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Abstract
TheICP (IterativeClosestPoint) algorithmis widelyusedfor ge-
ometric alignmentof three-dimensionalmodelswhenan initial
estimateof therelativeposeis known.Manyvariantsof ICP have
beenproposed,affectingall phasesof thealgorithmfromthese-
lection and matching of points to the minimizationstrategy. We
enumerateandclassifymanyof thesevariants,andevaluatetheir
effect on the speedwith which the correct alignmentis reached.
In order to improveconvergencefor nearly-flatmesheswith small
features,such as inscribedsurfaces,we introducea new variant
basedon uniformsamplingof thespaceof normals.We conclude
by proposinga combinationof ICP variantsoptimizedfor high
speed. We demonstrate an implementationthat is able to align
two range imagesin a few tensof milliseconds,assuminga good
initial guess.Thiscapabilityhaspotentialapplicationto real-time
3D modelacquisitionandmodel-basedtracking.

1 Intr oduction – Taxonom y of ICP Variants

TheICP(originally IterativeClosestPoint,thoughIterativeCorre-
spondingPointis perhapsabetterexpansionfor theabbreviation)
algorithm hasbecomethe dominantmethodfor aligning three-
dimensionalmodelsbasedpurelyonthegeometry, andsometimes
color, of themeshes.Thealgorithmis widely usedfor registering
the outputsof 3D scanners,which typically only scanan object
from one direction at a time. ICP startswith two meshesand
an initial guessfor their relative rigid-body transform,anditera-
tively refinesthetransformby repeatedlygeneratingpairsof cor-
respondingpointson themeshesandminimizing anerrormetric.
Generatingtheinitial alignmentmaybedoneby avarietyof meth-
ods,suchas trackingscannerposition, identificationand index-
ing of surfacefeatures[Faugeras86, Stein92], “spin-image”sur-
facesignatures[Johnson97a], computingprincipalaxesof scans
[Dorai 97], exhaustive searchfor correspondingpoints[Chen98,
Chen99], or userinput. In thispaper, we assumethata roughini-
tial alignmentis alwaysavailable. In addition,we focusonly on
aligningasinglepairof meshes,anddonotaddresstheglobalreg-
istrationproblem[Bergevin 96, Stoddart96, Pulli 97, Pulli 99].

Sincetheintroductionof ICP by ChenandMedioni [Chen91]
andBesl andMcKay [Besl 92], many variantshave beenintro-
ducedon thebasicICP concept.We may classifythesevariants
asaffectingoneof six stagesof thealgorithm:

1. Selection of somesetof pointsin oneor bothmeshes.

2. Matching thesepointsto samplesin theothermesh.
3. Weighting thecorrespondingpairsappropriately.

4. Rejecting certainpairsbasedon looking at eachpair indi-
vidually or consideringtheentiresetof pairs.

5. Assigninganerror metric basedon thepointpairs.

6. Minimizing theerrormetric.
In this paper, we will look at variantsin eachof thesesix cat-

egories,andexaminetheir effectson theperformanceof ICP. Al-
thoughour main focus is on the speedof convergence,we also

considertheaccuracy of thefinal answerandtheability of ICP to
reachthecorrectsolutiongiven“dif ficult” geometry. Ourcompar-
isonssuggesta combinationof ICP variantsthat is ableto aligna
pair of meshesin a few tensof milliseconds,significantlyfaster
thanmostcommonly-usedICP systems.Theavailability of such
areal-timeICPalgorithmmayenablesignificantnew applications
in model-basedtrackingand3D scanning.

In this paper, we first presentthe methodologyusedfor com-
paringICP variants,andintroducea numberof testscenesused
throughoutthepaper. Next, wesummarizeseveralICPvariantsin
eachof the above six categories,andcomparetheir convergence
performance.As part of the comparison,we introducethe con-
ceptof normal-space-directedsampling,andshow thatit improves
convergencein scenesinvolving sparse,small-scalesurfacefea-
tures. Finally, we examinea combinationof variantsoptimized
for highspeed.

2 Comparison Methodology

Our goal is to comparetheconvergencecharacteristicsof several
ICPvariants.In orderto limit thescopeof theproblem,andavoid
acombinatorialexplosionin thenumberof possibilities,weadopt
themethodologyof choosinga baselinecombinationof variants,
andexaminingperformanceasindividual ICP stagesarevaried.
Thealgorithmwe will selectasour baselineis essentiallythatof
[Pulli 99], incorporatingthefollowing features:� Randomsamplingof pointsonbothmeshes.� Matching eachselectedpoint to the closestsamplein the

othermeshthathasanormalwithin 45degreesof thesource
normal.� Uniform (constant)weightingof pointpairs.� Rejectionof pairscontainingedgevertices,aswell asa per-
centageof pairswith thelargestpoint-to-pointdistances.� Point-to-planeerrormetric.� The classic“select-match-minimize”iteration, rather than
someothersearchfor thealignmenttransform.

We pick this algorithm becauseit hasreceived extensive usein
a productionenvironment[Levoy 00], andhasbeenfound to be
robustfor scanneddatacontainingmany kindsof surfacefeatures.

In addition, to ensurefair comparisonsamongvariants,we
make thefollowing assumptions:� Thenumberof sourcepointsselectedis always2,000.Since

themesheswewill considerhave100,000samples,thiscor-
respondsto a samplingrateof 1% permeshif sourcepoints
areselectedfrom bothmeshes,or 2% if pointsareselected
from only onemesh.� All mesheswe usearesimpleperspective rangeimages,as
opposedto generalirregularmeshes,sincethisenablescom-
parisonsbetween“closestpoint” and“projectedpoint” vari-
ants(seeSection3.2).� Surface normalsare computedsimply basedon the four
nearestneighborsin therangegrid.
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(a)Wave (b) Fractallandscape (c) Incisedplane

Figure 1: Testscenesusedthroughoutthispaper.

� Only geometryis usedfor alignment,not coloror intensity.

With the exceptionof the last one,we expect that changingany
of theseimplementationchoiceswouldaffect thequantitative,but
not the qualitative, performanceof our tests. Although we will
not comparevariantsthat usecolor or intensity, it is clearly ad-
vantageousto usesuchdatawhenavailable,sinceit canprovide
necessaryconstraintsin areaswheretherearefew geometricfea-
tures.

2.1 Test Scenes

We usethreesynthetically-generatedscenesto evaluatevariants.
The“wave” scene(Figure1a) is aneasycasefor mostICP vari-
ants, since it containsrelatively smoothcoarse-scalegeometry.
The two mesheshave independently-addedGaussiannoise,out-
liers,anddropouts.The“fractal landscape”testscene(Figure1b)
hasfeaturesatall levelsof detail.The“incisedplane”scene(Fig-
ure 1c) consistsof two planeswith Gaussiannoiseandgrooves
in the shapeof an “X.” This is a difficult scenefor ICP, and
mostvariantsdonotconvergeto thecorrectalignment,evengiven
the small relative rotationin this startingposition. Note that the
threetestscenesconsistof low-frequency, all-frequency, andhigh-
frequency features,respectively. Thoughthesescenescertainly
do not cover all possibleclassesof scannedobjects, they are
representative of surfacesencounteredin many classesof scan-
ning applications.For example,theDigital MichelangeloProject
[Levoy 00] involved scanningsurfacescontaininglow-frequency
features(e.g., smoothstatues),fractal-like features(e.g., unfin-
ishedstatueswith visible chiselmarks),andincisions(e.g.,frag-
mentsof theFormaUrbis Romæ).

Themotivationfor usingsyntheticdatafor our comparisonsis
so that we know the correcttransformexactly, andcanevaluate
the performanceof ICP algorithmsrelative to this correctalign-
ment.Themetricwe will usethroughoutthis paperis root-mean-
squarepoint-to-pointdistancefor theactualcorrespondingpoints
in the two meshes.Using sucha “ground truth” error metric al-
lows for moreobjective comparisonsof the performanceof ICP
variantsthanusingtheerrormetricscomputedby thealgorithms
themselves.

We only presentthe resultsof onerun for eachtestedvariant.
Although a single run clearly can not be taken as representing
the performanceof an algorithm in all situations,we have tried
to show typical resultsthat capturethe significantdifferencesin
performanceon variouskindsof scenes.Any casesin which the
presentedresultsarenot typicalarenotedin thetext.

All reportedrunningtimesarefor a C++ implementationrun-
ningona 550MHz PentiumIII Xeonprocessor.

3 Comparisons of ICP Variants

Wenow examineICPvariantsfor eachof thestageslistedin Sec-
tion 1. For eachstage,we summarizethevariantsin theliterature
andcomparetheirperformanceon our testscenes.

3.1 Selection of Points
We begin by examiningthe effect of the selectionof point pairs
on the convergenceof ICP. The following strategies have been
proposed:� Alwaysusingall availablepoints[Besl92].� Uniform subsamplingof theavailablepoints[Turk 94].� Randomsampling(with a differentsampleof pointsat each

iteration)[Masuda96].� Selectionof pointswith high intensitygradient,in variants
that useper-samplecolor or intensity to aid in alignment
[Weik 97].� Eachof theprecedingschemesmayselectpointsononly one
mesh,or selectsourcepointsfrom bothmeshes[Godin94].

In addition to these,we introducea new samplingstrategy:
choosingpointssuchthat the distribution of normalsamongse-
lectedpointsis aslargeaspossible.Themotivationfor this strat-
egy is the observation that for certainkinds of scenes(suchas
our “incised plane” dataset)small featuresof the modelarevi-
tal to determiningthecorrectalignment.A strategy suchasran-
dom samplingwill often selectonly a few samplesin thesefea-
tures, which leadsto an inability to determinecertain compo-
nentsof the correct rigid-body transformation. Thus, one way
to improve the chancesthat enoughconstraintsare presentto
determineall the componentsof the transformationis to bucket
the points accordingto the position of the normalsin angular
space,then sampleasuniformly aspossibleacrossthe buckets.
Normal-spacesampling is thereforea very simple example of
usingsurfacefeaturesfor alignment;it haslower computational
cost,but lower robustness,thantraditionalfeature-basedmethods
[Faugeras86, Stein92,Johnson97a].

Let uscomparetheperformanceof uniform subsampling,ran-
dom sampling,andnormal-spacesamplingon the “wave” scene
(Figure2). As we cansee,theconvergenceperformanceis sim-
ilar. This indicatesthat for a scenewith a good distribution of
normalstheexactsamplingstrategy is not critical. Theresultsfor
the“incisedplane”scenelook different,however(Figure3). Only
thenormal-spacesamplingis ableto convergefor this dataset.

The reasonis that samplesnot in the grooves areonly help-
ful in determiningthreeof the six componentsof the rigid-body
transformation(onetranslationandtwo rotations).Theotherthree
components(two translationsandonerotation,within theplane)
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Figure 2: Comparisonof convergenceratesfor uniform, random,and
normal-spacesamplingfor the“wave” meshes.
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Figure 3: Comparisonof convergenceratesfor uniform, random,and
normal-spacesamplingfor the“incisedplane”meshes.Note that,on the
lowercurve, thegroundtrutherrorincreasesbriefly in theearlyiterations.
This illustratesthedifferencebetweenthegroundtrutherrorandthealgo-
rithm’s estimateof its own error.

(a) (b)

(c) (d)

Figure 4: Correspondingpoint pairsselectedby the (a) “random sam-
pling” and (b) “normal-spacesampling” strategies for an incisedmesh.
Usingrandomsampling,thesparsefeaturesmaybeoverwhelmedby pres-
enceof noiseor distortion,causingthe ICP algorithmto not converge to
a correctalignment(c). Thenormal-spacesamplingstrategy ensuresthat
enoughsamplesareplacedin thefeatureto bring thesurfacesinto align-
ment(d). “Closestcompatiblepoint” matching(seeSection3.2)wasused
for thisexample.Themeshesin (c) and(d) arescansof fragment165dof
theFormaUrbisRomæ.
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Figure 5: Comparisonof convergenceratesfor single-source-meshand
both-source-meshsamplingstrategiesfor the“wave” meshes.
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Figure 6: Comparisonof convergenceratesfor single-source-meshand
both-source-meshsamplingstrategies for the “wave” meshes,usingnor-
malshootingasthematchingalgorithm.

aredeterminedentirelyby sampleswithin theincisions.Theran-
domanduniform samplingstrategiesonly placea few samplesin
thegrooves(Figure4a).This,togetherwith thefactthatnoiseand
distortionon therestof theplaneoverwhelmstheeffect of those
pairsthatare sampledfrom thegrooves,accountsfor theinability
of uniformandrandomsamplingto convergeto thecorrectalign-
ment.Conversely, normal-spacesamplingselectsa largernumber
of samplesin thegrooves(Figure4b).

Sampling Direction: Wenow look at therelativeadvantagesof
choosingsourcepointsfrom bothmeshes,versuschoosingpoints
from only one mesh. For the “wave” test sceneand the base-
line algorithm, the differenceis minimal (Figure 5). However,
this is partly dueto the fact that we usedthe closestcompatible
point matchingalgorithm(seeSection3.2), which is symmetric
with respectto the two meshes.If we usea more“asymmetric”
matchingalgorithm,suchasprojectionor normalshooting(see
Section3.2), we seethat samplingfrom both meshesappearsto
give slightly betterresults(Figure6), especiallyduring theearly
stagesof the iterationwhenthe two meshesarestill far apart. In
addition,we expect that samplingfrom both mesheswould also
improve resultswhentheoverlapof themeshesis small,or when
themeshescontainmany holes.

3.2 Matching Points
The next stageof ICP that we will examineis correspondence
finding. Algorithms have beenproposedthat, for eachsample
point selected:� Findtheclosestpoint in theothermesh[Besl 92]. Thiscom-

putationmaybeacceleratedusinga k-d treeand/orclosest-
point caching[Simon96].
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� Findtheintersectionof therayoriginatingatthesourcepoint
in thedirectionof thesourcepoint’s normalwith thedesti-
nationsurface[Chen91]. We will refer to this as“normal
shooting.”� Project the sourcepoint onto the destinationmesh, from
the point of view of the destinationmesh’s rangecamera
[Blais 95, Neugebauer97]. This hasalsobeencalled “re-
versecalibration.”� Project the sourcepoint onto the destinationmesh, then
perform a searchin the destinationrange image. The
searchmight usea metric basedon point-to-pointdistance
[Benjemaa97], point-to-raydistance[Dorai 98], or compat-
ibility of intensity[Weik 97] or color [Pulli 97].� Any of theabovemethods,restrictedto only matchingpoints
compatiblewith thesourcepointaccordingto agivenmetric.
Compatibilitymetricsbasedon color [Godin94] andangle
betweennormals[Pulli 99] have beenexplored.

Sincewe are not analyzingvariantsthat usecolor, the particu-
lar variantswe will compareare: closestpoint, closestcompat-
ible point (normalswithin 45 degrees),normalshooting,normal
shootingto a compatiblepoint (normalswithin 45 degrees),pro-
jection,andprojectionfollowedby search.Thefirst four of these
algorithmsareacceleratedusingak-d tree.For thelastalgorithm,
thesearchis actuallyimplementedasasteepest-descentneighbor-
to-neighborwalk in thedestinationmeshthatattemptsto find the
closestpoint. We chosethis variationbecauseit worksnearlyas
well asprojectionfollowedby exhaustive searchin somewindow,
but haslower runningtime.

We first look at performancefor the“fractal” scene(Figure7).
For this scene,normalshootingappearsto producethe bestre-
sults, followed by the projectionalgorithms. The closest-point
algorithms,in contrast,performrelatively poorly. Wehypothesize
thatthereasonfor thisis thattheclosest-pointalgorithmsaremore
sensitive to noiseandtendto generatelargernumbersof incorrect
pairingsthantheotheralgorithms(Figure8).

Thesituationin the“incisedplane”scene,however, is different
(Figure9). Here,theclosest-pointalgorithmsweretheonly ones
that converged to the correctsolution. Thus, we concludethat
althoughthe closest-pointalgorithmsmight not have the fastest
convergenceratefor “easy” scenes,they arethe mostrobust for
“dif ficult” geometry.

Thoughsofarwehavebeenlookingaterrorasafunctionof the
numberof iterations,it is alsoinstructiveto look aterrorasafunc-
tion of runningtime. Becausethematchingstageof ICPis usually
theonethattakesthelongest,applicationsthatrequireICP to run
quickly (andthatdo not needto dealwith thegeometrically“dif-
ficult” cases)mustchoosethematchingalgorithmwith thefastest
performance.Let usthereforecompareerrorasa functionof time
for thesealgorithmsfor the “fractal” scene(Figure10). We see
thatalthoughtheprojectionalgorithmdoesnotoffer thebestcon-
vergenceper iteration,eachiterationis fasterthanan iterationof
closestpointfindingor normalshootingbecauseit is performedin
constanttime,ratherthaninvolving aclosest-pointsearch(which,
evenwhenacceleratedby ak-d tree,takesO

�
logn� time). As are-

sult, theprojection-basedalgorithmhasa significantlyfasterrate
of convergencevs.time. Notethatthisgraphdoesnot includethe
time to computethek-d treesusedby all but theprojectionalgo-
rithms. Including the precomputationtime (approximately0.64
secondsfor thesemeshes)wouldproduceevenmorefavorablere-
sultsfor theprojectionalgorithm.
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Figure 7: Comparisonof convergenceratesfor the “fractal” meshes,for
avarietyof matchingalgorithms.

(a) (b)

Figure 8: (a)In thepresenceof noiseandoutliers,theclosest-pointmatch-
ing algorithm potentially generateslarge numbersof incorrectpairings
whenthe meshesarestill relatively far from eachother, slowing the rate
of convergence.(b) The“projection” matchingstrategy is lesssensitive to
thepresenceof noise.
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Figure 9: Comparisonof convergence rates for the “incised plane”
meshes,for avarietyof matchingalgorithms.Normal-space-directedsam-
pling wasusedfor thesemeasurements.
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Figure 11: Comparisonof convergenceratesfor the “wave” meshes,for
severalchoicesof weightingfunctions.In orderto increasethedifferences
amongthe variantswe have doubledthe amountof noiseandoutliersin
themesh.
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Figure 12: Comparisonof convergencerates for the “incised plane”
meshes,for several choices of weighting functions. Normal-space-
directedsamplingwasusedfor thesemeasurements.

3.3 Weighting of Pairs
We now examinethe effect of assigningdifferentweightsto the
correspondingpoint pairs found by the previous two steps. We
considerfour differentalgorithmsfor assigningtheseweights:� Constantweight� Assigninglower weightsto pairswith greaterpoint-to-point

distances.This is similar in intent to droppingpairs with
point-to-pointdistancegreaterthana threshold(seeSection
3.4),but avoidsthediscontinuityof thelatterapproach.Fol-
lowing [Godin94], we use

Weight= 1 −
Dist

�
p1, p2 �

Distmax� Weightingbasedoncompatibilityof normals:

Weight= n1 � n2

Weighting on compatibility of colors has also beenused
[Godin94], thoughwe donotconsiderit here.� Weightingbasedon theexpectedeffect of scannernoiseon
theuncertaintyin theerrormetric.For thepoint-to-planeer-
ror metric(seeSection3.5),thisdependsonbothuncertainty
in thepositionof rangepointsanduncertaintyin surfacenor-
mals.As shown in theAppendix,theresultfor atypicallaser
rangescanneris that theuncertaintyis lower, hencehigher
weightshouldbeassigned,for surfacestilted away from the
rangecamera.

Wefirst look at a versionof the“wave” scene(Figure11). Ex-
tranoisehasbeenaddedin orderto amplify thedifferencesamong

the variants. We seethat even with the additionof extra noise,
all of the weighting strategies have similar performance,with
the “uncertainty” and“compatibility of normals”optionshaving
marginally betterperformancethan the others. For the “incised
plane”scene(Figure12), theresultsaresimilar, thoughthereis a
largerdifferencein performance.However, we mustbecautious
wheninterpretingthis result,sincetheuncertainty-basedweight-
ing assignshigherweightsto pointson themodelthathave nor-
malspointingaway from therangescanner. For this scene,there-
fore, the uncertaintyweighting assignshigher weight to points
within the incisions,which improves the convergencerate. We
concludethat, in general,theeffect of weightingon convergence
ratewill besmallandhighly data-dependent,andthat thechoice
of a weighting function shouldbe basedon other factors,such
astheaccuracy of the final result;we expectto explore this in a
futurepaper.

3.4 Rejecting Pairs
Closelyrelatedto assigningweightsto correspondingpairsis re-
jecting certainpairs entirely. The purposeof this is usually to
eliminateoutliers,which may have a largeeffect whenperform-
ing least-squaresminimization.Thefollowing rejectionstrategies
have beenproposed:� Rejectionof correspondingpointsmorethana given (user-

specified)distanceapart.� Rejectionof the worst n% of pairsbasedon somemetric,
usuallypoint-to-pointdistance.As suggestedby [Pulli 99],
we reject10%of pairs.� Rejectionof pairs whosepoint-to-point distanceis larger
than somemultiple of the standarddeviation of distances.
Following [Masuda96], we rejectpairswith distancesmore
than2.5timesthestandarddeviation.� Rejectionof pairs that are not consistentwith neighbor-
ing pairs,assumingsurfacesmove rigidly [Dorai 98]. This
schemeclassifiestwo correspondences

�
p1,q1 � and

�
p2,q2 �

asinconsistentif f�� Dist
�
p1, p2 � − Dist

�
q1, q2 � ��

is greaterthansomethreshold.Following [Dorai 98],weuse

0.1 � max
�
Dist

�
p1, p2 � ,Dist

�
q1, q2 ���

asthethreshold.Thealgorithmthenrejectsthosecorrespon-
dencesthatareinconsistentwith mostothers.Notethat the
algorithmasoriginally presentedhasrunningtime O

�
n2 � at

eachiterationof ICP. In order to reducerunning time, we
havechosento only compareeachcorrespondenceto 10oth-
ers,andrejectit if it is incompatiblewith morethan5.� Rejectionof pairs containingpoints on meshboundaries
[Turk 94].

The latter strategy, of excluding pairs that include points on
meshboundaries,is especiallyusefulfor avoidingerroneouspair-
ings (that causea systematicbias in the estimatedtransform)in
caseswhentheoverlapbetweenscansis notcomplete(Figure13).
Sinceits cost is usuallylow andin mostapplicationsits usehas
few drawbacks,we alwaysrecommendusingthis strategy, andin
factwe useit in all thecomparisonsin thispaper.

Figure 14 comparesthe performanceof no rejection,worst-
10%rejection,pair-compatibilityrejection,and2.5 � rejectionon
the “wave” scenewith extra noiseandoutliers. We seethat re-
jectionof outliersdoesnot helpwith initial convergence.In fact,
thealgorithmthatrejectedpairsmostaggressively (worst-10%re-
jection) tendedto converge moreslowly whenthe mesheswere
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(b)(a)

Figure 13: (a)Whentwo meshesto bealigneddonotoverlapcompletely
(asis thecasefor mostreal-world data),allowing correspondencesinvolv-
ing pointson meshboundariescan introducea systematicbias into the
alignment.(b) Disallowing suchpairseliminatesmany of theseincorrect
correspondences.
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Figure 14: Comparisonof convergenceratesfor the “wave” meshes,for
several pair rejectionstrategies. As in Figure 11, we have addedextra
noiseandoutliersto increasethedifferencesamongthevariants.

relatively far from aligned.Thus,we concludethatoutlier rejec-
tion, thoughit mayhaveeffectsontheaccuracy andstabilitywith
which the correctalignmentis determined,in generaldoesnot
improve thespeedof convergence.

3.5 Error Metric and Minimization
Thefinal piecesof theICP algorithmthatwe will look at arethe
error metric and the algorithm for minimizing the error metric.
Thefollowing errormetricshave beenused:� Sum of squareddistancesbetweencorrespondingpoints.

For an error metric of this form, there exist closed-
form solutionsfor determiningthe rigid-body transforma-
tion that minimizes the error. Solution methodsbased
on singular value decomposition[Arun 87], quaternions
[Horn 87],orthonormalmatrices[Horn 88], anddualquater-
nions [Walker 91] have beenproposed;Eggertet. al. have
evaluatedthe numericalaccuracy and stability of eachof
these[Eggert97], concludingthat the differencesamong
themaresmall.� Theabove “point-to-point” metric,takinginto accountboth
the distancebetweenpoints and the differencein colors
[Johnson97b].� Sumof squareddistancesfromeachsourcepointto theplane
containingthe destinationpoint and orientedperpendicu-
lar to the destinationnormal [Chen91]. In this “point-to-
plane” case,no closed-formsolutionsare available. The
least-squaresequationsmaybesolvedusinga genericnon-
linearmethod(e.g.Levenberg-Marquardt),or by simply lin-
earizingthe problem(i.e., assumingincrementalrotations
aresmall,sosin � ∼ � andcos� ∼ 1).

Thereareseveral ways to formulatethe searchfor the align-
ment:
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Figure 15: Comparisonof convergenceratesfor the“fractal” meshes,for
differenterrormetricsandextrapolationstrategies.

0

0.5

1

1.5

2

0 5 10 15 20
R

M
S

 a
lig

nm
en

t e
rr

or�

Iteration

Convergence rate for "incised plane" scene

Point-to-point
Point-to-point with extrapolation

Point-to-plane
Point-to-plane with extrapolation

Figure 16: Comparisonof convergencerates for the “incised plane”
meshes,for differenterror metricsandextrapolationstrategies. Normal-
space-directedsamplingwasusedfor thesemeasurements.

� Repeatedlygeneratinga setof correspondingpoints using
thecurrenttransformation,andfindinganew transformation
thatminimizestheerrormetric[Chen91].� Theabove iterative minimization,combinedwith extrapola-
tion in transformspaceto accelerateconvergence[Besl92].� Performingthe iterative minimizationstartingwith several
perturbationsin theinitial conditions,thenselectingthebest
result[Simon96]. This avoidsspuriouslocal minimain the
errorfunction,especiallywhenthepoint-to-pointerrormet-
ric is used.� Performing the iterative minimization using various
randomly-selectedsubsetsof points, then selecting the
optimal result using a robust (least median of squares)
metric[Masuda96].� Stochasticsearchfor thebesttransform,usingsimulatedan-
nealing[Blais 95].

Sinceour focus is on convergencespeed,andsincethe latter
threeapproachestendto be slow, our comparisonswill focuson
the first two approachesdescribedabove (i.e., the “classic” ICP
iteration,with or without extrapolation).Theextrapolationalgo-
rithm we useis basedon the onedescribedby Besl andMcKay
[Besl92], with two minor changesto improve effectivenessand
reduceovershoot:� Whenquadraticextrapolationis attemptedandtheparabola

opensdownwards,we usethe largestx interceptinsteadof
theextremumof theparabola.� We multiply the amountof extrapolationby a dampening
factor, arbitrarily setto 1	

2 in our implementation.We have
foundthatalthoughthis occasionallyreducesthebenefitof
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extrapolation,it alsoincreasesstabilityandeliminatesmany
problemswith overshoot.

Onthe“fractal” scene,weseethatthepoint-to-planeerrormet-
ric performssignificantly better than the point-to-point metric,
even with the additionof extrapolation(Figure15). For the “in-
cisedplane”scene,the differenceis even moredramatic(Figure
16). Here,thepoint-to-pointalgorithmsarenot ableto reachthe
correctsolution,sinceusingthe point-to-pointerror metric does
notallow theplanesto “slide over” eachotheraseasily.

4 High-Speed Variants

Theability to have ICP executein real time (e.g.,at videorates)
wouldpermitsignificantnew applicationsin computervisionand
graphics. For example,[Hall-Holt 01] describesan inexpensive
structured-lightrangescanningsystemcapableof returningrange
imagesat60Hz. If it werepossibleto alignthosescansasthey are
generated,theusercouldbepresentedwith anup-to-datemodelin
real time,makingit easyto seeandfill “holes” in themodel.Al-
lowing theuserto beinvolvedin thescanningprocessin thisway
is a powerful alternative to solving the computationallydifficult
“next bestview” problem[Maver 93], at least for small, hand-
heldobjects.As describedby [Simon96], anotherapplicationfor
real-timeICP is model-basedtrackingof a rigid object.

With thesegoalsin mind,we maynow constructa high-speed
ICPalgorithmbycombiningsomeof thevariantsdiscussedabove.
LikeBlaisandLevine,weproposeusingaprojection-basedalgo-
rithm to generatepoint correspondences.Like Neugebauer, we
combinethis matchingalgorithmwith a point-to-planeerrormet-
ric andthe standard“select-match-minimize”ICP iteration. The
otherstagesof theICP processappearto have little effectoncon-
vergencerate, so we choosethe simplestones,namelyrandom
sampling,constantweighting,anda distancethresholdfor reject-
ing pairs. Also, becauseof thepotentialfor overshoot,we avoid
extrapolationof transforms.

All of the performancemeasurementspresentedso far have
beenmadeusinga genericICP implementationthat includesall
of the variantsdescribedin this paper. It is, however, possible
to make anoptimizedimplementationof therecommendedhigh-
speedalgorithm, incorporatingonly the featuresof the particu-
lar variantsused.Whenthis algorithmis appliedto the “fractal”
testcaseof Figure10, it reachesthecorrectalignmentin approxi-
mately30milliseconds.This is considerablyfasterthanourbase-
line algorithm(basedon [Pulli 99]), which takesover onesecond
to align thesamescene.It is alsofasterthanprevioussystemsthat
usedthe constant-timeprojectionstrategy for generatingcorre-
spondences;theseusedcomputationallyexpensive simulatedan-
nealing[Blais 95] or Levenberg-Marquardt[Neugebauer97] al-
gorithms,and were not able to take advantageof the speedof
projection-basedmatching. Figure17 shows an exampleof the
algorithmon real-world data:two scannedmeshesof anelephant
figurinewerealignedin approximately30 ms.

Thispaperis notthefirst toproposeahigh-speedICPalgorithm
suitablefor real-timeuse.David Simon,in his Ph.D. dissertation
[Simon96], demonstratedasystemcapableof aligningmeshesin
100-300ms.for 256pointpairs(one-eighthof thenumberof pairs
consideredthroughoutthis paper).His systemusedclosest-point
matchinganda point-to-pointerrormetric,andobtainedmuchof
its speedfrom a closest-pointcachethat reducedthe numberof
necessaryk-d treelookups.As we have seen,however, thepoint-
to-pointerrormetrichassubstantiallyslowerconvergencethanthe
point-to-planemetric we use. As a result,our systemappearsto
converge almostan orderof magnitudefaster, even allowing for

Figure 17: High-speedICPalgorithmappliedto scanneddata.Two scans
of anelephantfigurinefrom a prototypevideo-ratestructured-lightrange
scannerwere alignedby the optimizedhigh-speedalgorithm in 30 ms.
Note the interpenetrationof scans,suggestingthata goodalignmenthas
beenreached.

increasein processorspeeds. In addition, our systemdoesnot
requirepreprocessingto generateak-d tree.

5 Conc lusion

We have classifiedandcomparedseveral ICP variants,focusing
on theeffect eachhason convergencespeed.Wehave introduced
a new samplingmethodthat helpsconvergencefor sceneswith
small, sparsefeatures.Finally, we have presentedan optimized
ICP algorithmthat usesa constant-timevariantfor finding point
pairs,resultingin a methodthattakesonly a few tensof millisec-
ondsto align two meshes.

Becausethe presentcomparisonshave focusedlargely on the
speedof convergence,we anticipatefuturesurveys that focuson
the stability and robustnessof ICP variants. In addition, a bet-
ter analysisof theeffectsof variouskindsof noiseanddistortion
wouldyield furtherinsightsinto thebestalignmentalgorithmsfor
real-world, noisy scanneddata. Algorithms that switch between
variants,dependingon thelocal error landscapeandtheprobable
presenceof local minima, might also provide increasedrobust-
ness.
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Appendix: Scanner Noise and Weighting

During the later stagesof ICP, the goal shifts from reducingthe
errorquickly to finding the“correct” transformationasaccurately
aspossible.In orderto determineanaccuratealignment,it is nec-
essaryto take into accountthe uncertaintyin the contribution of
eachpoint pair to the error metric. If the weightson point pairs
areassignedinverselyproportionalto theuncertainties,minimiz-
ing theweightederrormetricwill find thetransformationthatuses
thedataoptimally.

We derive an expressionfor the uncertaintyin point-to-plane
distance(seeSection3.5) for thesimplified caseof a translating
laser-planetriangulationscanner. To furthersimplify theproblem,
weonly considera singleplanarsurface(Figure18a).

We begin by consideringthe width of the laserstripe on the
surfaceof theobject.Thiswidth variesas

Wsurf = W0 sec�
for someW0. Thewidth asseenby thecamerais then

Wcam = Wsurf cos
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Figure 18: (a) Scannerconfigurationassumedfor erroranalysis.We as-
sumea laser-stripetriangulationscannerwith a singlecamera.Thescan-
ner translatesa distances per frame, in a directionperpendicularto the
laserplane.Theanglebetweenthesurfacenormalandthe laseris � , and
theanglebetweenthecameraandsurfaceis � . (b) Thedistancefrom p1
to theplanecontainingp2 andperpendicularto n2 is denotedby q.

Wenow look atthex andzcomponentsof theuncertaintyin the
positionof a point on thesurface.We assume,asdoes[Turk 94],
that the laserbeamhasa Gaussianprofile, and that the z com-
ponentof uncertaintyis proportionalto theuncertaintyin finding
thepeakof thestripein thecameraimage;thus,uncertaintyin z is
proportionalto thewidth of thestripeasseenby thecamera.Thex
componentof theuncertaintyis a functionof scannercalibration,
henceis a constant.Thus,


z = asec� cos


x = b

for someconstantsa andb.
As observedby [Dorai 97], in analyzingscannererrorswemust

considernot only theuncertaintiesin position,but alsotheuncer-
tainty in computingsurfacenormals:

tan � = z2 − z1

x2 − x1

Differentiating,�
sec2 ��� 
 � =


 �
z2 − z1 �

x2 − x1
+

z2 − z1

x2 − x1


 �
x2 − x1 �

x2 − x1
 � =
�

asec� cos

s

+ b tan �
s � cos2 �

= a
s

cos� cos
 + b
s

cos� sin �
Thus,we seethat the uncertaintyin surfacenormalsis actually
highestwhenthe surfacefacesthe cameraandlowestwhenit is
obliqueto thecamera.

We maynow considertheuncertaintyin thepoint-to-planeer-
ror (seeFigure18b):


q = r


 � + cos� � 
 z1 +



z2 � + sin � � 
 x1 +



x2 �
=

r
s

cos��� acos
 + bsin ��� + 2acos
 + 2bsin �
This expressionis a function of r, which is the point-to-point

distancealongthe normalplane. Whenthe two scansareclose
together, we expectr to beon theorderof s � sec� , wheres is the
spacingin x of rangesamples.Substituting,weobtain


q = 3acos
 + 3bsin �
For mostrangescanners,theuncertaintyalongtheline of sight

(which is proportionalto the constanta) will dominatethe un-
certaintyin scannerposition(given by b). In this case,theerror
in point-to-planedistanceis just proportionalto cos
 . In sum-
mary, theoptimalweightingof point pairsfor thepoint-to-plane
algorithmis proportionalto thesecantof 
 , theanglebetweenthe
surfacenormalandtheline of sightto thecamera.
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