnels to remote transport nodes), without considering
the tunnel mesh between all transport nodes in its full
O(N2) complexity. Each physical controller can then
translate that image into something specific for each of
the transport nodes under its responsibility.

Availability. To provide failover within the cluster, NVP
provisions hot standbys at both the logical and physical
controller layers by exploiting the sharding mechanism.
One controller, acting as a sharding coordinator, ensures
that every shard is assigned one master controller and
one or more other controllers acting as hot standbys. On
detecting the failure of the master of a shard, the sharding
coordinator promotes the standby for the shard to master,
and assigns a new controller instance as the standby for
the shard. On detecting the failure of the standby for a
shard, the sharding coordinator assigns a new standby
for the shard. The coordinator itself is a highly-available
service that can run on any controller and will migrate as
needed when the current coordinator fails.

Because of their large population, transport nodes do
not participate in the cluster coordination. Instead, OVS
instances are configured by the physical controllers to
connect to both the master and the standby physical
controllers for their shard, though their master controller
will be the only one sending them updates. Upon master
failure, the newly-assigned master will begin sending
updates via the already-established connection.

5.2 Distributed Services
NVP is built on the Onix controller platform [23] and
thus has access to the elementary distributed services
Onix provides. To this end, NVP uses the Onix repli-
cated transactional database to persist the configuration
state provided through API, but it also implements two
additional distributed services.
Leader election. Each controller must know which
shard it manages, and must also know when to take
over responsibility of slices managed by a controller
that has disconnected. Consistent hashing [20] is one
possible approach, but it tends to be most useful in
very large clusters; with only tens of controllers, NVP
simply elects a sharding coordinator using Zookeeper [17].
This approach makes it easier to implement sophisticated
assignment algorithms that can ensure, for instance, that
each controller has equal load and that assignment churn
is minimized as the cluster membership changes.
Label allocation. A network packet encapsulated in a
tunnel must carry a label that denotes the logical egress
port to which the packet is destined, so the receiving
hypervisor can properly process it. This identifier must
be globally unique at any point in time in the network, to
ensure data isolation between different logical datapaths.
Because encapsulation rules for different logical datapaths
may be calculated by different NVP controllers, the
controllers need a mechanism to pick unique labels, and
ensure they will stay unique in the face of controller
failures. Furthermore, the identifiers must be relatively
compact to minimize packet overhead. We use Zookeeper
to implement a label allocator that ensures labels will not
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be reused until NVP deletes the corresponding datapath.
The logical controllers use this label allocation service
to assign logical egress port labels at the time of logical
datapath creation, and then disseminate the labels to the
physical controllers via universal flows.

5.3 API for Service Providers
To support integrating with a service provider’s existing
cloud management system, NVP exposes an HTTP-based
REST API in which network elements, physical or logical,
are presented as objects. Examples of physical network
elements include transport nodes, while logical switches,
ports, and routers are logical network elements. Logical
controllers react to changes to these logical elements,
enabling or disabling features on the corresponding
logical control plane accordingly. The cloud management
system uses these APIs to provision tenant workloads,
and a command-line or a graphical shell implementation
could map these APIs to a human-friendly interface for
service provider administrators and/or their customers.

A single API request can require state from multiple
transport nodes, or both logical and physical information.
Thus, API operations generally merge information from
multiple controllers. Depending on the operation, NVP
may retrieve information on-demand in response to a
specific API request, or proactively, by continuously
collecting the necessary state.

6 Evaluation
In this section, we present measurements both for the
controller cluster and the edge datapath implementation.

6.1 Controller Cluster
Setup. The configuration in the following tests has 3,000
simulated hypervisors, each with 21 vNICs for a total
of 63,000 logical ports. In total, there are 7000 logical
datapaths, each coupled with a logical control plane
modeling a logical switch. The average size of a logical
datapath is 9 ports, but the size of each logical datapath
varies from 2 to 64. The test configures the logical control
planes to use port ACLs on 49,188 of the logical ports
and generic ACLs for 1,553 of the logical switches.14

The test control cluster has three nodes. Each controller
is a bare-metal Intel Xeon 2.4GHz server with 12 cores,
96GB of memory, and 400GB hard disk. The logical and
physical computation load is distributed evenly among the
controllers, with one master and one standby per shard.
The physical network is a dedicated switched network.

Each simulated hypervisor is a Linux VM that contains
an OVS instance with a TUN device simulating each
virtual interface on the hypervisor. The simulated hyper-
visors run within XenServer 5.6 physical hypervisors, and

14This serves as our base validation test; other tests stress the
system further both in scale and in complexity of configurations.
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Figure 8: Cold start connectivity as a percentage of all pairs connected.

are connected via Xen bridges to the physical network.
We test four types of conditions the cluster may face.
Cold start. The cold start test simulates bringing the
entire system back online after a major datacenter disaster
in which all servers crash and all volatile memory is lost.
In particular, the test starts with a fully configured system
in a steady state, shuts down all controllers, clears the
flows on all OVS instances, and restarts everything.
Restore. The restore test simulates a milder scenario
where the whole control cluster crashes and loses all
volatile state but the dataplane remains intact.
Failover. The failover test simulates a failure of a single
controller within a cluster.
Steady state. In the steady state test, we start with a
converged idle system. We then add 10 logical ports to
existing switches through API calls, wait for connectivity
correctness on these new ports, and then delete them. This
simulates a typical usage of NVP, as the service provider
provisions logical network changes to the controller as
they arrive from the tenant.

In each of the tests, we send a set of pings between
logical endpoints and check that each ping either succeeds
if the ping is supposed to succeed, or fails if the ping is
supposed to fail (e.g., when a security policy configuration
exists to reject that ping). The pings are grouped into
rounds, where each round measures a sampling of logical
port pairs. We continue to perform ping rounds until all
pings have the desired outcome and the controllers finish
processing their pending work. The time between the
rounds of pings is 5-6 minutes in our tests.

While the tests are running, we monitor the sizes of all
the nlog tables; from this, we can deduce the number of
flows computed by nlog, since these are stored in a single
table. Because nlog is running in a dedicated thread, we
measure the time this thread was running and sleeping to
get the load for nlog computation.

Finally, we note that we do not consider routing
convergence of any kind in the tests. Physical routing
protocols handle any failures in the connectivity between
the nodes, and thus, aside from tunnel failovers, the
network hypervisor can remain unaware of such events.

Results. Figure 8 shows the percentage of correct pings
over time for the cold start test, beginning at time 0. It
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Figure 10: Memory used by a controller after a cold start.

starts at 17% because 17% of the pings are expected to
fail, which they do in the absence of any flows pushed
to the datapath. Note that, unlike typical OpenFlow
systems, NVP does not send packets for unclassified flows
to the controller cluster; instead, NVP precomputes all
necessary flow changes after each configuration change.
Thus, cold start represents a worst-case scenario for
NVP: the controller cluster must compute all state and
send it to the transport nodes before connectivity can
be fully established. Although it takes NVP nearly
an hour to achieve full connectivity in this extreme
case, the precomputed flows greatly improve dataplane
performance at steady state. While the cold-start time is
long, it is relevant only in catastrophic outage conditions
and thus considered reasonable: after all, if hypervisors
remain powered on, the data plane will also remain
functional even though the controllers have to go through
cold-start (as in the restore test below).

The connectivity correctness is not linear for two
reasons. First, NVP does not compute flows for one
logical datapath at a time, but does so in parallel for all of
them; this is due to an implementation artifact stemming
from arbitrary evaluation order in nlog. Second, for a
single ping to start working, the correct flows need to be
set up on all the transport nodes on the path of the ping
(and ARP request/response, if any).

We do not include a graph for connectivity correctness
during the restore or failover cases, but merely note that
connectivity correctness remains at 100% during these
tests. The connectivity is equally well-maintained in the
case of adding or removing controllers to the cluster, but
again we do not include a graph here for brevity.

Figure 9 shows the total number of tuples, as well
as the total number of flows, produced by nlog on a
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Figure 11: nlog load during cold start.

single controller over time during the cold start test. The
graphs show that nlog is able to compute about 1.8M
flows in about 20 minutes, involving about 37M tuples in
total across all nlog tables. This means that to produce
1 final flow, we have an average of 20 intermediary
tuples, which points to the complexity of incorporating
all of the possible factors that can affect a flow. After
converging, the measured controller uses approximately
27G of memory, as shown in Figure 10.

Since our test cluster has 3 controllers, 1.8M flows
is 2/3 of all the flows in the system, because this one
controller is the master for 1/3 of the flows and standby for
1/3 of the flows. Additionally, in this test nlog produces
about 1.9M tuples per minute on average. At peak
performance, it produces up to 10M tuples per minute.

Figure 11 shows nlog load during the cold start test.
nlog is almost 100% busy for 20 minutes. This shows
that controller can read its database and connect to the
switches (thereby populating nlog input tables) faster than
nlog can process it. Thus, nlog is the bottleneck during
this part of the test. During the remaining time, NVP
sends the computed state to each hypervisor.

A similar load graph for the steady state test is
not included but we merely report the numeric results,
highlighting nlog’s ability to process incremental changes
to inputs: the addition of 10 logical ports (to the existing
63,000) results in less than 0.5% load for a few seconds.
Deleting these ports results in similar load. This test
represents the usual state of a real deployment – constantly
changing configuration at a modest rate.

6.2 Transport Nodes
Tunnel performance. Table 1 shows the throughput and
CPU overhead of using non-tunneled, STT, and GRE to
connect two hypervisors. We measured throughput using
Netperf’s TCP_STREAM test. Tests ran on two Intel
Xeon 2.0GHz servers with 8 cores, 32GB of memory, and
Intel 10Gb NICs, running Ubuntu 12.04 and KVM. The
CPU load represents the percentage of a single CPU core
used, which is why the result may be higher than 100%.
All the results only take into account the CPU used to
switch traffic in the hypervisor, and not the CPU used by
the VMs. The test sends a single flow between two VMs
on the different hypervisors.

We see that the throughput of GRE is much lower
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No encap STT GRE
TX CPU load 49% 49% 85%
RX CPU load 72% 119% 183%
Throughput 9.3Gbps 9.3Gbps 2.4Gbps

Table 1: Non-tunneled, STT, and GRE performance.
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Figure 12: Tunnel management CPU load as a % of a single core.

and requires more CPU than either of the other methods
due to its inability to use hardware offloading. However,
STT’s use of the NIC’s TCP Segmentation Offload (TSO)
engine makes its throughput performance comparable to
non-tunneled traffic between the VMs. STT uses more
CPU on the receiving side of the tunnel because, although
it is able to use LRO to coalesce incoming segments, LRO
does not always wait for all packet segments constituting
a single STT frame before passing the result of coalescing
down to OS. After all, for NIC the TCP payload is a byte
stream and not a single jumbo frame spanning multiple
datagrams on the wire; therefore, if there is enough time
between two wire datagrams, the NIC may decide to pass
the current result of the coalescing to the OS, just to avoid
introducing excessive extra latency. STT requires the full
set of segments before it can remove the encapsulation
header within the TCP payload and deliver the original
logical packet, and so on these occasions it must perform
the remaining coalescing in software.

Connection set up. OVS connection setup performance
has been explored in the literature (see e.g., [32–34]) and
we have no new results to report here, though we return
to the topic shortly in Section 8.

Tunnel scale. Figure 12 shows the keepalive message
processing cost as the number of tunnels increases. This
test is relevant for our gateways and service nodes, which
have tunnels to potentially large numbers of hypervisors
and must respond to keepalives on all of these tunnels.
The test sends heartbeats at intervals of 500ms, and the
results indicate a single CPU core can process and respond
to them in a timely manner for up to 5000 tunnels.

7 Related Work
NVP borrows from recent advances in datacenter network
design (e.g., [1, 12, 30]), software forwarding, program-
ming languages, and software defined networking, and
thus the scope of related work is vast. Due to limited
space, we only touch on topics where we feel it useful
to distinguish our work from previous efforts. While

NVP relies on SDN [3, 4, 13, 14, 23, 27] in the form of an
OpenFlow forwarding model and a control plane managed
by a controller, NVP requires significant extensions.

Virtualization of the network forwarding plane was
first described in [6]; NVP develops this concept fur-
ther and provides a detailed design of an edge-based
implementation. However, network virtualization as a
general concept has existed since the invention of VLANs
that slice Ethernet networks. Slicing as a mechanism to
share resources is available at various layers: IP routers
are capable of running multiple control planes over one
physical forwarding plane [35], and FlowVisor introduced
the concept of slicing to OpenFlow and SDN [36].
However, while slicing provides isolation, it does not
provide either the packet or control abstractions that
enable tenants to live within a faithful logical network.
VMs were proposed as a way to virtualize routers [38]
but this is not a scalable solution for MTDs.

NVP uses a domain-specific declarative language for
efficient, incremental computation of all forwarding
state. Expressing distributed (routing) algorithms in
datalog [24, 25] is the most closely related work, but
it focuses on concise, intuitive modeling of distributed
algorithms. Since the early versions of NVP, our
focus has been on structuring the computation within
a single node to allow efficient incremental computation.
Frenetic [10,11] and Pyretic [28] have argued for reactive
functional programming to simplify the implementation
of packet forwarding decisions, but they focused on
reactive packet processing rather than the proactive
computations considered here. Similarly to NVP (and [6]
before it), Pyretic [28] identifies the value of an abstract
topology and uses it to support composing modular
control logic.

8 Discussion
After having presented the basic design and its perfor-
mance, we now return to discuss which aspects of the
design were most critical to NVP’s success.

8.1 Seeds of NVP’s Success
Basing NVP on a familiar abstraction. While one
could debate which abstraction best facilitates the manage-
ment of tenant networks, the key design decision (which
looks far more inevitable now than four years ago when
we began this design) was to make logical networks look
exactly like current network configurations. Even though
current network control planes have many flaws, they
represent a large installed base; NVP enables tenants to
use their current network policies without modification in
the cloud, which greatly facilitates adoption of both NVP
and MTDs themselves.
Declarative state computation. Early versions of NVP
used manually designed state machines to compute
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forwarding state; these rapidly became unwieldy as
additional features were added, and the correctness of
the resulting computations was hard to ensure because of
their dependency on event orderings. By moving to nlog,
we not only ensured correctness independent of ordering,
but also reduced development time significantly.

Leveraging the flexibility of software switching. Inno-
vation in networking has traditionally moved at a glacial
pace, with ASIC development times competing with the
IETF standardization process for which is slower. On
the forwarding plane, NVP is built around Open vSwitch
(OVS); OVS went from a crazy idea to a widely-used
component in SDN designs in a few short years, with
no haggling over standards, low barriers to deployment
(since it is merely a software upgrade), and a diverse
developer community. Moreover, because it is a software
switch, we could add new functionality without concerns
about artificial limits on packet matches or actions.

8.2 Lessons Learned

Growth. With network virtualization, spinning up a new
environment for a workload takes a matter of minutes
instead of weeks or months. While deployments often
start cautiously with only a few hundred hypervisors, once
the tenants have digested the new operational model and
its capabilities their deployments typically witness rapid
growth resulting in a few thousand hypervisors.

The story is similar for logical networks. Initial
workloads require only a single logical switch connecting
a few tens of VMs, but as the deployments mature, tenants
migrate more complicated workloads. At that point,
logical networks with hundreds of VMs attached to a
small number of logical switches interconnected by one or
two logical routers, with ACLs, become more typical. The
overall trends are clear: in our customers’ deployments,
both the number of hypervisors as well as the complexity
and size of logical networks tend to grow steadily.

Scalability. In hindsight, the use of OpenFlow has been
a major source of complications, and here we mention
two issues in particular. First, the overhead OpenFlow
introduces within the physical controller layer became the
limiting factor in scaling the system; unlike the logical
controller which has computational complexity of O(N),
the need to tailor flows for each hypervisor (as required by
OpenFlow) requires O(N2) operations. Second, as the
deployments grow and clusters operate closer to their
memory limits, handling transient conditions such as
controller failovers requires careful coordination.

Earlier in the product lifecycle, customers were not
willing to offload much computation into the hypervisors.
While still a concern, the available CPU and memory
resources have grown enough over the years that in
the coming versions of the product, we can finally run

the physical controllers within the hypervisors without
concern. This has little impact to the overall system
design but moving the physical controllers down to the
hypervisors reduces the cluster requirements by an order
of magnitude. Interestingly, this also makes OpenFlow
a local protocol within the hypervisor, which limits its
impact on the rest of the system.

Failure isolation. While the controller cluster provides
high-availability, the non-transactional nature of Open-
Flow results in situations where switches operate over
inconsistent and possibly incomplete forwarding state
due to a controller crash or connectivity failure between
the cluster and hypervisor. While a transient condition,
customers expect better consistency between the switches
and controllers. To this end, the next versions of NVP
make all declarative computation and communication
channels “transactional”: given a set of changes in
the configuration, all related incremental updates are
computed and pushed to the hypervisors as a batch which
is then applied atomically at the switch.

Forwarding performance. Exact match flow caching
works well for typical workloads where the bulk of the
traffic is due to long-lived connections; however, there
are workloads where short-lived connections dominate.
In these environments, exact match caching turned out
to be insufficient: even if the packet forwarding rates
were sufficiently high, the extra CPU load introduced was
deemed unacceptable by our customers.

As a remedy, OVS replaced the exact match flow
cache with megaflows. In short, unlike exact match
flow cache, megaflows caches wildcarded forwarding
decisions matching over larger traffic aggregates than
a single transport connection. The next step is to re-
introduce the exact match flow cache and as a result there
will be three layers of packet processing: exact match
cache handling packets after the first packets of transport
connections (one hash lookup), megaflows that handle
most of the first packets of transport connections (a single
flow classification) and a slow path finally handling the
rest (a sequence of flow classifications).

9 Conclusion
Network virtualization has seen a lot of discussion and
popularity in academia and industry, although little
has been written about practical network virtualization
systems, or how they are implemented and deployed. In
this paper, we described the design and implementation
of NVP, a network virtualization platform, that has been
deployed in production environments for last few years.
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