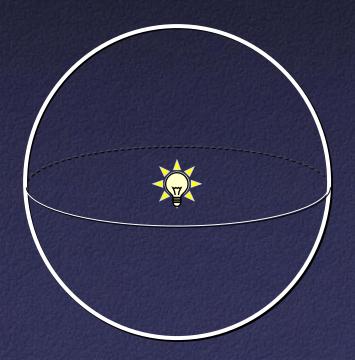
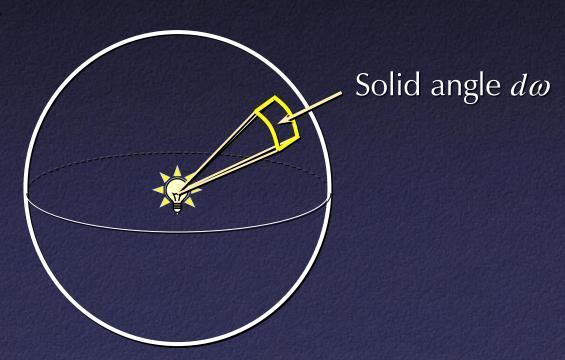
Radiometry

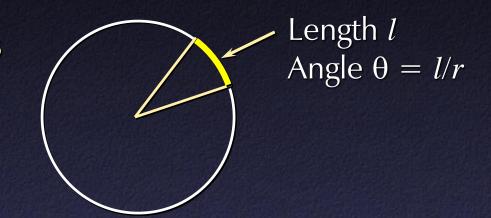

COS 526, Fall 2014

Radiometric Units

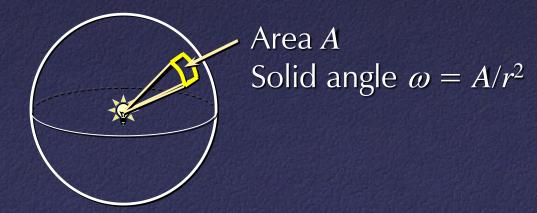
- Light is a form of energy
 - Measured in Joules (J)
- Power: energy per unit time
 - Measured in Joules/sec = Watts (W)
 - Also called Radiant Flux (Φ)


Isotropic Point Source

- Radiant flux leaves point source in all directions
- Flux distributed evenly over sphere

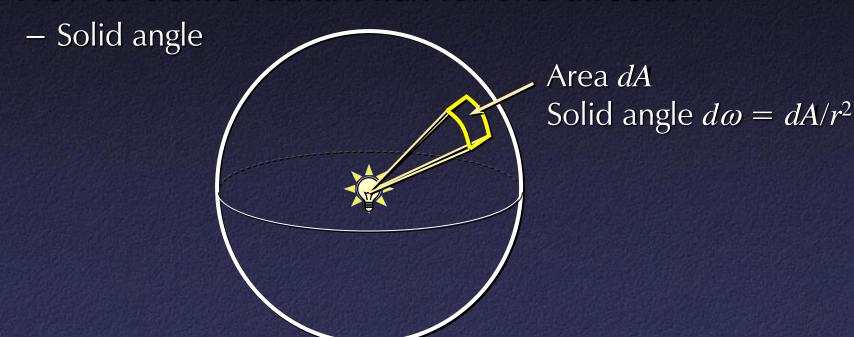

Point Light Source in a Direction

- How to define radiant flux for one direction?
 - Solid angle



Digression – Solid Angle

Angle in radians



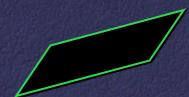
Solid angle in steradians

Point Light Source in a Direction

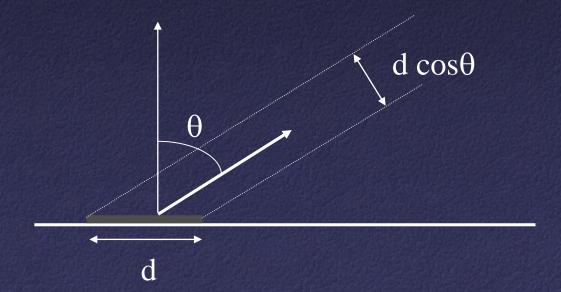
• How to define radiant flux for one direction?

- Radiant Intensity (I) = radiant flux per unit solid angle
 - Measured in Watts per steradian (W/sr)

- Power per unit area Irradiance (E)
 - Measured in W/m²
- Move surface away from light
 - Inverse square law: $E \sim 1/r^2$

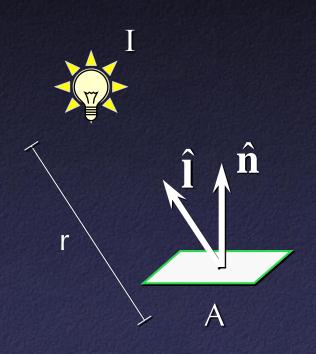


Cosine law: E ~ n ⋅ I




Why the Cosine Term?

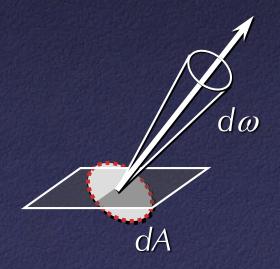
- Foreshortening is by cosine of angle.
- Radiance gives energy by effective surface area.


$$E = \frac{\Phi}{A}$$

$$E = \frac{\Phi}{A}$$

$$\Phi = I\omega$$

$$E = \frac{\Phi}{A}$$


$$\Phi = I\omega$$

$$\omega = \frac{A(\hat{\mathbf{n}} \cdot \hat{\mathbf{l}})}{r^2}$$

$$\Rightarrow E = \frac{I(\hat{\mathbf{n}} \cdot \hat{\mathbf{l}})}{r^2}$$

Light Emitted from a Surface in a Direction

- Power per unit area per unit solid angle –
 Radiance (L)
 - Measured in W/m²/sr
 - Projected area perpendicular to given direction

$$L = \frac{d\Phi}{dA_p \, d\omega}$$

$$L = \frac{d\Phi}{dA\cos\theta \ d\vec{\omega}}$$

Irradiance from Radiance

$$E = \int_{\Omega} L \cos\theta \ d\omega$$

• $\cos\theta \ d\omega$ is projection of a differential area

Radiance as a unit of measure

- Radiance doesn't change with distance
 - Therefore it's the quantity we want to measure in a ray tracer.
- Radiance proportional to what a sensor (camera, eye) measures.
 - Therefore it's what we want to output.

Radiometric and Photometric Units

12.7.1.2.1.1.1.1.1.2.2.2.1.2.2.2.2.1.1.1.1	
Radiant energy	Luminous energy
Joule (J)	Talbot
Radiant flux or power (F)	Luminous power
Watt $(W) = J / sec$	$Lumen (lm) = talbot / sec = cd \cdot sr$
Radiant intensity (I)	Luminous intensity
W/sr	Candela (cd)
Irradiance (E)	Illuminance
W / m^2	$Lux = Im / m^2$
Radiance (L)	Luminance
$W / m^2 / sr$	$Nit = Im / m^2 / sr$
Radiosity (B)	Luminosity
W/m^2	$Lux = Im / m^2$