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Abstract

ThelCP (Iterative ClosestPoint) algorithmis widely usedfor ge-
ometric alignmentof three-dimensionamodelswhenan initial
estimateof therelativeposeis known.Manyvariantsof ICP have
beenproposedaffectingall phasesof the algorithmfromthe se-
lection and matcing of pointsto the minimizationstrategy. We
enumeate andclassifymanyof thesevariants,and evaluatetheir
effect on the speedwith which the correct alignmentis readed.
In orderto improve corvemgencefor nearly-flatmeshesvith small
featues, sud asinscribedsurfaceswe introducea new variant
basedon uniform samplingof the spaceof normals.We conclude
by proposinga combinationof ICP variants optimizedfor high
speed. We demonstate an implementatiorthat is able to align
two range imagesin a few tensof millisecondsassuminga good
initial guessThiscapabilityhaspotentialapplicationto real-time
3D modelacquisitionand model-basedracking.

1 Introduction — Taxonom y of ICP Variants

ThelCP (originally Iterative ClosestPPoint, thoughlterative Corre-
spondingPointis perhaps betterexpansionfor theabbreiation)
algorithm hasbecomethe dominantmethodfor aligning three-
dimensionamodelshasedpurelyonthegeometryandsometimes
color, of themeshesThealgorithmis widely usedfor registering
the outputsof 3D scannersyhich typically only scanan object
from one direction at a time. ICP startswith two meshesand
aninitial guessfor their relative rigid-body transform,anditera-
tively refinesthe transformby repeatedlygeneratingrairsof cor-
respondingpointson the meshesandminimizing anerror metric.
Generatingheinitial alignmentmaybedoneby avarietyof meth-
ods, suchastracking scanneiposition, identificationand index-
ing of surfacefeaturedFaugeras6, Stein92], “spin-image”sur
facesignaturegJohnsorf74, computingprincipal axesof scans
[Dorai 97], exhaustve searchor correspondingpoints[Chen98,
Chen99], or userinput. In this paperwe assumehata roughini-
tial alignmentis alwaysavailable. In addition,we focusonly on
aligningasinglepair of meshesanddonotaddressheglobalreg-
istration problem[Bergevin 96, Stoddart96, Pulli 97, Pulli 99.

Sincethe introductionof ICP by ChenandMedioni [Chen91]
and Besl and McKay [Besl 92], mary variantshave beenintro-
ducedon the basiclCP concept. We may classify thesevariants
asaffectingoneof six stageof thealgorithm:

1. Selection of somesetof pointsin oneor bothmeshes.

2. Matching thesepointsto samplesn the othermesh.

3. Weighting the correspondingpairsappropriately

4. Rejecting certainpairsbasedon looking at eachpair indi-
vidually or consideringhe entiresetof pairs.

5. Assigninganerror metric basednthepointpairs.

6. Minimizing theerrormetric.

In this paper we will look at variantsin eachof thesesix cat-
egories,andexaminetheir effectson the performancef ICP. Al-
thoughour main focusis on the speedof corvergence,we also

considettheaccurag of thefinal answerandtheability of ICP to

reachthecorrectsolutiongiven“dif ficult” geometry Ourcompar

isonssuggest combinationof ICP variantsthatis ableto aligna

pair of meshesn a few tensof milliseconds,significantlyfaster
thanmostcommonly-usedCP systems.The availability of such
areal-timelCP algorithmmayenablesignificanthewn applications
in model-basedrackingand3D scanning.

In this paper we first presenthe methodologyusedfor com-
paring ICP variants,andintroducea numberof testscenesaised
throughouthepaper Next, we summarizeseveral ICP variantsin
eachof the above six categories,and comparetheir convergence
performance.As part of the comparisonwe introducethe con-
ceptof normal-space-directeshmpling andshow thatit improves
corvergencein scenesnvolving sparsesmall-scalesurfacefea-
tures. Finally, we examinea combinationof variantsoptimized
for high speed.

2 Comparison Methodology

Our goalis to comparethe cornvergencecharacteristicef several
ICPvariants.In orderto limit the scopeof the problem,andavoid
acombinatoriakxplosionin thenumberof possibilities we adopt
the methodologyof choosinga baselinecombinationof variants,
and examining performanceasindividual ICP stagesare varied.
The algorithmwe will selectasour baselinds essentiallythat of
[Pulli 99], incorporatinghefollowing features:

e Randomsamplingof pointson bothmeshes.

e Matching eachselectedpoint to the closestsamplein the
othermeshthathasa normalwithin 45 degreesof thesource
normal.

e Uniform (constantweightingof point pairs.

e Rejectionof pairscontainingedgevertices,aswell asaper
centageof pairswith thelargestpoint-to-pointdistances.

e Point-to-planeerrormetric.

e The classic“select-match-minimize’iteration, rather than
someothersearchor thealignmenttransform.

We pick this algorithm becauset hasreceved extensve usein
a productionervironment[Levoy 00], and hasbeenfound to be
robustfor scannedlatacontainingmary kindsof surfacefeatures.

In addition, to ensurefair comparisonsamong variants, we
male thefollowing assumptions:

o Thenumberof sourcepointsselecteds always2,000.Since
themeshesvewill considethave 100,000samplesthis cor-
respondgo a samplingrateof 1% permeshif sourcepoints
areselectedrom both meshespr 2% if pointsareselected
from only onemesh.

e All meshesve usearesimpleperspectie rangeimages.as
opposedo generalrregularmeshessincethis enablexom-
parisonsbetweericlosestpoint” and“projectedpoint” vari-
ants(seeSection3.2).

e Surface normalsare computedsimply basedon the four
nearesheighborsn therangegrid.



(a) Wave

(b) Fractallandscape

(c) Incisedplane

Figure 1: Testscenewsisedthroughouthis paper

e Only geometryis usedfor alignmentnotcolor or intensity

With the exceptionof the last one, we expectthat changingary
of theseimplementatiorchoiceswould affect the quantitatie, but
not the qualitative, performanceof our tests. Although we will

not comparevariantsthat usecolor or intensity it is clearly ad-
vantageouso usesuchdatawhenavailable,sinceit canprovide
necessargonstraintsn areaswheretherearefew geometricfea-
tures.

2.1 Test Scenes

We usethreesynthetically-generatescenedo evaluatevariants.
The“wave” scene(Figurela)is an easycasefor mostICP vari-

ants, sinceit containsrelatively smoothcoarse-scal@eometry
The two mesheshave independently-adde@aussiamoise,out-
liers,anddropouts.The“fractal landscapetestscengFigurelb)
hasfeaturesatall levels of detail. The“incisedplane”scengFig-

ure 1c) consistsof two planeswith Gaussiamoiseand grooves
in the shapeof an “X.” This is a difficult scenefor ICP, and
mostvariantsdo notcornvergeto thecorrectalignment.evengiven
the small relative rotationin this startingposition. Note thatthe
threetestscenegonsisof low-frequeng, all-frequeny, andhigh-
frequeny featuresrespectiely. Thoughthesescenesertainly
do not cover all possibleclassesof scannedobjects,they are
representate of surfacesencounteredn mary classesof scan-
ning applications.For example,the Digital MichelangeloProject
[Levoy 0Q] involved scanningsurfacescontaininglow-frequeng

features(e.g., smoothstatues) fractal-like features(e.g., unfin-
ishedstatueswith visible chiselmarks),andincisions(e.g.,frag-
mentsof the FormaUrbis Romee).

The motivation for usingsyntheticdatafor our comparisonss
sothatwe know the correcttransformexactly, and can evaluate
the performanceof ICP algorithmsrelative to this correctalign-
ment. The metricwe will usethroughouthis paperis root-mean-
squarepoint-to-pointdistanceor the actual correspondingpoints
in the two meshes.Using sucha “ground truth” error metric al-
lows for more objective comparisonf the performanceof ICP
variantsthanusingthe error metricscomputedby the algorithms
themseles.

We only presenthe resultsof onerun for eachtestedvariant.
Although a single run clearly can not be taken as representing
the performanceof an algorithmin all situations,we have tried
to show typical resultsthat capturethe significantdifferencesn
performanceon variouskinds of scenes Any casesn which the
presentedesultsarenot typical arenotedin thetext.

All reportedrunningtimesarefor a C++ implementatiorrun-
ningona550MHz Pentiumlll Xeonprocessor

3 Comparisons of ICP Variants

We now examinel CP variantsfor eachof the stagedistedin Sec-
tion 1. For eachstage we summarizehe variantsin theliterature
andcomparetheir performancen our testscenes.

3.1 Selection of Points

We begin by examiningthe effect of the selectionof point pairs
on the corvergenceof ICP. The following stratgies have been
proposed:

e Alwaysusingall availablepoints[Besl| 92].
e Uniform subsamplingf the availablepoints[Turk 94].

e Randomsampling(with adifferentsampleof pointsateach
iteration)[Masuda96].

e Selectionof pointswith high intensity gradient,in variants
that use persamplecolor or intensity to aid in alignment
[Weik 97].

e Eachof theprecedingschemesnayselectpointsononly one
mesh,or selectsourcepointsfrom bothmeshegGodin 94].

In addition to these,we introducea new samplingstratey:
choosingpoints suchthat the distribution of normalsamongse-
lectedpointsis aslarge aspossible.The motivationfor this strat-
egy is the obseration that for certainkinds of scenegsuchas
our “incised plane” dataset) small featuresof the modelare vi-
tal to determiningthe correctalignment. A stratgly suchasran-
dom samplingwill oftenselectonly a few samplesn thesefea-
tures, which leadsto an inability to determinecertain compo-
nentsof the correctrigid-body transformation. Thus, one way
to improve the chancesthat enoughconstraintsare presentto
determineall the componentf the transformationis to bucket
the points accordingto the position of the normalsin angular
space then sampleas uniformly as possibleacrossthe buckets.
Normal-spacesamplingis thereforea very simple example of
using surfacefeaturesfor alignment;it haslower computational
cost,but lower robustnessthantraditionalfeature-basethethods
[Faugeras36, Stein92, Johnsord74.

Let uscomparethe performanceof uniform subsamplingran-
dom sampling,and normal-spaceamplingon the “wave” scene
(Figure2). As we cansee,the corvergenceperformancas sim-
ilar. This indicatesthat for a scenewith a good distribution of
normalsthe exactsamplingstrateyy is not critical. Theresultsfor
the“incisedplane”scendook different,however (Figure3). Only
thenormal-spacsamplingis ableto converge for this dataset.

The reasonis that samplesnot in the grooves are only help-
ful in determiningthreeof the six component®f the rigid-body
transformatior{onetranslatiorandtwo rotations).Theotherthree
componentgtwo translationsandonerotation,within the plane)
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Figure 2. Comparisonof convergenceratesfor uniform, random,and
normal-spacsamplingfor the“wave” meshes.
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Figure 3: Comparisonof convergenceratesfor uniform, random,and

normal-spacsamplingfor the “incised plane” meshes Note that, on the
lower curve, thegroundtruth errorincreasedriefly in theearlyiterations.
Thisillustratesthe differencebetweerthe groundtruth errorandthealgo-
rithm’s estimateof its own error
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Figure 4: Correspondingpoint pairs selectedby the (a) “random sam-
pling” and (b) “normal-spacesampling” stratgies for an incised mesh.
Usingrandomsampling the sparsdeaturesnaybeoverwhelmedoy pres-
enceof noiseor distortion,causingthe ICP algorithmto not converge to

acorrectalignment(c). The normal-spacesamplingstratgy ensureghat
enoughsamplesareplacedin the featureto bring the surfacesinto align-

ment(d). “Closestcompatiblepoint” matching(seeSection3.2) wasused

for this example. The meshesn (c) and(d) arescansof fragmentl65dof
theFormaUrbis Romee.
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Figure 5: Comparisorof convergenceratesfor single-source-mesand

both-source-messamplingstratgiesfor the“wave” meshes.

Convergence rate for "wave" scene using "normal shooting"

T T T

\ Source points in one mesh ~ —+—

\ Source points in both meshes ~ --%--

\\

15
5 }
£ \
5] \
= Y
4] \
£ 1
c \
2 \
s \
[%) \
= V!
@ 05 X
o
X3y X
° — w
0 2 4 6 8 10

Iteration

Figure 6: Comparisonof convergenceratesfor single-source-mesand

both-source-meskamplingstratgies for the “wave” meshesusing nor
mal shootingasthematchingalgorithm.

aredeterminecentirely by sampleswithin theincisions.Theran-
domanduniform samplingstratgjiesonly placea few samplesn
thegrooves(Figureda). This, togethemwith thefactthatnoiseand
distortionon therestof the planeoverwhelmsthe effect of those
pairsthatare sampledrom thegrooves,accountdor theinability
of uniform andrandomsamplingto convergeto the correctalign-

ment.Corversely normal-spacsamplingselectsalargernumber
of samplesn thegrooves(Figure4b).

Sampling Direction: Wenow look attherelative advantageof
choosingsourcepointsfrom bothmeshesyersuschoosingpoints
from only one mesh. For the “wave” testsceneand the base-
line algorithm, the differenceis minimal (Figure 5). However,
this is partly dueto the fact that we usedthe closestcompatible
point matchingalgorithm (seeSection3.2), which is symmetric
with respecto the two meshes.If we usea more “asymmetric”
matchingalgorithm, suchas projectionor normal shooting(see
Section3.2), we seethat samplingfrom both meshesappeargo
give slightly betterresults(Figure6), especiallyduring the early
stageof theiterationwhenthe two meshesrestill far apart. In
addition, we expectthat samplingfrom both meshesvould also

improve resultswhenthe overlapof the meshess small,or when
themeshegontainmary holes.

3.2 Matching Points

The next stageof ICP that we will examineis correspondence

finding. Algorithms have beenproposedthat, for eachsample
pointselected:

e Findtheclosespointin theothermeshBesl 92]. Thiscom-
putationmay be acceleratedisinga k-d treeand/orclosest-
pointcaching[Simon96].



e Findtheintersectiorof therayoriginatingatthesourcepoint
in the directionof the sourcepoint’s normalwith the desti-
nationsurface[Chen91]. We will referto this as“normal
shooting.

e Projectthe sourcepoint onto the destinationmesh, from
the point of view of the destinationmeshs rangecamera
[Blais 95, Neugebaue®7]. This hasalsobeencalled “re-
versecalibration’”

e Projectthe sourcepoint onto the destinationmesh, then
perform a searchin the destinationrange image. The
searchmight usea metric basedon point-to-pointdistance
[Benjemaad7], point-to-raydistancgDorai 98], or compat-
ibility of intensity[Weik 97] or color [Pulli 97].

o Any of theabore methodsrestrictedo only matchingpoints
compatiblewith thesourcepointaccordingo agivenmetric.
Compatibility metricsbasedon color [Godin 94] andangle
betweemormals[Pulli 99] have beenexplored.

Sincewe are not analyzingvariantsthat use color, the particu-
lar variantswe will compareare: closestpoint, closestcompat-
ible point (normalswithin 45 degrees),normal shooting,normal
shootingto a compatiblepoint (normalswithin 45 degrees),pro-

jection,andprojectionfollowed by search Thefirst four of these
algorithmsareacceleratedisingak-d tree.For thelastalgorithm,
thesearchs actuallyimplementedisasteepest-desceneighbor

to-neighbomwalk in the destinatiormeshthatattemptgo find the
closestpoint. We chosethis variationbecauset works nearlyas
well asprojectionfollowedby exhaustve searchin somewindow,

but haslower runningtime.

We first look at performancdor the “fractal” scengFigure7).
For this scene,normal shootingappeargo producethe bestre-
sults, followed by the projectionalgorithms. The closest-point
algorithms,in contrastperformrelatively poorly. We hypothesize
thatthereasorfor thisis thattheclosest-poinalgorithmsaremore
sensitve to noiseandtendto generatéargernumbersof incorrect
pairingsthanthe otheralgorithms(Figure8).

Thesituationin the“incisedplane”scenehowever, is different
(Figure9). Here,the closest-pointlgorithmswerethe only ones
that corverged to the correctsolution. Thus, we concludethat
althoughthe closest-pointalgorithmsmight not have the fastest
corvergenceratefor “easy” scenesthey arethe mostrohust for
“difficult” geometry

Thoughsofarwe have beenlooking aterrorasafunctionof the
numberof iterationsit is alsoinstructive to look aterrorasafunc-
tion of runningtime. Becaus¢hematchingstageof ICPis usually
theonethattakesthe longest.applicationghatrequirelCP to run
quickly (andthatdo not needto dealwith the geometrically‘dif-
ficult” casesmustchoosehe matchingalgorithmwith thefastest
performancelet usthereforecompareerrorasafunctionof time
for thesealgorithmsfor the “fractal” scene(Figure 10). We see
thatalthoughthe projectionalgorithmdoesnot offer the bestcon-
vergenceper iteration,eachiterationis fasterthananiterationof
closespointfindingor normalshootingbecausd is performedn
constantime, ratherthaninvolving aclosest-poinsearchiwhich,
evenwhenacceleratethy ak-dtree,takesO(logn) time). As are-
sult, the projection-basealgorithmhasa significantlyfasterrate
of cornvergencevs.time. Notethatthis graphdoesnotincludethe
time to computethe k-d treesusedby all but the projectionalgo-
rithms. Including the precomputatiortime (approximately0.64
seconddor thesemeshesyvould produceevenmorefavorablere-
sultsfor the projectionalgorithm.
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Figure 7. Comparisorof convergenceratesfor the “fractal” meshesfor
avarietyof matchingalgorithms.
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Figure 9: Comparisonof corvergencerates for the “incised plane”
meshesfor avarietyof matchingalgorithms.Normal-space-directeshm-
pling wasusedfor thesemeasurements.
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Figure 11: Comparisorof corvergenceratesfor the “wave” meshesfor
severalchoicesof weightingfunctions.In orderto increasehedifferences
amongthe variantswe have doubledthe amountof noiseandoutliersin
themesh.
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3.3 Weighting of Pairs

We now examinethe effect of assigningdifferentweightsto the
correspondingoint pairsfound by the previous two steps. We
considerfour differentalgorithmsfor assigningheseweights:

e Constantveight

e Assigninglower weightsto pairswith greatempoint-to-point
distances. This is similar in intentto dropping pairs with
point-to-pointdistancegreaterthana threshold(seeSection
3.4),but avoidsthediscontinuityof thelatterapproachFol-
lowing [Godin 94], we use

Dist(pa, p2)

Weight=1- DiStax

e Weightingbasedbn compatibility of normals:
Weight=n; - np

Weighting on compatibility of colors has also beenused
[Godin 94], thoughwe do not considerit here.

e Weightingbasedon the expectedeffect of scannenoiseon
theuncertaintyin the errormetric. For the point-to-planeer
ror metric(seeSection3.5),thisdepend®nbothuncertainty
in thepositionof rangepointsanduncertaintyin surfacenor-
mals.As shavn in the Appendix,theresultfor atypicallaser
rangescanneiis thatthe uncertaintyis lower, hencehigher
weightshouldbe assignedfor surfacestilted away from the
rangecamera.

Wefirst look ata versionof the“wave” scengFigure11). Ex-
tranoisehasbeenaddedn orderto amplify thedifferenceamong

the variants. We seethat even with the addition of extra noise,
all of the weighting stratgies have similar performance,with

the “uncertainty” and“compatibility of normals” optionshaving

mauginally betterperformancehanthe others. For the “incised
plane”sceng(Figure12), theresultsaresimilar, thoughthereis a
larger differencein performance However, we mustbe cautious
wheninterpretingthis result,sincethe uncertainty-basedeight-
ing assignshigherweightsto pointson the modelthathave nor

malspointingaway from therangescannerFor this scenethere-
fore, the uncertaintyweighting assignshigher weight to points
within the incisions,which improves the corvergencerate. We

concludethat, in generalthe effect of weightingon convergence
ratewill be smallandhighly data-dependengndthatthe choice
of a weighting function shouldbe basedon other factors, such
asthe accurag of the final result; we expectto explore thisin a

futurepaper

3.4 Rejecting Pairs

Closelyrelatedto assigningweightsto correspondingpairsis re-
jecting certainpairs entirely The purposeof this is usually to
eliminateoutliers,which may have a large effect whenperform-
ing least-squareminimization. Thefollowing rejectionstratgies
have beenproposed:

e Rejectionof correspondingpointsmorethana given (user
specified)distanceapart.

e Rejectionof the worst n% of pairs basedon somemetric,
usually point-to-pointdistance.As suggestedby [Pulli 99,
we reject10% of pairs.

e Rejectionof pairs whose point-to-pointdistanceis larger
than somemultiple of the standarddeviation of distances.
Following [Masuda96], we rejectpairswith distancesnore
than2.5timesthe standardieviation.

e Rejectionof pairs that are not consistentwith neighbor
ing pairs,assumingsurfacesmove rigidly [Dorai 98]. This
schemeclassifiestwo correspondence®z, g:) and(pz, g2)
asinconsistentff

| Dist(ps, p2) - Dist(th, &) |
is greatethansomethreshold.Following [Dorai 98], we use

0.1- max(Dist(p1, p2), Dist(a1, a2))

asthethreshold.Thealgorithmthenrejectsthosecorrespon-
denceghatareinconsistentith mostothers.Note thatthe

algorithmasoriginally presentedhasrunningtime O(n?) at

eachiteration of ICP. In orderto reducerunningtime, we

have choserto only compareeachcorrespondenc® 10oth-

ers,andrejectit if it isincompatiblewith morethan5.

e Rejectionof pairs containing points on meshboundaries
[Turk 94].

The latter stratgyy, of excluding pairs that include points on
meshboundariesis especiallyusefulfor avoiding erroneougpair
ings (that causea systematicbiasin the estimatedransform)in
casewhentheoverlapbetweerscands notcompletg(Figure13).
Sinceits costis usuallylow andin mostapplicationsits usehas
few dravbacks we alwaysrecommendisingthis strateyy, andin
factwe useit in all the comparisonsn this paper

Figure 14 compareghe performanceof no rejection, worst-
10%rejection,paircompatibilityrejection,and2.5¢ rejectionon
the “wave” scenewith extra noiseand outliers. We seethat re-
jection of outliersdoesnot help with initial convergence.In fact,
thealgorithmthatrejectedpairsmostaggressiely (worst-10%re-
jection) tendedto converge more slowly whenthe meshesvere



Figure 13: (a) Whentwo meshedo bealigneddo notoverlapcompletely
(asis thecasefor mostreal-world data),allowing correspondencesvolv-

ing points on meshboundariescanintroducea systematichiasinto the
alignment. (b) Disallowing suchpairseliminatesmary of theseincorrect
correspondences.
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Figure 14: Comparisorof corvergenceratesfor the “wave” meshesfor
several pair rejectionstratgies. As in Figure 11, we have addedextra
noiseandoutliersto increasehe differencesamongthe variants.

relatively far from aligned. Thus,we concludethat outlier rejec-
tion, thoughit mayhave effectsontheaccurag andstability with
which the correctalignmentis determined,in generaldoesnot
improve the speedf corvergence.

3.5 Error Metric and Minimization

Thefinal piecesof the ICP algorithmthatwe will look at arethe
error metric and the algorithm for minimizing the error metric.
Thefollowing errormetricshave beenused:

e Sum of squareddistancesbetweencorrespondingpoints.
For an error metric of this form, there exist closed-
form solutionsfor determiningthe rigid-body transforma-
tion that minimizes the error  Solution methodsbased
on singular value decomposition[Arun 87], quaternions
[Horn 87], orthonormamatricedHorn 88], anddualquater
nions[Walker 91] have beenproposed;Eggertet. al. have
evaluatedthe numericalaccurag and stability of eachof
these[Eggert97], concludingthat the differencesamong
themaresmall.

e Theabove “point-to-point” metric, takinginto accountoth
the distancebetweenpoints and the differencein colors
[Johnsord7h.

e Sumof squaredlistancedrom eachsourcepointtotheplane
containingthe destinationpoint and oriented perpendicu-
lar to the destinationnormal [Chen91]. In this “point-to-
plane” case,no closed-formsolutionsare available. The
least-squaresquationsmay be solved usinga genericnon-
linearmethod(e.g.Levenbeg-Marquardt) or by simplylin-
earizingthe problem i.e., assumingincrementalrotations
aresmall,sosing 04 andcosd J1).

Thereare several waysto formulatethe searchfor the align-
ment:
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Figure 15: Comparisorof convergenceratesfor the“fractal” meshesfor

differenterrormetricsandextrapolationstratgies.
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Figure 16: Comparisonof corvergenceratesfor the “incised plane”

meshesfor differenterror metricsand extrapolationstratgies. Normal-
space-directedamplingwasusedfor thesemeasurements.

e Repeatedlygeneratinga setof correspondingpoints using
thecurrenttransformationandfinding anew transformation
thatminimizesthe errormetric[Chen91].

e Theabove iterative minimization,combinedwith extrapola-
tion in transformspaceto accelerateorvergence[Besl 92].

e Performingthe iterative minimization startingwith several
perturbationsn theinitial conditions thenselectinghe best
result[Simon96]. This avoidsspurioudocal minimain the
errorfunction, especiallywhenthe point-to-pointerrormet-
ric is used.

e Performing the iteratve minimization using various
randomly-selectedsubsetsof points, then selecting the
optimal result using a robust (least median of squares)
metric[Masuda96].

e Stochastisearctfor thebesttransform usingsimulatedan-
nealing[Blais 95].

Sinceour focusis on convergencespeed,and sincethe latter
threeapproachesendto be slow, our comparisonsvill focuson
the first two approacheslescribedabove (i.e., the “classic” ICP
iteration,with or without extrapolation). The extrapolationalgo-
rithm we useis basedon the one describedby Besland McKay
[Besl92], with two minor changego improve effectivenessand
reduceovershoot:

e \Whenquadraticextrapolationis attemptedandthe parabola
opensdovnwards,we usethe largestx interceptinsteadof
theextremumof the parabola.

e \We multiply the amountof extrapolationby a dampening

factor arbitrarily setto */> in ourimplementation.We have
foundthat althoughthis occasionallyreduceshe benefitof



extrapolationjt alsoincreasestability andeliminatesmary
problemswith overshoot.

Onthe“fractal” scenewe seethatthepoint-to-planesrrormet-
ric performssignificantly better than the point-to-point metric,
evenwith the additionof extrapolation(Figure 15). For the “in-
cisedplane” scenethe differenceis even moredramatic(Figure
16). Here,the point-to-pointalgorithmsarenot ableto reachthe
correctsolution, sinceusing the point-to-pointerror metric does
notallow theplanegto “slide over” eachotheraseasily

4 High-Speed Variants

The ability to have ICP executein realtime (e.g.,at videorates)
would permitsignificantnew applicationsn computewision and
graphics. For example,[Hall-Holt 01] describesan inexpensve
structured-lightangescanningsystemcapableof returningrange
imagesat60Hz. If it werepossibleto alignthosescansasthey are
generatedheusercouldbepresentedvith anup-to-datenodelin

realtime, makingit easyto seeandfill “holes” in the model. Al-

lowing theuserto beinvolvedin the scanningorocessn this way
is a powerful alternative to solving the computationallydifficult

“next bestview” problem[Maver93], at leastfor small, hand-
heldobjects.As describedyy [Simon96], anotherapplicationfor

real-timelCP is model-basedrackingof arigid object.

With thesegoalsin mind, we maynow constructa high-speed
ICP algorithmby combiningsomeof thevariantsdiscussedbove.
Like Blais andLevine, we proposeusinga projection-basedlgo-
rithm to generatepoint correspondenceslLike Neugebauerwe
combinethis matchingalgorithmwith a point-to-planesrrormet-
ric andthe standard‘select-match-minimizeICP iteration. The
otherstagef the ICP processappeato have little effecton con-
vergencerate, so we choosethe simplestones,namelyrandom
sampling,constantveighting,anda distancethresholdfor reject-
ing pairs. Also, becausef the potentialfor overshootwe avoid
extrapolationof transforms.

All of the performancemeasurementpresentedso far have
beenmadeusing a genericlCP implementatiorthatincludesall
of the variantsdescribedn this paper It is, however, possible
to make an optimizedimplementatiorof the recommendediigh-
speedalgorithm, incorporatingonly the featuresof the particu-
lar variantsused. Whenthis algorithmis appliedto the “fractal”
testcasef Figure 10, it reacheghe correctalignmentin approxi-
mately30 milliseconds.This is considerablyfasterthanour base-
line algorithm(basedon [Pulli 99]), which takesover onesecond
to alignthesamescenelt is alsofasterthanprevious systemghat
usedthe constant-timeprojection strateyy for generatingcorre-
spondencegheseusedcomputationallyexpensve simulatedan-
nealing[Blais 95] or Levenbeg-Marquardt{Neugebaue®7] al-
gorithms, and were not able to take adwantageof the speedof
projection-basednatching. Figure 17 shavs an exampleof the
algorithmon real-world data:two scannedneshe®f anelephant
figurinewerealignedin approximately30 ms.

Thispapeiis notthefirstto proposeahigh-speedCP algorithm
suitablefor real-timeuse.David Simon,in his Ph.D. dissertation
[Simon96], demonstrated systemcapableof aligningmeshesn
100-300ms.for 256 pointpairs(one-eighthof thenumberof pairs
consideredhroughoutthis paper).His systemusedclosest-point
matchinganda point-to-pointerror metric,andobtainedmuchof
its speedfrom a closest-pointtachethat reducedthe numberof
necessark-d treelookups.As we have seenhowever, the point-
to-pointerrormetrichassubstantiallyslover corvergencethanthe
point-to-planemetric we use. As a result,our systemappearso
corverge almostan order of magnitudefaster even allowing for

Figure 17: High-speedCP algorithmappliedto scannediata. Two scans
of anelephanfigurine from a prototypevideo-ratestructured-lightange
scannemwere aligned by the optimized high-speedalgorithmin 30 ms.

Note the interpenetratiorof scanssuggestinghata goodalignmenthas
beenreached.

increasein processoispeeds.In addition, our systemdoesnot
requirepreprocessingp generate k-d tree.

5 Conclusion

We have classifiedand comparedseveral ICP variants,focusing
ontheeffecteachhason convergencespeed We have introduced
a new samplingmethodthat helpscorvergencefor sceneswith
small, sparsefeatures. Finally, we have presentedan optimized
ICP algorithmthat usesa constant-timevariantfor finding point
pairs,resultingin amethodthattakesonly a few tensof millisec-
ondsto aligntwo meshes.

Becausehe presenttomparisonsave focusedlargely on the
speedof corvergence we anticipatefuture sureys thatfocuson
the stability and robustnessf ICP variants. In addition, a bet-
ter analysisof the effectsof variouskinds of noiseanddistortion
wouldyield furtherinsightsinto the bestalignmentalgorithmsfor
real-world, noisy scannediata. Algorithms that switch between
variants,dependingon the local errorlandscapendthe probable
presenceof local minima, might also provide increasedobust-
ness.
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Appendix: Scanner Noise and Weighting

During the later stagesof ICP, the goal shifts from reducingthe
errorquickly to finding the“correct” transformatiorasaccurately
aspossible.In orderto determineanaccuratelignmentit is nec-
essanyto take into accountthe uncertaintyin the contribution of
eachpoint pair to the error metric. If the weightson point pairs
areassignednverselyproportionalto the uncertaintiesminimiz-
ing theweightederrormetricwill find thetransformatiorthatuses
thedataoptimally.

We derive an expressionfor the uncertaintyin point-to-plane
distance(seeSection3.5) for the simplified caseof a translating
laserplanetriangulationscannerTo furthersimplify theproblem,
we only considera singleplanarsurface(Figure18a).

We begin by consideringthe width of the laserstripe on the
surfaceof the object. This width variesas

Wsurf = WO 5809
for someW,. Thewidth asseerby thecamerds then
Weam = Weurt COS¢

camera laser

@ (b)

camera laser

Figure 18: (a) Scannerconfigurationassumedor erroranalysis.We as-
sumea laserstripetriangulationscannemwith a singlecamera.The scan-
ner translatesa distances per frame, in a direction perpendiculato the
laserplane. The anglebetweerthe surfacenormalandthelaseris ¢, and
the anglebetweerthe cameraandsurfaceis ¢. (b) The distancefrom p;

to the planecontainingp, andperpendiculato n; is denotedby q.

We now look atthex andz componentsf theuncertaintyin the
positionof a pointon the surface. We assumeasdoes[Turk 94],
that the laserbeamhasa Gaussiarprofile, and that the z com-
ponentof uncertaintyis proportionalto the uncertaintyin finding
thepeakof thestripein thecameramage;thus,uncertaintyin zis
proportionato thewidth of thestripeasseerby thecameraThex
componenbdf the uncertaintyis a function of scanneralibration,
hences aconstantThus,

Az ased cosg
Ax = b
for someconstants andb.
As obseredby [Dorai 97], in analyzingscanneerrorswe must

considemot only theuncertaintiesn position,but alsotheuncer
tainty in computingsurfacenormals:

tang = 2°4
X2 — X1
Differentiating,
(868 )As = Az -z) L+ 274 A(X2 = X1)
X2 =X X2—=X1 Xo—X1
A = <35909S’COS¢ LD t{;lnﬂ) e

a b .
S cosd cosg + S cosd sind

Thus, we seethat the uncertaintyin surfacenormalsis actually
highestwhenthe surfacefacesthe cameraandlowestwhenit is
obliqueto the camera.

We may now considerthe uncertaintyin the point-to-planeer-
ror (seeFigure18b):

rAf +cosf(Az, + Az) +sind(Axy + Axo)
Escosﬂ(acos¢ +bsind) +2acosg + 2osing

Aq

This expressionis a function of r, which is the point-to-point
distancealongthe normal plane. Whenthe two scansare close
togetherwe expectr to beontheorderof s- sed, wheresis the
spacingn x of rangesamples Substitutingwe obtain

Aq = 3acosg +3bsind

For mostrangescannersthe uncertaintyalongtheline of sight
(which is proportionalto the constanta) will dominatethe un-
certaintyin scanneposition(given by b). In this case the error
in point-to-planedistanceis just proportionalto cosg. In sum-
mary, the optimal weighting of point pairsfor the point-to-plane
algorithmis proportionalto the secanbof ¢, theanglebetweerthe
surfacenormalandtheline of sightto thecamera.



