
A Practical Guide to
Global Illumination using

Photon Mapping

Siggraph 2001 Course 38

Tuesday, August 14, 2001

Organizer

Henrik Wann Jensen
Stanford University

Lecturers

Per H. Christensen
Square USA / Pixar

Henrik Wann Jensen
Stanford University

Frank Suykens
K.U.Leuven Belgium



Abstract

This course serves as a practical guide to photon maps. Any reader

who can implement a ray tracer should be able to add an efficient

implementation of photon maps to his or her ray tracer after attending

this course and reading the course notes.

There are many reasons to augment a ray tracer with photon maps.

Photon maps makes it possible to efficiently compute global illumina-

tion including caustics, diffuse color bleeding, and participating me-

dia. Photon maps can be used in scenes containing many complex

objects of general type (i.e. the method is not restricted to tessellated

models). The method is capable of handling advanced material de-

scriptions based on a mixture of specular, diffuse, and non-diffuse

components. Furthermore, the method is easy to implement and ex-

periment with.

This course is structured as a half day course. We will therefore as-

sume that the participants have knowledge of global illumination al-

gorithms (in particular ray tracing), material models, and radiometric

terms such as radiance and flux. We will discuss in detail photon trac-

ing, the photon map data structure, the photon map radiance estimate,

and rendering techniques based on photon maps. We will emphasize

the techniques for efficient computation throughout the presentation.

Finally, we will present several examples of scenes rendered with pho-

ton maps and explain the important aspects that we considered when

rendering each scene.
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Course Syllabus

5 minutes: Introduction and Welcome
Henrik Wann Jensen

Why you should attend this course. Overview of the topics.

15 minutes: Overview of Global Illlumination
Henrik Wann Jensen

A quick introduction to the rendering equation that global illumination meth-
ods have to solve. Following will be a brief description of different global
illumination algorithms (finite element radiosity and Monte Carlo ray trac-
ing). The advantages and disadvantages of each algorithm will be discussed,
and an overview of the photon mapping algorithm will be given.

40 minutes: Photon Tracing: Building the Photon Maps
Henrik Wann Jensen

This part of the course will cover efficient techniques for:

• Emitting photons from the light sources in the scene

• The use of projection maps

• Simulating scattering and absorption of photons using Russian Roulette

• Storing photons in the photon map

• Preparing the photon map for rendering

Also the use of several photon maps for the simulation of caustics, soft indi-
rect illumination and participating media will be described.

45 minutes: Rendering using Photon Mapping
Henrik Wann Jensen

A description of how the photon maps are used to render complex scenes
with global illumination. We will describe how the rendering equation is
split into several components that each can be rendered using specialized



techniques based on the photon maps, and we will cover methods for render-
ing caustics, indirect illumination, participating media and subsurface scat-
tering.

We will describe how to apply useful algorithms such as irradiance caching
and Russian roulette to significantly reduce the rendering time. We will
also present some useful and practical ”tricks” that dramatically improve
the speed of the photon map.

There will be several examples examples of different scenes rendered using
photon maps with a description of how the photon maps were used, and
some insight on the issues that were important to ensure good quality and
fast results.

15 minutes: Break

30 minutes: Visual importance and the photon map
Frank Suykens

A description of visual importance and how it can be used to build a bet-
ter photon map. This includes methods to compute importance maps and
methods to control the local density of photons in order to get an appropriate
accuracy throughout the scene. As a result less photons need to be stored
reducing the memory requirements.

30 minutes: Making the photon map faster
Per H. Christensen

A number of optimizations for making the photon map faster will be pre-
sented. This includes precomputing information at the cost of slightly higher
memory consumption, and also methods for making the search for photons
more effective. New details on frame-coherent use of random numbers in
the photon tracing pass to reduce flickering in animations. A brief discus-
sion about the use of importance sampling on light sources in order to guide
photons to the important locations.

15 minutes: Photon maps in RenderPark
Frank Suykens

An overview of the photon mapping capabilities in RenderPark (a free, open-
source global illumination renderer developed at K.U. Leuven).



15 minutes: Photon maps in movie production
Per H. Christensen

The scenes rendered at Square USA are so complex that they really chal-
lenge global illumination algorithms. Images will be shown to demonstrate
that photon mapping can handle ”real” production scenes with millions of
polygons.

15 minutes: Final remarks and questions
Henrik Wann Jensen

Some new animations and images motivating people to try photon mapping
at home, and further information about where to get programs with photon
maps.
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Chapter 1

Introduction

This course material describes in detail the practical aspects of the photon map
algorithm. The text is based on previously published papers, technical reports and
dissertations (in particular [Jensen96c]). It also reflects the experience obtained
with the implementation of the photon map as it was developed at the Technical
University of Denmark. After reading this course material, it should be relatively
straightforward to add an efficient implementation of the photon map algorithm to
any ray tracer.

1.1 Motivation

The photon mapping method is an extension of ray tracing. In 1989, Andrew
Glassner wrote about ray tracing [Glassner89]:

“Today ray tracing is one of the most popular and powerful tech-
niques in the image synthesis repertoire: it is simple, elegant, and eas-
ily implemented. [However] there are some aspects of the real world
that ray tracing doesn’t handle very well (or at all!) as of this writ-
ing. Perhaps the most important omissions are diffuse inter-reflections
(e.g. the ‘bleeding’ of colored light from a dull red file cabinet onto a
white carpet, giving the carpet a pink tint), and caustics (focused light,
like the shimmering waves at the bottom of a swimming pool).”

At the time of the development of the photon map algorithm in 1993, these prob-
lems were still not addressed efficiently by any ray tracing algorithm. The pho-
ton map method offers a solution to both problems. Diffuse interreflections and

11



caustics are both indirect illumination of diffuse surfaces; with the photon map
method, such illumination is estimated using precomputed photon maps. Extend-
ing ray tracing with photon maps yields a method capable of efficiently simulating
all types of direct and indirect illumination. Furthermore, the photon map method
can handle participating media and it is fairly simple to parallelize [Jensen00].

1.2 What is photon mapping?

The photon map algorithm was developed in 1993–1994 and the first papers on the
method were published in 1995. It is a versatile algorithm capable of simulating
global illumination including caustics, diffuse interreflections, and participating
media in complex scenes. It provides the same flexibility as general Monte Carlo
ray tracing methods using only a fraction of the computation time.

The global illumination algorithm based on photon maps is a two-pass method.
The first pass builds the photon map by emitting photons from the light sources into
the scene and storing them in aphoton mapwhen they hit non-specular objects.
The second pass, the rendering pass, uses statistical techniques on the photon map
to extract information about incoming flux and reflected radiance at any point in
the scene. The photon map is decoupled from the geometric representation of the
scene. This is a key feature of the algorithm, making it capable of simulating
global illumination in complex scenes containing millions of triangles, instanced
geometry, and complex procedurally defined objects.

Compared with finite element radiosity, photon maps have the advantage that
no meshing is required. The radiosity algorithm is faster for simple diffuse scenes
but as the complexity of the scene increases, photon maps tend to scale better. Also
the photon map method handles non-diffuse surfaces and caustics.

Monte Carlo ray tracing methods such as path tracing, bidirectional path trac-
ing, and Metropolis can simulate all global illumination effects in complex scenes
with very little memory overhead. The main benefit of the photon map compared
with these methods is efficiency, and the price paid is the extra memory used to
store the photons. For most scenes the photon map algorithm is significantly faster,
and the result looks better since the error in the photon map method is of low fre-
quency which is less noticeable than the high frequency noise of general Monte
Carlo methods.

Another big advantage of photon maps (from a commercial point of view) is
that there is no patent on the method; anyone can add photon maps to their renderer.
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As a result several commercial systems use photon maps for rendering caustics and
global illumination.

1.3 Overview of the course material

The first part describes the basic photon mapping algorithm. Section 2.1 describes
emission, tracing, and storing of photons. Section 2.2 describes how to organize
the photons in a balanced kd-tree for improved performance in the rendering step.
The radiance estimate based on photons is outlined in section 2.3. This section
also contains information on how to filter the estimate to obtain better quality and
it contains a description of how to locate photons efficiently given the balanced
kd-tree. The rendering pass is presented in section 2.4 with information on how to
split the rendering equation and use the photon map to efficiently compute different
parts of the equation. Section 2.5 we give a number of examples of scenes rendered
with the photon map algorithm.

The second part provides some information about recent research on visual
importance. How can we send the photons to the parts of the model that we are
concerned about?

The last part provides the details for a number of practical tricks that can make
photon mapping significantly faster.

1.4 More information

For more information about photon mapping, all the practical details, the theory
and the insight for understanding the technique see:

Henrik Wann Jensen
Realistic Image Synthesis using Photon Mapping
AK Peters, 2001

This book also contains additional information about participating media and sub-
surface scattering. Finally, it contains an implementation with source code in C++
of the photon map data structure.
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Chapter 2

A Practical Guide to Global
Illumination using Photon
Mapping

2.1 Photon tracing

The purpose of the photon tracing pass is to compute indirect illumination on dif-
fuse surfaces. This is done by emitting photons from the light sources, tracing them
through the scene, and storing them at diffuse surfaces.

2.1.1 Photon emission

This section describes how photons are emitted from a single light source and from
multiple light sources, and describes the use of projection maps which can increase
the emission efficiency considerably.

Emission from a single light source

The photons emitted from a light source should have a distribution corresponding
to the distribution of emissive power of the light source. This ensures that the
emitted photons carry the same flux — ie. we do not waste computational resources
on photons with low power.

Photons from a diffuse point light source are emitted in uniformly distributed
random directions from the point. Photons from a directional light are all emitted
in the same direction, but from origins outside the scene. Photons from a diffuse
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square light source are emitted from random positions on the square, with direc-
tions limited to a hemisphere. The emission directions are chosen from a cosine
distribution: there is zero probability of a photon being emitted in the direction
parallel to the plane of the square, and highest probability of emission is in the
direction perpendicular to the square.

In general, the light source can have any shape and emission characteristics —
the intensity of the emitted light varies with both origin and direction. For example,
a (matte) light bulb has a nontrivial shape and the intensity of the light emitted
from it varies with both position and direction. The photon emission should follow
this variation, so in general, the probability of emission varies depending on the
position on the surface of the light source and the direction.
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Figure 2.1: Emission from light sources: (a) point light, (b) directional light,
(c) square light, (d) general light.

Figure 2.1 shows the emission from these different types of light sources.

The power (“wattage”) of the light source has to be distributed among the pho-
tons emitted from it. If the power of the light isPlight and the number of emitted
photons isne, the power of each emitted photon is

Pphoton =
Plight
ne

. (2.1)

Pseudocode for a simple example of photon emission from a diffuse point light
source is given in Figure 2.2.

To further reduce variation in the computed indirect illumination (during ren-
dering), it is desirable that the photons are emitted as evenly as possible. This can
for example be done with stratification [Rubinstein81] or by using low-discrepancy
quasi-random sampling [Keller96].
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emit photons from diffuse point light() {
ne = 0 number of emitted photons
while (not enough photons) {

do { use simple rejection sampling to find diffuse photon direction
x = random number between -1 and 1
y = random number between -1 and 1
z = random number between -1 and 1

} while ( x2 + y2 + z2 > 1 )

~d = < x, y, z >
~p = light source position

trace photon from ~p in direction ~d
ne = ne + 1

}
scale power of stored photons with 1/ne

}

Figure 2.2: Pseudocode for emission of photons from a diffuse point light

Multiple lights

If the scene contains multiple light sources, photons should be emitted from each
light source. More photons should be emitted from brighter lights than from dim
lights, to make the power of all emitted photons approximately even. (The infor-
mation in the photon map is best utilized if the power of the stored photons is
approximately even). One might worry that scenes with many light sources would
require many more photons to be emitted than scenes with a single light source.
Fortunately, it is not so. In a scene with many light sources, each light contributes
less to the overall illumination, and typically fewer photons can be emitted from
each light. If, however, only a few light sources are important one might use an
importance sampling map [Peter98] to concentrate the photons in the areas that are
of interest to the observer. The tricky part about using an importance map is that we
do not want to generate photons with energy levels that are too different since this
will require a larger number of photons in the radiance estimate (see section 2.3)
to ensure good quality.
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Projection maps

In scenes with sparse geometry, many emitted photons will not hit any objects.
Emitting these photons is a waste of time. To optimize the emission,projection
maps can be used [Jensen93, Jensen95a]. A projection map is simply a map of
the geometry as seen from the light source. This map consists of many little cells.
A cell is “on” if there is geometry in that direction, and “off” if not. For example,
a projection map is a spherical projection of the scene for a point light, and it is a
planar projection of the scene for a directional light. To simplify the projection it is
convenient to project the bounding sphere around each object or around a cluster of
objects [Jensen95a]. This also significantly speeds up the computation of the pro-
jection map since we do not have to examine every geometric element in the scene.
The most important aspect about the projection map is that it gives a conservative
estimate of the directions in which it is necessary to emit photons from the light
source. Had the estimate not been conservative (e.g. we could have sampled the
scene with a few photons first), we could risk missing important effects, such as
caustics.

The emission of photons using a projection map is very simple. One can either
loop over the cells that contain objects and emit a random photon into the direc-
tions represented by the cell. This method can, however, lead to slightly biased
results since the photon map can be “full” before all the cells have been visited.
An alternative approach is to generate random directions and check if the cell cor-
responding to that direction has any objects (if not a new random direction should
be tried). This approach usually works well, but it can be costly in sparse scenes.
For sparse scenes it is better to generate photons randomly for the cells which have
objects. A simple approach is to pick a random cell with objects and then pick
a random direction for the emitted photon for that cell [Jensen93]. In all circum-
stances it is necessary to scale the energy of the stored photons based on the number
of active cells in the projection map and the number of photons emitted [Jensen93].
This leads to a slight modification of formula 2.1:

Pphoton =
Plight
ne

cells with objects
total number of cells

. (2.2)

Another important optimization for the projection map is to identify objects
with specular properties (i.e. objects that can generate caustics) [Jensen93]. As it
will be described later, caustics are generated separately, and since specular objects
often are distributed sparsely it is very beneficial to use the projection map for
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caustics.

2.1.2 Photon tracing

Once a photon has been emitted, it is traced through the scene using photon tracing
(also known as “light ray tracing”, “backward ray tracing”, “forward ray tracing”,
and “backward path tracing”). Photon tracing works in exactly the same way as ray
tracing except for the fact that photons propagate flux whereas rays gather radiance.
This is an important distinction since the interaction of a photon with a material can
be different than the interaction of a ray. A notable example is refraction where
radiance is changed based on the relative index of refraction[Hall88] — this does
not happen to photons.

When a photon hits an object, it can either be reflected, transmitted, or ab-
sorbed. Whether it is reflected, transmitted, or absorbed is decided probabilistically
based on the material parameters of the surface. The technique used to decide the
type of interaction is known as Russian roulette [Arvo90] — basically we roll a
dice and decide whether the photon should survive and be allowed to perform an-
other photon tracing step.

Examples of photon paths are shown in Figure 2.3.

Reflection, transmission, or absorption?

For a simple example, we first consider a monochromatic simulation. For a re-
flective surface with a diffuse reflection coefficientd and specular reflection coeffi-
cients (with d+ s ≤ 1) we use a uniformly distributed random variableξ ∈ [0, 1]
(computed with for exampledrand48() ) and make the following decision:

ξ ∈ [0, d] −→ diffuse reflection
ξ ∈]d, s+ d] −→ specular reflection
ξ ∈]s+ d, 1] −→ absorption

In this simple example, the use of Russian roulette means that we do not have to
modify the power of the reflected photon — the correctness is ensured by averaging
several photon interactions over time. Consider for example a surface that reflects
50% of the incoming light. With Russian roulette only half of the incoming photons
will be reflected, but with full energy. For example, if you shoot 1000 photons at
the surface, you can either reflect 1000 photons with half the energy or 500 photons
with full energy. It can be seen that Russian roulette is a powerful technique for
reducing the computational requirements for photon tracing.
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b
c

Figure 2.3: Photon paths in a scene (a “Cornell box” with a chrome sphere on left
and a glass sphere on right): (a) two diffuse reflections followed by absorption, (b) a
specular reflection followed by two diffuse reflections, (c) two specular transmissions
followed by absorption.

With more color bands (for example RGB colors), the decision gets slightly
more complicated. Consider again a surface with some diffuse reflection and some
specular reflection, but this time with different reflection coefficients in the three
color bands. The probabilities for specular and diffuse reflection can be based on
the total energy reflected by each type of reflection or on the maximum energy
reflected in any color band. If we base the decision on maximum energy, we can
for example compute the probabilityPd for diffuse reflection as

Pd =
max(drPr, dgPg, dbPb)

max(Pr, Pg, Pb)

where(dr, dg, db) are the diffuse reflection coefficients in the red, green, and blue
color bands, and(Pr, Pg, Pb) are the powers of the incident photon in the same
three color bands.

Similarly, the probabilityPs for specular reflection is

Ps =
max(srPr, sgPg, sbPb)

max(Pr, Pg, Pb)

where(sr, sg, sb) are the specular reflection coefficients.
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The probability of absorbtion isPa = 1 − Pd − Ps. With these probabilities,
the decision of which type of reflection or absorption should be chosen takes the
following form:

ξ ∈ [0, Pd] −→ diffuse reflection
ξ ∈]Pd, Ps + Pd] −→ specular reflection
ξ ∈]Ps + Pd, 1] −→ absorption

The power of the reflected photon needs to be adjusted to account for the proba-
bility of survival. If, for example, specular reflection was chosen in the example
above, the powerPrefl of the reflected photon is:

Prefl,r = Pinc,r sr/Ps
Prefl,g = Pinc,g sg/Ps
Prefl,b = Pinc,b sb/Ps

wherePinc is the power of the incident photon.
The computed probabilities again ensure us that we do not waste time emitting

photons with very low power.
It is simple to extend the selection scheme to also handle transmission, to han-

dle more than three color bands, and to handle other reflection types (for example
glossy and directional diffuse).

Why Russian roulette?

Why do we go through this effort to decide what to do with a photon? Why not just
trace new photons in the diffuse and specular directions and scale the photon energy
accordingly? There are two main reasons why the use of Russian roulette is a very
good idea. Firstly, we prefer photons with similar power in the photon map. This
makes the radiance estimate much better using only a few photons. Secondly, if
we generate, say, two photons per surface interaction then we will have28 photons
after 8 interactions. This means 256 photons after 8 interactions compared to 1
photon coming directly from the light source! Clearly this is not good. We want at
least as many photons that have only 1–2 bounces as photons that have made 5–8
bounces. The use of Russian roulette is therefore very important in photon tracing.

There is one caveat with Russian roulette. It increases variance on the solution.
Instead of using the exact values for reflection and transmission to scale the photon
energy we now rely on a sampling of these values that will converge to the correct
result as enough photons are used.
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(a) (b)

Figure 2.4: “Cornell box” with glass and chrome spheres: (a) ray traced image (di-
rect illumination and specular reflection and transmission), (b) the photons in the
corresponding photon map.

Details on photon tracing and Russian roulette can be found in [Shirley90,
Pattanaik93, Glassner95].

2.1.3 Photon storing

This section describes which photon-surface interactions are stored in the photon
map. It also describes in more detail the photon map data structure.

Which photon-surface interactions are stored?

Photons are only stored where they hit diffuse surfaces (or, more precisely, non-
specular surfaces). The reason is that storing photons on specular surfaces does
not give any useful information: the probability of having a matching incoming
photon from the specular direction is zero, so if we want to render accurate specular
reflections the best way is to trace a ray in the mirror direction using standard ray
tracing. For all other photon-surface interactions, data is stored in a global data
structure, thephoton map. Note that each emitted photon can be stored several
times along its path. Also, information about a photon is stored at the surface
where it is absorbed if that surface is diffuse.
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For each photon-surface interaction, the position, incoming photon power, and
incident direction are stored. (For practical reasons, there is also space reserved for
a flag with each set of photon data. The flag is used during sorting and look-up in
the photon map. More on this in the following.)

As an example, consider again the simple scene from Figure 2.3, a “Cornell
box” with two spheres. Figure 2.4(a) shows a traditional ray traced image (direct
illumination and specular reflection and transmission) of this scene. Figure 2.4(b)
shows the photons in the photon map generated for this scene. The high concen-
tration of photons under the glass sphere is caused by focusing of the photons by
the glass sphere.

Data structure

Expressed inC the following structure is used for each photon [Jensen96b]:

struct photon {

float x,y,z; // position

char p[4]; // power packed as 4 chars

char phi, theta; // compressed incident direction

short flag; // flag used in kdtree

}

The power of the photon is represented compactly as 4 bytes using Ward’s
packed rgb-format [Ward91]. If memory is not of concern one can use 3 floats to
store the power in the red, green, and blue color band (or, in general, one float per
color band if a spectral simulation is performed).

The incident direction is a mapping of the spherical coordinates of the photon
direction to 65536 possible directions. They are computed as:

phi = 255 * (atan2(dy,dx)+PI) / (2*PI)

theta = 255 * acos(dx) / PI

whereatan2 is from the standard C library. The direction is used to compute the
contribution for non-Lambertian surfaces [Jensen96a], and for Lambertian surfaces
it is used to check if a photon arrived at the front of the surface. Since the photon
direction is used often during rendering it pays to have a lookup table that maps the
theta, phi direction to three floats directly instead of using the formula for spherical
coordinates which involves the use of the costlycos() andsin() functions.
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A minor note is that the flag in the structure is a short. Only 2 bits of this flag
are used (this is for the splitting plane axis in the kd-tree), and it would be possible
to use just one byte for the flag. However for alignment reasons it is preferable to
have a 20 byte photon rather than a 19 byte photon — on some architectures it is
even a necessity since the float-value in subsequent photons must be aligned on a
4 byte address.

We might be able to compress the information more by using the fact that we
know the cube in which the photon is located. The position is, however, used very
often when the photons are processed and by using standard float we avoid the
overhead involved in extracting the true position from a specialized format.

During the photon tracing pass the photon map is arranged as a flat array of
photons. For efficiency reasons this array is re-organized into a balanced kdtree
before rendering as explained in section 2.2.

2.1.4 Extension to participating media

Up to this point, all photon interactions have been assumed to happen at object sur-
faces; all volumes were implicitly assumed to not affect the photons. However, it
is simple to extend the photon map method to handleparticipating media, i.e. vol-
umes that participate in the light transport. In scenes with participating media, the
photons are stored within the media in a seperatevolume photon map[Jensen98].

Photon emission, tracing, and storage

Photons can be emitted from volumes as well as from surfaces and points. For
example, the light from a candle flame can be simulated by emitting photons from
a flame-shaped volume.

When a photon travels through a participating medium, it has a certain prob-
ability of being scattered or absorped in the medium. The probability depends
on the density of the medium and on the distance the photon travels through the
medium: the denser the medium, the shorter the average distance before a photon
interaction happens. Photons are stored at the positions where a scattering event
happens. The exception is photons that come directly from the light source since
direct illumination is evaluated using ray tracing. This separation was introduced
in [Jensen98] and it allows us to compute the in-scattered radiance in a medium
simply by a lookup in the photon map.
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Figure 2.5: Sphere in fog: (a) schematic diagram of light paths, (b) the caustic pho-
tons in the photon map.

As an example, consider a glass sphere in fog illuminated by directional light.
Figure 2.5(a) shows a schematic diagram of the photon paths as photons are being
focused by refraction in the glass sphere. Figure 2.5(b) shows the caustic photons
stored in the photon map.

Multiple scattering, anisotropic scattering, and non-homogeneous media

The simple example above only shows the photon interaction in the fog after refrac-
tion by the glass sphere, and the photon paths are terminated at the first scattering
event. General multiple scattering is simulated simply by letting the photons scatter
everywhere and continuously after the first interaction. The path can be terminated
using Russian roulette.

The fog in the example has uniform density, but it is not difficult to handle
media with nonuniform density (aka. nonhomogeneous media), since we use ray
marching to integrate the properties of the medium. A simple ray marcher works
by dividing the medium into little steps [Ebert94]. The accumulated density (inte-
grated extinction coefficient) is updated at each step, and based on a precomputed
probability it is determined whether the photon should be absorbed, scattered, or
whether another step is necessary.

25



For more complicated examples of scattering in participating media, including
anisotropic and nonhomogeneous media and complex geometry, see [Jensen98].

2.1.5 Three photon maps

For efficiency reasons, it pays off to divide the stored photons into three photon
maps:

Caustic photon map: contains photons that have been through at least one spec-
ular reflection before hitting a diffuse surface:LS+D.

Global photon map: an approximate representation of the global illumination so-
lution for the scene for all diffuse surfaces:L{S|D|V }∗D

Volume photon map: indirect illumination of a participating medium:
L{S|D|V }+V .

Here, we used the grammar from [Heckbert90] to describe the photon paths:Lmeans
emission from the light source,S is specular reflection or transmission,D is dif-
fuse (ie. non-specular) reflection or transmission, andV is volume scattering. The
notation{x|y|z} means “one ofx, y, or z”, x+ means one or several repeats ofx,
andx∗ means zero or several repeats ofx.

The reason for keeping three separate photon maps will become clear in sec-
tion 2.4. A separate photon tracing pass is performed for the caustic photon map
since it should be of high quality and therefore often needs more photons than the
global photon map and the volume photon map.

The construction of the photon maps is most easily achieved by using two sep-
arate photon tracing steps in order to build the caustics photon map and the global
photon map (including the volume photon map). This is illustrated in Figure 2.6
for a simple test scene with a glass sphere and 2 diffuse walls. Figure 2.6(a) shows
the construction of the caustics photon map with a dense distribution of photons,
and Figure 2.6(b) shows the construction of the global photon map with a more
coarse distribution of photons.

2.2 Preparing the photon map for rendering

Photons are only generated during the photon tracing pass — in the rendering pass
the photon map is a static data structure that is used to compute estimates of the
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(a) (b)

Figure 2.6: Building (a) the caustics photon map and (b) the global photon map.

incoming flux and the reflected radiance at many points in the scene. To do this it
is necessary to locate the nearest photons in the photon map. This is an operation
that is done extremely often, and it is therefore a good idea to optimize the repre-
sentation of the photon map before the rendering pass such that finding the nearest
photons is as fast as possible.

First, we need to select a good data structure for representing the photon map.
The data structure should be compact and at the same time allow for fast nearest
neighbor searching. It should also be able to handle highly non-uniform distribu-
tions — this is very often the case in the caustics photon map. A natural candidate
that handles these requirements isa balanced kd-tree[Bentley75]. Examples of
using a balanced versus an unbalanced kd-tree can be found in [Jensen96a].

2.2.1 The balanced kd-tree

The time it takes to locate one photon in a balanced kd-tree has a worst time perfor-
mance ofO(logN), whereN is the number of photons in the tree. Since the photon
map is created by tracing photons randomly through a model one might think that a
dynamically built kd-tree would be quite well balanced already. However, the fact
that the generation of the photons at the light source is based on the projection map
combined with the fact that models often contain highly directional reflectance
models easily results in a skewed tree. Since the tree is created only once and
used many times during rendering it is quite natural to consider balancing the tree.
Another argument that is perhaps even more important is the fact that a balanced
kd-tree can be represented using a heap-like data-structure [Sedgewick92] which
means that explicitly storing the pointers to the sub-trees at each node is no longer
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kdtree *balance( points ) {
Find the cube surrounding the points
Select dimension dim in which the cube is largest
Find median of the points in dim
s1 = all points below median
s2 = all points above median
node = median
node.left = balance( s1 )
node.right = balance( s2 )
return node

}

Figure 2.7: Pseudocode for balancing the photon map

necessary. (Array element 1 is the tree root, and elementi has element2i as left
child and element2i + 1 as right child.) This can lead to considerable savings in
memory when a large number of photons is used.

2.2.2 Balancing

Balancing a kd-tree is similar to balancing a binary tree. The main difference is the
choice at each node of a splitting dimension. When a splitting dimension of a set is
selected, the median of the points in that dimension is chosen as the root node of the
tree representing the set and the left and right subtrees are constructed from the two
sets separated by the median point. The choice of a splitting dimension is based
on the distribution of points within the set. One might use either the variance or
the maximum distance between the points as a criterion. We prefer a choice based
upon maximum distance since it can be computed very efficiently (even though
a choice based upon variance might be slightly better). The splitting dimension is
thus chosen as the one which has the largest maximum distance between the points.

Figure 2.7 contains a pseudocode outline for the balancing algorithm [Jensen96c].

To speed up the balancing process it is convenient to use an array of pointers
to the photons. In this way only pointers needs to be shuffled during the median
search. An efficient median search algorithm can be found in most textbooks on
algorithms — see for example [Sedgewick92] or [Cormen89].

The complexity of the balancing algorithm isO(N logN) whereN is the num-
ber of photons in the photon map. In practice, this step only takes a few seconds
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even for several million photons.

2.3 The radiance estimate

A fundamental component of the photon map method is the ability to compute
radiance estimates at any non-specular surface point in any given direction.

2.3.1 Radiance estimate at a surface

The photon map can be seen as a representation of the incoming flux; to com-
pute radiance we need to integrate this information. This can be done using the
expression for reflected radiance:

Lr(x, ~ω) =
∫

Ωx

fr(x, ~ω′, ~ω)Li(x, ~ω′)|~nx · ~ω′| dω′i , (2.3)

whereLr is the reflected radiance atx in direction ~ω. Ωx is the (hemi)sphere
of incoming directions,fr is the BRDF (bidirectional reflectance distribution func-
tion) [Nicodemus77] atx andLi is the incoming radiance. To evaluate this integral
we need information about the incoming radiance. Since the photon map provides
information about the incoming flux we need to rewrite this term. This can be done
using the relationship between radiance and flux:

Li(x, ~ω′) =
d2Φi(x, ~ω′)

cos θi dω′i dAi
, (2.4)

and we can rewrite the integral as

Lr(x, ~ω) =
∫

Ωx

fr(x, ~ω′, ~ω)
d2Φi(x, ~ω′)

cos θi dω′i dAi
|~nx · ~ω′| dω′i

=
∫

Ωx

fr(x, ~ω′, ~ω)
d2Φi(x, ~ω′)

dAi
. (2.5)

The incoming fluxΦi is approximated using the photon map by locating then

photons that has the shortest distance tox. Each photonp has the power∆Φp(~ωp)
and by assuming that the photons intersects the surface atx we obtain

Lr(x, ~ω) ≈
n∑
p=1

fr(x, ~ωp, ~ω)
∆Φp(x, ~ωp)

∆A
. (2.6)
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L

Figure 2.8: Radiance is estimated using the nearest photons in the photon map.

The procedure can be imagined as expanding a sphere aroundx until it contains
n photons (see Figure 2.8) and then using thesen photons to estimate the radiance.

Equation 2.6 still contains∆A which is related to the density of the photons
aroundx. By assuming that the surface is locally flat aroundx we can compute
this area by projecting the sphere onto the surface and use the area of the resulting
circle. This is indicated by the hatched area in Figure 2.8 and equals:

∆A = πr2 , (2.7)

wherer is the radius of the sphere – ie. the largest distance betweenx and each of
the photons.

This results in the following equation for computing reflected radiance at a
surface using the photon map:

Lr(x, ~ω) ≈ 1
πr2

N∑
p=1

fr(x, ~ωp, ~ω)∆Φp(x, ~ωp) . (2.8)

This estimate is based on many assumptions and the accuracy depends on the
number of photons used in the photon map and in the formula. Since a sphere is
used to locate the photons one might easily include wrong photons in the estimate
in particular in corners and at sharp edges of objects. Edges and corners also causes
the area estimate to be wrong. The size of those regions in which these errors occur
depends largely on the number of photons in the photon map and in the estimate.
As more photons are used in the estimate and in the photon map, formula 2.8
becomes more accurate. If we ignore the error due to limited accuracy of the
representation of the position, direction and flux, then we can go to the limit and
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L L

Figure 2.9: Using a sphere (left) and using a disc (right) to locate the photons.

increase the number of photons to infinity. This gives the following interesting
result whereN is the number of photons in the photon map:

lim
N→∞

1
πr2

bNαc∑
p=1

fr(x, ~ωp, ~ω)∆Φp(x, ~ωp) = Lr(x, ~ω) for α ∈]0, 1[ . (2.9)

This formulation applies to all pointsx located on a locally flat part of a surface for
which the BRDF, does not contain the Dirac delta function (this excludes perfect
specular reflection). The principle in equation 2.9 is that not only will an infinite
amount of photons be used to represent the flux within the model but an infinite
amount of photons will also be used to estimate radiance and the photons in the
estimate will be located within an infinitesimal sphere. The different degrees of in-
finity are controlled by the termNα whereα ∈]0, 1[. This ensures that the number
of photons in the estimate will be infinitely fewer than the number of photons in
the photon map.

Equation 2.9 means that we can obtain arbitrarily good radiance estimates by
just using enough photons! In finite element based approaches it is more compli-
cated to obtain arbitrary accuracy since the error depends on the resolution of the
mesh, the resolution of the directional representation of radiance and the accuracy
of the light simulation.

Figure 2.8 shows how locating the nearest photons is similar to expanding a
sphere aroundx and using the photons within this sphere. It is possible to use
other volumes than the sphere in this process. One might use a cube instead, a
cylinder or perhaps a disc. This could be useful to either obtain an algorithm that
is faster at locating the nearest photons or perhaps more accurate in the selection of
photons. If a different volume is used then∆A in equation 2.6 should be replaced
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by the area of the intersection between the volume and the tangent plane touching
the surface atx. The sphere has the obvious advantage that the projected area and
the distance computations are very simple and thus efficiently computed. A more
accurate volume can be obtained by modifying the sphere into a disc (ellipsoid)
by compressing the sphere in the direction of the surface normal atx (shown in
Figure 2.9) [Jensen96c]. The advantage of using a disc would be that fewer “false
photons” are used in the estimate at edges and in corners. This modification works
pretty well at the edges in a room, for instance, since it prevents photons on the
walls to leak down to the floor. One issue that still occurs, however, is that the area
estimate might be wrong or photons may leak into areas where they do not belong.
This problem is handled primarily by the use of filtering.

2.3.2 Filtering

If the number of photons in the photon map is too low, the radiance estimates be-
comes blurry at the edges. This artifact can be pleasing when the photon map is
used to estimate indirect illumination for a distribution ray tracer (see section 2.4
and Figure 2.15) but it is unwanted in situations where the radiance estimate rep-
resents caustics. Caustics often have sharp edges and it would be nice to preserve
these edges without requiring too many photons.

To reduce the amount of blur at edges, the radiance estimate is filtered. The
idea behind filtering is to increase the weight of photons that are close to the point
of interest,x. Since we use a sphere to locate the photons it would be natural to
assume that the filters should be three-dimensional. However, photons are stored
at surfaces which are two-dimensional. The area estimate is also based on the
assumption that photons are located on a surface. We therefore need a 2d-filter
(similar to image filters) which is normalized over the region defined by the pho-
tons.

The idea of filtering caustics is not new. Collins [Collins94] has examined
several filters in combination with illumination maps. The filters we have ex-
amined are two radially symmetric filters: the cone filter and the Gaussian fil-
ter [Jensen96c], and the specialized differential filter introduced in [Jensen95a].
For examples of more advanced filters see Myszkowski et al. [Myszkowski97].
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The cone filter

The cone-filter [Jensen96c] assigns a weight,wpc, to each photon based on the
distance,dp, betweenx and the photonp. This weight is:

wpc = 1− dp
k r

, (2.10)

wherek ≥ 1 is a filter constant characterizing the filter andr is the maximum
distance. The normalization of the filter based on a 2d-distribution of the photons
is 1− 2

3k and the filtered radiance estimate becomes:

Lr(x, ~ω) ≈

N∑
p=1

fr(x, ~ωp, ~ω)∆Φp(x, ~ωp)wpc

(1− 2
3k )πr2

. (2.11)

The Gaussian filter

The Gaussian filter [Jensen96c] has previously been reported to give good results
when filtering caustics in illumination maps [Collins94]. It is easy to use the Gaus-
sian filter with the photon map since we do not need to warp the filter to some
surface function. Instead we use the assumption about the locally flat surfaces and
we can use a simple image based Gaussian filter [Pavicic90] and the weightwpg of
each photon becomes

wpg = α

1− 1− e−β
d2p

2r2

1− e−β

 , (2.12)

wheredp is the distance between the photonp andx andα = 0.918 andβ =
1.953 (see [Pavicic90] for details). This filter is normalized and the only change to
equation 2.8 is that each photon contribution is multiplied bywpg:

Lr(x, ~ω) ≈
N∑
p=1

fr(x, ~ωp, ~ω)∆Φp(x, ~ωp)wpg . (2.13)

Differential checking

In [Jensen95a] it was suggested to use a filter based on differential checking. The
idea is to detect regions near edges in the estimation process and use less photons
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in these regions. In this way we might get some noise in the estimate but that is
often preferable to blurry edges.

The radiance estimate is modified based on the following observation: when
adding photons to the estimate, near an edge the changes of the estimate will be
monotonic. That is, if we are just outside a caustic and we begin to add photons
to the estimate (by increasing the size of the sphere centered atx that contains the
photons), then it can be observed that the value of the estimate is increasing as we
add more photons; and vice versa when we are inside the caustic. Based on this
observation, differential checking can be added to the estimate — we stop adding
photons and use the estimate available if we observe that the estimate is either
constantly increasing or decreasing as more photons are added.

2.3.3 The radiance estimate in a participating medium

For the radiance estimate presented so far we have assumed that the photons are
located on a surface. For photons in a participating medium the formula changes
to [Jensen98]:

Li(x, ~ω) =
∫

Ω
f(x, ~ω′, ~ω)L(x, ~ω′) dω′

=
∫

Ω
f(x, ~ω′, ~ω)

d2Φ(x, ~ω′)
σs(x) dω′ dV

dω′

=
1

σs(x)

∫
Ω
f(x, ~ω′, ~ω)

d2Φ(x, ~ω′)
dV

≈ 1
σs(x)

n∑
p=1

f(x, ~ω′p, ~ω)
∆Φp(x, ~ω′p)

4
3πr

3
, (2.14)

whereLi is the in-scattered radiance, and the volumedV = 4
3πr

3 is the volume of
the sphere containing the photons.σs(x) is the scattering coefficient atx andf is
the phase-function.

2.3.4 Locating the nearest photons

Efficiently locating the nearest photons is critical for good performance of the pho-
ton map algorithm. In scenes with caustics, multiple diffuse reflections, and/or
participating media there can be a large number of photon map queries.

Fortunately the simplicity of the kd-tree permits us to implement a simple but
quite efficient search algorithm. This search algorithm is a straight forward ex-
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tension of standard search algorithms for binary trees [Cormen89, Sedgewick92,
Horowitz93]. It is also related to range searching where kd-trees are commonly
used as they have optimal storage and good performance [Preparata85]. The near-
est neighbors query for kd-trees has been described extensively in several publica-
tions by Bentley et al. including [Bentley75, Bentley79a, Bentley79b, Bentley80].
More recent publications include [Preparata85, Sedgewick92]. Some of these pa-
pers go beyond our description of a nearest neighbors query by adding modifi-
cations and extensions to the kd-tree to further reduce the cost of searching. We
do not implement these extensions because we want to maintain the low storage
overhead of the kd-tree as this is an important aspect of the photon map.

Locating the nearest neighbors in a kd-tree is similar to range searching [Preparata85]
in the sense that we want to locate photons within a given volume. For the photon
map it makes sense to restrict the size of the initial search range since the contribu-
tion from a fixed number of photons becomes small for large regions. This simple
observation is particularly important for caustics since they often are concentrated
in a small region. A search algorithm that does not limit the search range will be
slow in such situations since a large part of the kd-tree will be visited for regions
with a sparse number of photons.

A generic nearest neighbors search algorithm begins at the root of the kd-tree,
and adds photons to a list if they are within a certain distance. For then nearest
neighbors the list is sorted such that the photon that is furthest away can be deleted
if the list containsn photons and a new closer photon is found. Instead of naive
sorting of the full list it is better to use a max-heap [Preparata85, Sedgewick92,
Horowitz93]. A max-heap (also known as a priority queue) is a very efficient way
of keeping track of the element that is furthest away from the point of interest.
When the max-heap is full, we can use the distanced to the root element (ie. the
photon that is furthest away) to adjust the range of the query. Thus we skip parts
of the kd-tree that are further away thand.

Another simple observation is that we can use squared distances — we do not
need the real distance. This removes the need of a square root calculation per
distance check.

The pseudo-code for the search algorithm is given in Figure 2.10. A simple
implementation of this routine is available with source code at [MegaPov00].

For this search algorithm it is necessary to provide an initial maximum search
radius. A well-chosen radius allows for good pruning of the search reducing the
number of photons tested. A maximum radius that is too low will on the other hand
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given the photon map, a positionx and a max search distanced2

this recursive function returns a heaph with the nearest photons.
Call with locate photons(1) to initiate search at the root of the kd-tree

locate photons( p ) {
if ( 2p+ 1 < number of photons ) {

examine child nodes
Compute distance to plane (just a subtract)

δ = signed distance to splitting plane of node n
if ( δ < 0) {

We are left of the plane - search left subtree first
locate photons( 2p )
if ( δ2 < d2 )

locate photons( 2p+ 1 ) check right subtree
} else {

We are right of the plane - search right subtree first
locate photons( 2p+ 1 )
if ( δ2 < d2 )

locate photons( 2p ) check left subtree
}

}
Compute true squared distance to photon

δ2 = squared distance from photon p to x
if ( δ2 < d2 ) { Check if the photon is close enough?

insert photon into max heap h
Adjust maximum distance to prune the search

d2 = squared distance to photon in root node of h
}

}

Figure 2.10: Pseudocode for locating the nearest photons in the photon map

introduce noise in the photon map estimates. The radius can be chosen based on an
error metric or the size of the scene. The error metric could for example take the
average energy of the stored photons into account and compute a maximum radius
from that assuming some allowed error in the radiance estimate.

A few extra optimizations can be added to this routine, for example a delayed
construction of the max heap to the time when the number of photons needed has
been found. This is particularly useful when the requested number of photons is
large.

Nathan Kopp has implemented a slightly different optimization in an extended
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Figure 2.11: Tracing a ray through a pixel.

version of the Persistence Of Vision Ray Tracer (POV) calledMegaPov (available
at [MegaPov00]). In his implementation the initial maximum search radius is set to
a very low value. If this value turns out to be too low, another search is performed
with a higher maximum radius. He reports good timings and results from this
technique [Kopp99].

Another change to the search routine is to use the disc check as described ear-
lier. This is useful to avoid incorrect color bleeding and particularly helpful if the
gathering step is not used and the photons are visualized directly.

2.4 Rendering

Given the photon map and the ability to compute a radiance estimate from it, we
can proceed with the rendering pass. The photon map is view independent, and
therefore a single photon map constructured for an environment can be utilized to
render the scene from any desired view. There are several different ways in which
the photon map can be visualized. A very fast visualization technique has been
presented by Myszkowski et al. [Myszkowski97, Volevich99] where photons are
used to compute radiosity values at the vertices of a mesh.

In this note we will focus on the full global illumination approach as presented
in [Jensen96b]. Initially we will ignore the presence of participating media; at the
end of the note we have added some notes for this case.

The final image is rendered using distribution ray tracing in which the pixel ra-
diance is computed by averaging a number of sample estimates. Each sample con-
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sists of tracing a ray from the eye through a pixel into the scene (see Figure 2.11).
The radiance returned by each ray equals the outgoing radiance in the direction of
the ray leaving the point of intersection at the first surface intersected by the ray.
The outgoing radiance,Lo, is the sum of the emitted,Le, and the reflected radiance

Lo(x, ~ω) = Le(x, ~ω) + Lr(x, ~ω) , (2.15)

where the reflected radiance,Lr, is computed by integrating the contribution from
the incoming radiance,Li,

Lr(x, ~ω) =
∫

Ωx

fr(x, ~ω′, ~ω)Li(x, ~ω′) cos θi dω′i , (2.16)

wherefr is the bidirectional reflectance distribution function (BRDF), andΩx is
the set of incoming directions aroundx.

Lr can be computed using Monte Carlo integration techniques like path tracing
and distribution ray tracing. These methods are very costly in terms of rendering
time and a more efficient approach can be obtained by using the photon map in
combination with our knowledge of the BRDF and the incoming radiance.

The BRDF is separated into a sum of two components: A specular/glossy,fr,s,
and a diffuse,fr,d

fr(x, ~ω′, ~ω) = fr,s(x, ~ω′, ~ω) + fr,d(x, ~ω′, ~ω) . (2.17)

The incoming radiance is classified using three components:

• Li,l(x, ~ω′) is direct illumination by light coming from the light sources.

• Li,c(x, ~ω′) is caustics — indirect illumination from the light sources via
specular reflection or transmission.

• Li,d(x, ~ω′) is indirect illumination from the light sources which has been
reflected diffusely at least once.

The incoming radiance is the sum of these three components:

Li(x, ~ω′) = Li,l(x, ~ω′) + Li,c(x, ~ω′) + Li,d(x, ~ω′) . (2.18)
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By using the classifications of the BRDF and the incoming radiance we can
split the expression for reflected radiance into a sum of four integrals:

Lr(x, ~ω) =
∫

Ωx

fr(x, ~ω′, ~ω)Li(x, ~ω′) cos θi dω′i

=
∫

Ωx

fr(x, ~ω′, ~ω)Li,l(x, ~ω′) cos θi dω′i +∫
Ωx

fr,s(x, ~ω′, ~ω)(Li,c(x, ~ω′) + Li,d(x, ~ω′)) cos θi dω′i +∫
Ωx

fr,d(x, ~ω′, ~ω)Li,c(x, ~ω′) cos θi dω′i +∫
Ωx

fr,d(x, ~ω′, ~ω)Li,d(x, ~ω′) cos θi dω′i . (2.19)

This is the equation used whenever we need to compute the reflected radiance
from a surface. In the following sections we discuss the evaluation of each of
the integrals in the equation in more detail. We distinguish between two different
situations: an accurate and an approximate.

The accurate computation is used if the surface is seen directly by the eye or
perhaps via a few specular reflections. It is also used if the distance between the ray
origin and the intersection point is below a small threshold value — to eliminate
potential inaccurate color bleeding effects in corners. The approximate evaluation
is used if the ray intersecting the surface has been reflected diffusely since it left
the eye or if the ray contributes only little to the pixel radiance.

2.4.1 Direct illumination

Direct illumination is given by the term∫
Ωx

fr(x, ~ω′, ~ω)Li,l(x, ~ω′) cos θi dω′i ,

and it represents the contribution to the reflected radiance due to direct illumina-
tion. This term is often the most important part of the reflected radiance and it
has to be computed accurately since it determines light effects to which the eye is
highly sensitive such as shadow edges.

Computing the contribution from the light sources is quite simple in ray tracing
based methods. At the point of interest shadow rays are sent towards the light
sources to test for possible occlusion by objects. This is illustrated in Figure 2.12.
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Figure 2.12: Accurate evaluation of the direct illumination.

If a shadow ray does not hit an object the contribution from the light source is
included in the integral otherwise it is neglected. For large area light sources several
shadow rays are used to properly integrate the contribution and correctly render
penumbra regions. This strategy can however be very costly since a large number
of shadow rays is needed to properly integrate the direct illumination.

Using a derivative of the photon map method we can compute shadows more
efficiently using shadow photons [Jensen95c]. This approach can lead to consider-
able speedups in scenes with large penumbra-regions that are normally very costly
to render using standard ray tracing. The approach is stochastic though, so it might
miss shadows from small objects in case these aren’t intersected by any photons.
This is a problem with all techniques that use stochastic evaluation of visibility.

The approximate evaluation is simply the radiance estimate obtained from the
global photon map (no shadow rays or light source evaluations are used). This is
seen in Figure 2.15 where the global photon map is used in the evaluation of the
incoming light for the secondary diffuse reflection.

2.4.2 Specular and glossy reflection

Specular and glossy reflection is computed by evaluation of the term∫
Ωx

fr,s(x, ~ω′, ~ω)(Li,c(x, ~ω′) + Li,d(x, ~ω′)) cos θi dω′i .
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Figure 2.13: Rendering specular and glossy reflections.

The photon map is not used in the evaluation of this integral since it is strongly
dominated byfr,s which has a narrow peak around the mirror direction. Using the
photon map to optimize the integral would require a huge number of photons in
order to make a useful classification of the different directions within the narrow
peak offr,s. To save memory this strategy is not used and the integral is evaluated
using standard Monte Carlo ray tracing optimized with importance sampling based
on fr,s. This is still quite efficient for glossy surfaces and the integral can in most
situations be computed using only a small number of sample rays.

This is illustrated in Figure 2.13.

2.4.3 Caustics

Caustics are represented by the integral∫
Ωx

fr,d(x, ~ω′, ~ω)Li,c(x, ~ω′) cos θi dω′i .

The evaluation of this term is dependent on whether an accurate or an approximate
computation is required. In the accurate computation, the term is solved by us-
ing a radiance estimate from the caustics photon map. The number of photons in
the caustics photon map is high and we can expect good quality of the estimate.
Caustics are never computed using Monte Carlo ray tracing since this is a very in-
efficient method when it comes to rendering caustics. The approximate evaluation
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Figure 2.14: Rendering caustics.

of the integral is included in the radiance estimate from the global photon map.

This is illustrated in Figure 2.14.

2.4.4 Multiple diffuse reflections

The last term in equation 2.19 is∫
Ωx

fr,d(x, ~ω′, ~ω)Li,d(x, ~ω′) cos θi dω′i .

This term represents incoming light that has been reflected diffusely at least once
since it left the light source. The light is then reflected diffusely by the surface
(usingfr,d). Consequently the resulting illumination is very “soft”.

The approximate evaluation of this integral is a part of the radiance estimate
based on the global photon map.

The accurate evaluation of the integral is calculated using Monte Carlo ray trac-
ing optimized using the BRDF with an estimate of the flux as described in [Jensen95b].
An important optimization at Lambertian surfaces is the use of Ward’s irradiance
gradient caching scheme [Ward88, Ward92]. This means that we only compute
indirect illumination on Lambertian surfaces if we cannot interpolate with suf-
ficient accuracy from previously computed values. The advantage of using the
photon map compared to just using the irradiance gradient caching method is that
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we avoid having to trace multiple bounces of indirect illumination and we can use
the information in the photon map to concentrate our samples into the important
directions.

This is illustrated in Figure 2.15.

Figure 2.15: Computing indirect diffuse illumination with importance sampling.

2.4.5 Participating media

In the presence of participating media we can still use the framework as presented
so far. The main difference is that we need to take the media into account as we
trace rays through the scene. This can be done quite efficiently using ray marching
and the volume radiance estimate as described in [Jensen98].

2.4.6 Why distribution ray tracing?

The rendering method presented here is a combination of many algorithms. In or-
der to render accurate images without using too many photons a distribution ray
tracer is used to compute illumination seen directly by the eye. One might con-
sider visualizing the global photon map directly, and this would indeed be a full
global illumination solution (it would be similar to the density estimation approach
presented in [Shirley95]). The problem with this approach is that an accurate solu-
tion requires a large number of photons. Significantly fewer photons are necessary
when a distribution ray tracer is used to evaluate the first diffuse reflection. If
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a blurry solution is not a problem (for example for previewing) then a direct vi-
sualization of the photon map can be used. For more accurate results it is often
necessary to use more than 1000 photons in the radiance estimate (see the results
section for some examples).
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2.5 Examples

In this section we present some examples of scenes rendered using photon maps.
Please see the photon map web-page athttp://www.gk.dtu.dk/photonmap

for the latest results. Also refer to the papers included in these notes for more ex-
amples.

All the images have been rendered using theDali rendering program.Dali

is an extremely flexible renderer that supports ray tracing with global illumination
and participating media. The global illumination simulation code based on photon
maps is a module inDali that is loaded at runtime. All material and geometry
code is also represented via modules that are loaded at runtime.Dali is multi-
threaded and all images have been rendered on a dual PentiumII-400 PC running
Linux. The width of each image is 1024 pixels and 4 samples per pixel have been
used.

2.5.1 The Cornell box

Most global illumination papers feature a simulation of the Cornell box, and so
does this note. Since we are not limited to radiosity our version of the Cornell
box is slightly different. It has a mirror sphere and a glass sphere instead of the
two cubes featured in the original Cornell box (the original Cornell box can be
found athttp://www.graphics.cornell.edu/online/box/ ). Clas-
sic radiosity methods have difficulties handling curved specular objects, but ray
tracing methods (including the photon map method) have no problems with these.

Ray tracing

The image in Figure 2.16 shows theray tracedversion of the Cornell box. Notice
the sharp shadows and the black ceiling of the box due to lack of area lights and
global illumination. Rendering time was 3.5 seconds.

Ray tracing with soft shadows

In Figure 2.17 soft shadows have been added. It has been reported that some people
associate soft shadows with global illumination, but in the Cornell box example it
is still obvious that something is missing. The ceiling is still black. Rendering time
was 21 seconds.
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Figure 2.16: Ray traced Cornell box with sharp shadows.

Adding caustics

The image in Figure 2.18 includes the caustics photon map. Notice the bright spot
below the glass sphere and on the right wall (due to light reflected of the mirror
sphere and transmitted through the glass sphere). Also notice the faint illumination
of the ceiling. The caustics photon map has 50000 photons and the estimate uses
up to 60 photons. Photon tracing took 2 seconds. Rendering time was 34 seconds.
We did not use any filtering of the caustics photons. A maximum search distance
of 0.15 was used for the caustics photon map (the depth of the Cornell box is 5
units). Using a search distance of 0.5 increased the rendering time to 42 seconds.
For an unlimited initial search radius the rendering time was 43 seconds. The
computed images looked very similar. The faint illumination of the ceiling is a
caustic (created by the bright caustic on the floor) — it becomes a little softer with
the increased search radius. For a search radius of 0.01 the caustics became more
noisy, and the rendering time was 25 seconds. For other scenes where the caustics
are more localized the influence of the maximum search radius on the rendering
time can be more dramatic than for the Cornell box.
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Figure 2.17: Ray traced Cornell box with soft shadows.

Figure 2.18: Cornell box with caustics.
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Figure 2.19: Cornell box with global illumination.

Global illumination

In Figure 2.19 global illumination has been computed. The image is much brighter
and the ceiling is illuminated. 200000 photons were used in the global photon map
and 100 photons in the estimate. The caustic photon map parameters are the same.
Photon tracing took 4 seconds. Rendering time was 66 seconds.

The radiance estimate from the global photon map

Finally in Figure 2.20 we have visualized the radiance estimates from the global
photon map directly. We have shown images with 100 and 500 photons in the
estimate. Notice how the illumination becomes softer and more pleasing with more
photons, but also more blurry and with more false color bleeding at the edges. The
edge problem can be solved partially by using an ellipsoid or disc to locate the
photons (see section 2.3) — with 500 photons in the estimate and the ellipsoid
search activated we get the image in Figure 2.21 These images took 30–35 seconds
to render. Notice how the quality of the direct visualization gives a reasonable
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Figure 2.20: Global photon map radiance estimates visualized directly using 100 pho-
tons (left) and 500 photons (right) in the radiance estimate.

Figure 2.21: Global photon map radiance estimates visualized directly using 500
photons and a disc to locate the photons. Notice the reduced false color bleeding at
the edges.

estimate of the overall illumination in the scene. This is the information we benefit
from in the full rendering step since we do not have to sample the incoming light
recursively.
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Figure 2.22: Fast visualization of the radiance estimate based on 50 photons and a
global photon map with just 200 photons. Rendering time was 4 seconds.

Fast global illumination estimate

For fast visualization of global illumination one can use very few photons in the
global photon map. In Figure 2.22 we have visualized the radiance estimate from a
global photon map with just 200 photons! We used up to 50 photons in the radiance
estimate. The illumination is very blurry and as a consequence the shadows and the
caustics are missing, but the overall illumination is approximately correct, and this
visualization is representative of the final rendering as shown in Figure 2.19. Pho-
ton tracing took 0.03 seconds and the rendering time for the image was 4 seconds.
This is almost as fast as the simple ray tracing version, and the main reason is that
we only used ray tracing to compute the first intersection and the mirror reflections
and transmissions. The global photon map was used to estimate both indirect and
direct light.
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Figure 2.23: Cornell box with water.

2.5.2 Cornell box with water

In the Cornell box in Figure 2.23 we have inserted a displacement-mapped water
surface. To render this scene we used 500000 photons in both the caustics and the
global photon map, and up to 100 photons in the radiance estimate. We used a
higher number of caustic photons due to the water surface which causes the entire
floor to be illuminated by the photons in the caustics photon map. Also the number
of photons in the global photon map have been increased to account for the more
complex indirect illumination in the scene. The water surface is made of 20000
triangles. The rendering time for the image was 11 minutes.
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Figure 2.24: Fractal Cornell box.

2.5.3 Fractal Cornell box

An example of a more complex scene is shown in Figure 2.24. The walls have
been replaced with displacement mapped surfaces (generated using a fractal mid-
point subdivision algorithm) and the model contains a little more than 1.6 million
elements. Notice that each wall segment is an instanced copy of the same fractal
surface. With photon maps it is easy to take advantage of instancing and the ge-
ometry does not have to be explicitly represented. We used 200000 photons in the
global photon map and 50000 in the caustics photon map. This is the same number
of photons as in the simple Cornell box and our reasoning for choosing the same
values are that the complexity of the illumination is more or less the same as in
the simple Cornell box. We want to capture the color bleeding from the colored
walls and the indirect illumination of the ceiling. All in all we used the same pa-
rameters for the photon map as in the simple Cornell box. We only changed the
parameters for the acceleration structure to handle the larger amount of geometry.
The rendering time for the scene was 14 minutes.
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Figure 2.25: Cornell box variation with 4 light sources.

2.5.4 Cornell box with multiple lights

A simple example of a scene with multiple light sources is the variation of the
Cornell box scene shown in Figure 2.25. We generated 100000 photons from each
light source and the resulting global photon map has 400000 photons. Other than
that the rendering parameters were the same as for the other Cornell box with 1
light source. The rendering time for this scene was 90 seconds.
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Figure 2.26: Cornell box with a participating medium.

2.5.5 Cornell box with smoke

The Cornell box scene shown in Figure 2.26 is an example of a scene with a uni-
form participating medium. To simulate this scene we used 100000 photons in the
global photon map and 150000 photons in the volume photon map. A simple non-
adaptive ray marcher has been implemented so the step size had to be set to a low
value which is extra costly. The rendering time for the scene was 44 minutes.
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Figure 2.27: A cognac glass with a caustic.

2.5.6 Cognac glass

Figure 2.27 shows an example of a caustic from a cognac glass. The glass is an
object of revolution approximated with 12000 triangles. To generate the caustic we
used 200000 photons. The radiance estimates for the caustic were computed using
up to 40 photons. The rendering time for the image was 8 minutes and 10 seconds
— part of this rendering time is due to the ray traced depth of field simulation.

55



Figure 2.28: Caustics through a prism with dispersion.

2.5.7 Prism with dispersion

The classic example of dispersion with glass prism is shown in Figure 2.28. Even
though only three separate wavelengths have been sampled, the color variations
in the caustics are smooth. An accurate color representation would require more
wavelength samples; such an extension to the photon map is easy to implement.
500000 photons were used in the caustics and 80 photons were used in the radiance
estimate. The rendering time for the image was 32 seconds.
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Figure 2.29: Granite bunny next to a marble bunny — both models are rendered using
subsurface scattering. The photon map is used to compute multiple scattering inside
the stone material.

2.5.8 Subsurface scattering

A recent addition to the photon map is the simulation of subsurface scattering [Jensen99,
Dorsey99]. For subsurface scattering we use the photon map to compute the effect
of multiple scattering within a given material. This is often very costly to compute
and therefore mostly omitted from approaches dealing with subsurface scattering.
This is unfortunate since multiple scattering leads to very nice and subtle color
bleeding effects inside the material which improves the quality of the rendering.

Figure 2.29 shows a granite bunny next to a marble bunny. Both of these stone
models are rendered using subsurface scattering with 100000 photons used to sim-
ulate multiple scattering. The rendering time for the picture was 21 minutes. This
bunny is the original Stanford bunny and the scene contains 140000 triangles, and
it is rendered with full global illumination and depth of field.

Figure 2.30 shows a bust of Diana the Huntress made of translucent marble. For
this scene the light source was behind the bust to emphasize the effect of subsurface
scattering. Notice the translucency of the hair and the nose region. This image was
rendered in 21 minutes using 200000 photons.
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Figure 2.30: Translucent marble bust illuminated from behind

2.6 Where to get programs with photon maps

Photon maps are already available on the Internet for downloading. We have col-
lected the following links as of the writing of these notes.

RenderPark (a photorealistic rendering tool) has photon maps (as well as many

58



other global illumination algorithms). See
http://www.cs.kuleuven.ac.be/cwis/research/graphics/RENDERPARK/ for more
information.

Nathan Kopp has made a photon map extension toMegaPov [MegaPov00]
(an extended version of POV ray). Free source code and executable can be found
at: www.nathan.kopp.com/patched.htm

Blue Moon Rendering Tools (a free Renderman compliant renderer) has photon
maps. Seewww.bmrt.org for more information.

The following commercial products supports photon maps for rendering caus-
tics and/or indirect illumination: Lightflow, LightWave, Luminaire, Maya and
Twister. In addition the Inspirer rendering system uses a fast photon mapping ap-
proach — a mesh based view independent solution is computed based on the local
density of photons.

Several other people have implemented photon mapping: a few research pack-
ages provides photon maps (these packages might not be publicly available), and
some production houses use photon mapping (an example is Kilauea, the in-house
renderer used for film production at Square USA).
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Chapter 3

Visual Importance

Contact: Frank Suykens
Computer Graphics Research Group
Department of Computer Science
K.U.Leuven
Belgium

E-mail: Frank.Suykens@cs.kuleuven.ac.be

3.1 Introduction

When a photon map is constructed, photons are stored in all parts of the scene
that are lit. Since the power of the photons in the map is approximately equal,
differences in the received illumination on a surface correspond to a change in the
density of the photon map. The higher the density (the number of photons per unit
area), the brighter the incoming illumination.

The position of the viewer or camera, used to render an image of the scene,
is not taken into account. The advantage of this is that the same photon map can
be used for several images of the same scene. However for large and/or dynamic
scenes, many photons will be stored in unimportant regions of the scene wasting a
lot of precious memory.

The so-calledvisual importancedetermines which parts of the scene are impor-
tant for the viewer. If a rendering method stores an approximate radiance solution
in the scene, the visual importance tells us where this solution should be the most
accurate.
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In this chapter we will give an overview of how visual importance can be com-
puted in the context of photon maps and how it can be used to construct a photon
map that concentrates photons in important parts of the scene. By using importance
less photons need to be stored, compared to standard photon map construction,
while equally accurate results are obtained.

The basis of all photon map extensions that use visual importance, is a new
first pass that computes importance maps. These maps are used in the subsequent
photon map construction and rendering passes.

In this text we will focus on a specific three-pass algorithm:

1 Compute an importance map by tracing importons

from the viewer

2 while(photons to trace/store)

trace photon

if density of photon map at this photon is too low

store photon

else

distribute photon power over nearest neighbours

3 Render image as with the standard photon map method

This approach is mainly based on a paper published in the Eurographics Work-
shop on Rendering 2000 [Suykens00]. Some extensions, improvements and im-
plementation tricks that we have added since then, will also be discussed in this
note.

The rest of this note is organized as follows: Section 3.2 explains the concept of
visual importance and gives an overview of related research in which importance
was used. Section 3.3 shows how to compute an importance map, which is similar
to a photon map but containing importance information. In 3.4 caustic and global
photon maps are constructed taking into account the appropriate importance infor-
mation. Section 3.5 has a few notes on rendering using the photon maps. Results
are shown in 3.6 and conclusions and open issues are discussed in 3.7

3.2 What is Visual Importance

3.2.1 Intuitive definition

Light sources propagate light (or radiance) through the scene. This light is reflected
by surfaces depending on the BRDF and the geometry. All the light that reaches
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the viewer through a certain pixel determines the intensity of this pixel.
While this is the way images are recorded with real life cameras and our own

eyes, numerical simulation of light transport can be reversed by starting from the
viewer and propagateimportanceuntil it reaches the light sources. The transport
equations for importance are the same as, or at least very similar to, the transport
of radiance, depending on the exact definition of importance. Christensen notes
that importance can be visualized by replacing the camera by a light source that
emits light through the screen. The resulting brightness of the surfaces indicate
their importance. They indicate how much ’real light’ emitted from this surface
would contribute to the image.

3.2.2 A mathematical definition

The radiance (or rendering) equation that describes the transport of light in a scene
is given by:

L(x→ ~ω) = Le(x→ ~ω) +
∫

Ωx

Li(x← ~ω′)fr(x, ~ω, ~ω′)cos(θ′)dω′

with Le the self-emitted light whenx is located on a light source.
A similar transport equation for visual importance exists (See e.g. Pattanaik [Pattanaik95]

for more information). Suppose we define the self-emitted potential1 function:
We(x → ~ω). It is set equal to1 whenx = the camera2 for all directions through
the screen (or through the pixel if we’re examining individual pixels) and zero oth-
erwise. The transport equation for exitant potential is:

W (x→ ~ω) = We(x→ ~ω) +
∫

Ωx

Wi(x← ~ω′)fr(x, ~ω, ~ω′)cos(θ′)dω′

However, for computing flux through a pixel or the screen, theincidentpotential is
needed, which is given by:

Wi(x′ ← ~ω′) = W (x→ ~ω′)

with x′ the nearest point on a surface seen fromx in direction~ω′.
1The name importance has been used for several different quantities. We adopt the naming of

visual importance quantities as proposed by Pattanaik.Potential is the ’visual importance equiva-
lent’ of radiance andimportancecorresponds to irradiance (or radiosity). Importance is potential
integrated over the hemisphere.

2We consider a pinhole camera. For a finite aperture, the potential is1 for each pointx on the
aperture area in any viewing direction
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If the potential solution is known, the light flux that reaches the camera through
the screen (or pixel) can now be expressed in terms of radiance and potential by
integrating over the light sources and all possible directions:

Φscr =
∫
A

∫
Ω
Wi(x← ~ω)Le(x→ ~ω)cosθdωdx

Alternatively the flux could be computed using direct potential (only non-zero for
points visible by the camera) and a radiance solution:

Φscr =
∫
A

∫
Ω
W direct
i (x← ~ω)L(x→ ~ω)cosθdωdx

Note that ifL is approximated using a photon map, this equation corresponds to
a direct visualization of the map. In fact an infinite number of combinations to
compute flux from (partial) radiance and potential solutions is possible.

These potential equations will be used further on to derive a criterion for the
required density of both the caustic and the global photon map.

3.2.3 Previous work on importance

Importance and adjoint equations were first used in neutron transport simulation
(see for example [Kalos86]).

It was introduced into graphics by Smits et. al. [Smits92] who used importance
to drive the refinement in a hierarchical radiosity algorithm. Christensen [Christensen93,
Aupperle93] extended this principle to a non-diffuse finite element method.

Pattanaik and Mudur [Pattanaik95] applied importance (or potential) to particle
tracing radiosity. By estimating importance on light sources, more particles could
be directed towards relevant regions in the scene. This idea was further explored
by Dutŕe et. al. [Dutre95] who also used the estimated importance to drive the
sampling of directions on surfaces during particle tracing.

In ’98 Peter and Pietrek [Peter98] presented an importance driven three pass
algorithm for photon map construction. In a first pass ’importons’ were shot from
the camera into the scene to construct an importance map. This map was used to
gather importance on light sources. In a second pass photons were emitted into
the scene based on the light source importance. When a photon is reflected the
importance map is used to guide the photons towards important regions. The third
pass consisted of importance driven path tracing. The photon map was only used
for direction sampling but not for illumination reconstruction.
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While photons are effectively concentrated in relevant parts of the scene, the
method results in a photon map that has a mixture of high and low powered pho-
tons. This results in an increased variance when one would reconstruct radiance
by locating the nearest photons. The radius of influence of a few high powered
photons is clearly visible in the reconstruction, because they increase the estimate
a lot.

Therefore the number of photons used in the reconstruction must be very high
in order to reduce variance. This prevents straight application of the technique to
the direct use of a global and caustic map.

A few techniques have been presented that try to control the density of the
photon map while keeping the photon powers homogeneous throughout the map.
We will only mention them here briefly as they will be discussed in greater detail
later on:

• In [Suykens00] we presented a method for density control that redistributes
photon powers locally when the density of the map is already high enough.
The required density was determined by a special importance map con-
structed in a first pass. A slightly improved variant of this method will be
explained in detail in these notes.

• Keller and Wald [Keller00] use a discrete acceptance probability to decide
if a certain photon is stored or not. The probability is based on importance,
also computed in a first pass.

• Per Christensen uses a similar method to control the density, but combines
it with a variant of Peter and Pietrek’s method so that most photons are also
sent out in important directions from the light sources. Special care is taken
to ensure a homogeneous photon map. This method is explained in another
chapter of the course notes.

3.3 Computing Visual Importance

This section explains how to compute importance maps. Our approach to density
control uses a local required density criterion. Based on an error analysis, we will
present a few heuristics to compute such a required density.
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3.3.1 Error analysis

Since we want to construct a local estimate for the required density of the photon
maps, we will need to analyze how the density and the corresponding error in the
radiance reconstruction affects the image.

We will use the following notation:

• Φpix : The flux through one pixel in the image

• ∆Φpix : The flux error for the pixel

• Γ(x) =
∫

ΩWi(x← ~ω)cosθ dω: The (incident) importance inx.

• Ψ =
∫
A Γ(x)dA: Total importance for a certain area. This quantity is equiv-

alent to (light) flux.

Error metrics for images can be specified in different ways:

• Total screen error (1-norm): The total error through the screen could be
bounded. This corresponds to bounding the sum of the individual pixel errors
∆Φpix resulting in the screen error∆Φscr. A disadvantage of this method is
that individual pixels still can have a high and visible error.

• Maximum pixel error (∞-norm): One could also bound the error on each
pixel separately. While this ensures that all pixels are accurate, the compu-
tation of importance is more difficult, as will be explained further on.

Pixel error and reconstruction error

Now we need to relate the error in a pixel to the reconstruction error of the photon
map. This is were importance comes into play.

In the second ray tracing pass, pixel fluxes are computed using the caustic and
global photon map. We are interested in the error that is due to reconstruction
errors in both maps.

During rendering the caustic map is used for directly visible surfaces and also
after one or more specular reflections or refractions. If we name the radiance due to
causticsLc then the contribution to the pixel flux is defined by all(ES∗Lc) paths,
whereE is the eye. By definingcaustic potentialWc as the potential due to these
(ES∗) paths, the contribution to the pixel flux is given by:

Φpix,c =
∫
A

∫
Ω
Wc(x← ~ω)Lc(x→ ~ω)cosθ dω dA
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with A the total surface area in the scene3.
However the caustic radiance reconstruction from the photon map is only ap-

proximate. The reconstruction error∆Lc causes an error in the pixel flux∆Φpix,c:

Φpix,c + ∆Φpix,c =
∫
A

∫
Ω
Wc(x← ~ω)(Lc(x→ ~ω) + ∆Lc(x→ ~ω))cosθ dω dA

∆Φpix,c =
∫
A

∫
Ω
Wc(x← ~ω)∆Lc(x→ ~ω)cosθ dω dA

In this error analysis we consider surfaces to be diffuse(Lc independent of di-
rection). For glossy materials a directional error estimate might be better. The error
can be rewritten as:

∆Φpix,c =
∫
A

(
∫

Ω
Wc(x← ~ω)cosθ dω )∆Lc(x) dA

The integral overΩ is the importanceΓc in x:

∆Φpix,c =
∫
A

Γc(x)∆Lc(x) dA

If an estimate forΓc(x) is known when constructing the photon map, the storage
of the photons can be tuned by this estimate. The portion of the pixel error, due to
one particular positionx is given by:

∆Φpix,c(x) = Γc(x)∆Lc(x)

Bounding this error by a maximum∆Φmax
pix,c(x) gives a bound for the reconstruction

error:

∆Lc(x) ≤ ∆Φmax
pix,c(x) / Γc(x)

If each position is allowed to contribute an equal amount to the pixel error, this can
be estimated as:

∆Lc(x) ≤
∆Φmax

pix,c

Atot
/ Γc(x)

with Atot the total area in the scene.
If we can computeΓc throughout the scene we can use this error estimate to

tune the storage of photons in the caustic map.
3Note that this specific integral is not actually computed in the rendering pass, as no explicit

representation ofWc is constructed. Instead eye paths are traced andLc is evaluated for these paths.
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A similar derivation can be made for the global map. The difference lies in how
the estimated radianceLg of the global map is used: after a diffuse or moderately
glossy bounce. The contributing paths during rendering are(E(S|Dtc)∗D(S∗)Lg),
with Dtc meaning a diffuse or glossy bounce that reaches a surface under the dis-
tance threshold (too close-by). This results in a different importanceΓg over the
surfaces and requires a separate global importance map.

Required Density

Given an estimated bound on the reconstruction error, we still need to relate it to
the density of the photon map. This is quite a difficult problem. The reconstruction
is in fact a form of nearest neighbor density estimation, but a detailed error analysis
is difficult and has only been investigated for specific cases [Silverman86].

In [Suykens00] we simply assumed the error to be inversely proportional to the
densityD of the photon map. For a given error the required density of a photon
map must at least be:

Dr ≥
C

∆L
with C constant. The constantC was determined by hand, but was relatively inde-
pendent of the scene.

Currently we use a more intuitive approach to determine the error-density pro-
portionality:

• The importance on a positionxscr on the screen isΓscr(xscr) = 1 (only the
direction to the camera position counts).

• A target pixel density is chosen as:Mr/Apix. This density corresponds to a
unit importance. The user can choose the number of target photonsMr per
pixel area.

• Given the importance on a positionx in the scene, the required density is set
to:

Dr(x) = Γ(x)Mr/Apix

Note that:

• This procedure still assumes an inverse proportionality between error and
density. In fact, it just defines the factorsC and∆Φmax

pix,c in the error analysis.
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• For the global map, we used values forMr around1 or 2, meaning that we
want 1 or 2 photons per pixel in the photon map.

• The caustic photon map is visualized directly and needs to be more accurate.
We usedMr = 25 in our examples.

• The accuracy of reconstruction is also dependent on the number of nearest
photons used. One might makeMr dependent on this number also, but this
was not done in our implementation.

Two things remain to be worked out before we can make use of this required
density criterion:

• The importanceΓ must be known for every position in the scene. This can
be done by initially computing importance maps (see 3.3.2).

• During photon map construction, the required density should be taken into
account when storing (and possibly when shooting) photons (see 3.4).

3.3.2 Importance map

In this section we will show how an importance map can be constructed and how
Γ can be estimated from this map.

Tracing importons

The construction of an importance map is very similar to the construction of a
normal photon map. Importons are shot from the eye or camera into the scene. To
determine a direction a uniform point on the screen (or pixel) is chosen.

The total emitted importance for one pixel isΨpix = Apix. For the whole
screen this isΨscr = Ascr.

If N importons are shot into the scene, the importance of a single importoni

is Ψi = Ψ/N . Scattering of the importons (and power adjustment) is exactly the
same as the scattering of photons. Note that due to scattering an emitted importon
may result in several stored importons, just as with photons.

Importons are stored on glossy or diffuse surfaces. Two importance maps are
used, one for the caustic map and one for the global map. Depending on the history
of the importon, it is added to the caustic or global importance map:
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• If no diffuse or glossy bounce(D|G) was made before (or if the distance
between these bounces and the subsequent hit point is too small), then the
global map is not used for radiance reconstructions. These importons must
be stored in the caustic importon map. For example importons that hit sur-
faces directly from the eye will be stored in this map (direct importance).

• Once an acceptable(D|G) bounce is made, the importon can be stored in the
global map. Note that further scattering of the importon should only include
specular bounces, because further(D|G) bounces will never be generated in
the final rendering pass.

The importons are stored in an array, that is transformed into a balanced kd-tree
after all importons are traced.

Importance reconstruction

The reconstruction of importance, corresponds to reconstructing irradiance from a
photon map. TheM nearest importons are located and the importance is given by:

Γ(x) ≈
∑M

i=1 Ψi

πr2
M (x)

(3.1)

A few implementation details:

• The importance will determine the local density of the photon map. A
smoothly varying density is beneficial for the photon map reconstruction and
for the redistribution that is used for selective storage. This suggests using a
largeM for a smooth changing importance solution.

• The importance must be evaluated whenever a photon hits a diffuse or glossy
surface. To accelerate these lookups we precompute importance at the im-
porton locations as proposed by Christensen [Christensen99]. However the
precomputation is not necessary onall importon locations (Christensen sug-
gests 1/4th of the photons/importons). During photon tracing only the pre-
computed importance is used, and the other importons can be discarded to
save memory.
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(a) (b) (c)

Figure 3.1: Comparison of pixel and screen importance: (a) shows the indirect im-
portance for the complete screen. (b) shows the importance for 2 indicated pixels.
The screen importance underestimates the importance on nearby walls. (c) shows
a path based importance computed from path derivatives. A close match with (b)
is obtained.

Pixel versus screen importance

We already mentioned that different image error metrics are possible.

• Maximum pixel error: To determine a required density an importance solu-
tion for each pixel should be computed. The maximum of the reconstructed
importances should be used in the required density criterion. Computing an
importance map for each pixel, however, is totally infeasible as it would take
several importons per pixel consuming too much time and memory. There-
fore it is common practice to compute the screen importance and use the
pixel-sum error metric (see next item). Recently we have experimented with
path differentials to estimate single pixel footprints over a path. This does
allow for a maximum pixel importance-like quantity. More information is
given in 3.3.3.

• Total screen error: If the error of the pixels is summed (equivalent to
minimizing the total screen error), we can compute an importance map for
the whole screen at once. This only requires a single caustic importance map
and a single global importance map.

To compare the two approaches, we have computed the pixel importanceΓg for
a few pixels for a certain scene. This is compared with an equivalent importance
solution for the whole screen at once. Results are shown in figure 3.1 (a) and (b).
Pixels that are projected near a corner show a high importance on the abutting walls
(b). This is logical as the wall occupies a large part of the hemisphere around the
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projected pixel. For many other pixels, however, this wall is unimportant. There-
fore the screen importance underestimates the importance for such pixels (a).

3.3.3 Path differentials

Since bounding each pixel to a maximum error ensures accuracy over the whole
image, we have been looking for ways to compute this without requiring an impor-
tance map per pixel.

In [Suykens00] we computed a point based importance. Instead of enlarging
the pixel to the full screen, it was diminished to an infinitely small area. Importance
was computed for individual points on the image. While this gave quite good
results for paths of length 2 (EDLg), it was hard to generalize to longer paths that
include specular bounces.

In [Suykens01] we presented path differentials. Intuitively this is a way of
tracking the footprint, the region of influence of a pixel during the tracing of a
path. It is a generalization of ray differentials proposed by Igehy [Igehy99] so that
arbitrary BRDF’s can be used.

We will state the main idea and how we applied it to importance computations.
For more information, consult [Suykens01].

Path sampling and path footprint

When tracing an importon, paths are constructed starting from the eye. Each vertex
V of this path is a hit point for the importon. These paths are constructed by
random sampling.

For a certain vertexV in the path, one can say that:

V = g(t1, t2, . . . , tk)

with g the path generating function, andk the number of random variables thatV
depends on.

Now suppose that we apply a small perturbationεj to a variabletj , thenV
moves over some distance:

V + δVj = g(t1, . . . , tj + εj , . . . , tk)

This change can be approximated by a first order Taylor expansion:

δVj ≈
∂g(t1, . . . , tj , . . . , tk)

∂tj
εj
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The magnitude of the partial derivative determines how sensitiveV is for changes
in tj . Simultaneous perturbation of several variables corresponds to aδV =∑

j δVj .
If we consider all perturbationsεj ∈ [−∆tj/2,∆tj/2] then the set of perturbed

verticesδVj forms a line segment defined by a vector centered aroundV :

∆Vj =
∂g(t1, . . . , tk)

∂tj
∆tj

These are thedifferential vectors.
Given a perturbation interval∆tj for each variable and allowing simultaneous

perturbation of the variables, the set of all possible perturbed verticesV + δV
forms an area. We call this areathe footprintof the path for vertexV.

Computation of the partial derivatives and practical computation of the foot-
print given certain delta’s can be found in [Suykens01].

As an example of the path differentials consider an eye path through a pixel
that hits a surfacex and is reflected diffusely towardsx′:

• Footprint inx: Two random variables determine the point in the pixel. The
differential vectors determine the movement ofx with respect to the pixel.
The footprint corresponds to the projected area of the pixel.

• Footprint inx′: The diffuse reflection introduces two new random variables
that determine the outgoing direction.4 partial derivatives give the rate of
change ofx′ with respect to the sampled direction and image position. Ifx′

is far away fromx the footprint will be larger, as a small perturbation of the
reflected direction is magnified by the large distance.

Footprint and importance

For importance estimation, we used the path differentials exactly as described
in [Suykens01]. Delta’s were chosen to be1.

Since derivatives are used, the footprint can be estimated for any single path.
This footprint is inversely proportional to the density of similar paths that arrive in
the neighborhood ofx and can be used to estimate the pixel importance inx:

Γpix(x) = 1/Afootprint(x)

Results for the few pixel importances using the footprint estimate is shown in
figure 3.1 (c) . Note the close match between real pixel importance and footprint
estimates.
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Practical use of path differentials

To compute an importance solution based on footprints for all pixels in the image,
we also store1/Afootprint(x) with each importon. Since a single importon gives an
importance estimate, we do not need to estimate the density of the importance as
in equation 3.3.2. Instead we should take the maximum of pixel importances inx.
This can be done by locating the nearest importons and taking the maximum of the
importance. However, we found that this can cause in rather abrupt changes in the
required density, so in practice we take anaverageof the nearest pixel importances.

Whether pixel or screen importance is better than the other is still an open ques-
tion. To get the best of both we combine the pixel importance estimate using path
differentials with the normal screen importance estimation. We store both footprint
and screen importance information in the importon. Importance is estimated using
both methods and a weighted average is taken.

The weights are chosen so that the average screen importance matches the av-
erage pixel importance:

Γ(x) = 0.5(Γscr(x) + Γpix(x)
Γ(avg)

scr

Γ(avg)
pix

)

The averages are computed when precomputing importances at the importon loca-
tions.

While this is a rather arbitrary combination, it provides a fairly robust estimate
for the required density.

3.4 Photon Map Construction using visual importance

After completing the first importon tracing pass and building the importance maps,
it is time to trace photons and build the photon maps.

Several strategies have been proposed for importance driven photon map con-
struction: Selective storage using a storage probability (3.4.1), selective storage by
photon power redistribution (3.4.2) and importance driven photon shooting (3.4.3).
We will focus on the redistribution.

3.4.1 Storage probability

Keller and Wald [Keller00] and Christensen both use the following technique.
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When a photon hits a diffuse or glossy surface inx, it is not blindly stored but
a discrete storage probabilityPΓ is determined based on the (screen) importance in
x. A low importance results in a low probabilityPΓ and few photons will be stored
in this area. If it is stored, the power of the photon is increased by1/PΓ to keep
an energy balance. SincePΓ must be smaller than1, importance values are scaled
down by the maximum found importance.

If the importance does not change to abruptly and frequently, the resulting
photon map will be homogeneous. This suggests using quite a large number of
importons in the importance estimate.

This is discussed in more detail by Per Christensen in another part of the course
notes.

3.4.2 Density Control by redistribution

Using a storage probability does not limit the density of the photon map. A bright
region that also has high importance will practically store all the arriving photons
(PΓ ≈ 1), even if the density is already adequate. On the other hand for a darker
but moderately important region, photons may be thrown away even though not
enough photons have arrived.

It would be better to stop storing photons if the required density has been
reached. This can be done by distributing the power of photons that will not be
stored.

A method for selective storage and redistribution

Suppose we have traced a new photonk to a positionx on a surface. An impor-
tance based required densityDr(x) provides a the target density for an accurate
reconstruction inx.

Note that in our current method the required density is only dependent on the
position, which is sufficient for storage on diffuse and not too glossy surfaces.
However if desired, it is possible to adapt all proposed methods to take the incom-
ing directions of the photons into account.

To determine whether or not we want to keep the photon, we estimate the
current photon map densityDcur(x). This can be done by locating theM nearest
photons and evaluating:

Dcur(x) =
M

πr2
M (x)
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An acceptance probabilityPacc can now be defined as a function of the density
ratio: s(x) = (Dcur(x)/Dr(x)).

ForPacc we normally use a simple step function (s(x) ≤ 1 accept, otherwise
distribute). We have tried other acceptance probabilities (e.g. a translated cosine),
but the step function was sufficient and simple.

If the photon is accepted it is stored in the photon map. The power is not
adjusted withPacc (which is1 anyway in case of a step function). Therefore, when
a photon is not stored, it’s power must be accounted for somehow to keep the global
flux in the map consistent with the flux emitted from the light sources.

This is done by distributing the photon power over its nearest neighbors. This
can be justified as follows:

If we would have stored the photonk, then the reconstruction of radiance using
M+1 photons atx would be:

L̃(x, ~ω) =
∑M

i=1 fr(x, ~ω
′
i, ~ω)Φi + fr(x, ~ω′k, ~ω)Φk

πr2
M (x)

Note thatrM (x) withoutk stored is equal torM+1(x) whenk is stored, sincek is
located inx.

Now since the photon is not stored, the power of the other photons must be
adjusted, so that the reconstruction inx would deliver the same result:

L̃(x, ~ω) =
∑M

i=1 fr(x, ~ω
′
i, ~ω)(Φi + ∆Φk,i)

πr2
M (x)

Different choices for∆Φk,i can be made depending onfr and the distance ofx to
photoni:

• fr(x, ~ω′i, ~ω): To get an equal reconstructioñL(x, ~ω) in x, ∆Φk,i should be
zero whenfr is zero because these photons do not contribute toL̃. Currently
the angle between~ω′i and the normal~nx in x is used to determine whether
∆Φk,i should be zero (i.e. for a non-transparent material,∆Φk,i = 0 when
cos(~ω′i, ~nx) ≤ 0).

• Another approach could be to choose a larger delta for photons with a direc-
tion similar to the distributed photon. This might be better for non-diffuse
BRDF’s but at the cost of a less smoothly varying photon power.

• Distance tox: The distribution of the photon power can be seen as applying
a low-pass filter (or as splatting). The dependence of∆Φk,i on the distance
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to x determines the filter kernel. We distribute the power equally over the
affected photons to keep the photon powers homogeneous which, as said, is
beneficial for the reconstruction.

So to summarize, we choose:

∀i, cos(~ω′i, ~nx) > 0 : ∆Φk,i = Φk/M
′

with M’ the number of photons that have a cosine> 0.

Of course, the radiance estimate at other locations thanx will give a slightly
modified result. But since the current density is high enough anyway, this averaging
can be expected not to introduce artifacts (if the required density does not change
too abruptly).

WhereverDr does change abruptly, a region of high and low density will meet.
In the lower density region, photons will be distributed, possibly into the high den-
sity region. This problem is similar to the blurring of caustic edges, where a high
density region also meets a very low density region. Redistribution to the nearest
neighbors can introduce some visible bias into the reconstruction. Therefore it is
advisable to keep the number of photons used for redistribution small (we use 20
photons) and to prevent abrupt changes in the importance/required density. As said
before, we use a large number of importons in the importance reconstruction.

Note that the selective storage requires estimation of the photon map density
during its construction. We store the photons directly in an unbalanced kd-tree so
that the lookup is efficient. Before the final rendering pass this tree is balanced for
even faster access.

We now have a method to control the density of photon maps based on a re-
quired densityDr. This density can be chosen based on importance as described
above, but other choices are possible too.Dr can be chosen arbitrarily, depending
on the application, providing a flexible density control framework.

WhereverDr changes abruptly, a region of high and low density will meet. In
the lower density region, photons will be distributed, possibly into the high den-
sity region. This problem is similar to the blurring of caustic edges, where again
a high density region meets a very low density region. Redistribution to the near-
est neighbors can introduce some visible bias into the reconstruction. Therefore it
is advisable to keep the number of photons used for redistribution small (we use
around 20 photons) and to prevent abrupt changes in the importance/required den-
sity. As said, we use a large number of importons in the importance reconstruction.
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Redistribution results

(a) (b)

Figure 3.2: A simple plane lit by a light source on the side. No density control is
used, all photons are stored. (a) shows the hits, (b) shows the resulting radiance in
the photon map (80 nearest photons)

(a) (b)

Figure 3.3: The same plane using a constant required density (1000). Photons are
distributed over 20 nearest neighbors if the current photon map density at the hit
point is sufficient. (a) shows the hits, (b) shows the resulting radiance in the photon
map (80 nearest photons)

To illustrate the effect of redistribution, we constructed a very simple scene
containing a single grey plane lit by a light source positioned to the side of the
plane. A global photon map is computed and directly visualized.

Figure 3.2 used no density control. All photons are stored. On the right the
radiance reconstruction is shown (b), while the left side shows the photon hits in
the global map (a).

For figure 3.3 a constant required density was used. The radiance reconstruc-
tion is similar, while the hit density is clearly different. In the bright region photons
were distributed to their neighbors. The lower density is compensated by a higher
photon power. Note that the variance in the bright region is lower because the
distribution of photons is a kind of low pass filter.
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More results, using an importance based required density are given in 3.6.

3.4.3 Importance driven shooting

The two previous techniques for importance driven photon map construction do
not change how photons are shot. Only the storage is controlled.

It would be interesting to also direct more photons towards important regions.
However, straight application of Peter and Pietrek’s method (which is possible),
results in a mixture of photon powers.

Elsewhere in the notes, Per Christensen will describe a new method that allows
a combination of the storage control and importance driven shooting of photons,
while keeping photon power homogeneous. It would be very interesting to combine
his technique with the photon redistribution, so that less photons need to be traced.

3.5 Rendering

The final pass in photon map rendering computes the actual image. This pass does
not change when using importance based photon maps.

However one could use the importance or required density to derive some
heuristic for choosing how many near photons must be used in the estimate. A
high importance corresponds to a high density, and more near photons could be
used.

3.6 Results

Photon maps and their importance driven construction were implemented in Ren-
derPark [RPK]. All results shown here are generated using RenderPark on a single
1GHz AMD Athlon with 256MB.

3.6.1 Caustic map

To test visual importance and density control for the caustic map, we used a room
with a large glass egg in it. It is lit by two light sources.

Importance maps were computed for the view shown in figure 3.6. The caustic
importance map contained 100.000 importons. Importance was precomputed for
each importon location using the 200 nearest importons. Tracing the importons
took around 3 seconds, precomputation and kdtree balancing took 15 seconds.
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(a) (b)

Figure 3.4: Required density of the caustic map (seen from an alternate camera).
Note the ’importance caustic’ that indicates the region that is magnified by the egg.
(a) shows screen importance, (b) shows footprint based importance.

The screen importance and footprint importance are computed simultaneously
and stored separately in the importon.

For the required density a accuracy scale factorMr of 25 was used. This is
higher than for the global maps, as the caustic is visualized directly and a higher
density is needed.

Figure 3.4 shows the required density seen from an alternate viewpoint. Figure
(a) shows the screen importance estimate and (b) the footprint estimate. Some
interesting observations can be made:

• Importance is focused through the egg on the ground. This results in a sort
of importance caustic. This is the part of the scene that is magnified most by
the egg as can be seen in the final rendering 3.6.

• The screen importance (a) shows a much higher variance. This is because the
density of the importance map varies and this density is shows up in the im-
portance estimate. Using the footprint each importon carries an importance
estimate. While importons are averaged, the density is not used.

• Some importons had very small footprints that are caused by eye paths that
are extremely focused by the glass egg. Although few of these paths occur,
the small footprints cause ’spike circles’ in the required density estimate.
We removed the worst spikes by discarding importons that have a footprint
100 times smaller than the average footprint (i.e. required100 times more
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Figure 3.5: Resulting density of the caustic map. Bright parts of the caustic are
relatively dark because the required density is reached and no extra photons are
stored. (200000 stored photons in total)

density than the average). The number was chosen arbitrarily. The average
footprint is computed while storing the importons. Still some circles show
up in the footprint estimate.

To compute the caustic photon map, we used the average of screen and foot-
print importance. Figure 3.5 shows the resulting density of the caustic map. Around
200000 photons are stored in the map. Without density control 400.000 would have
been stored at this point in time. If more photons are shot, the difference grows as
fewer and fewer photons are stored in the caustic map. The gain is the biggest in
the bright parts of the caustic, where a large fraction of the photons arrive.

Unstored photons were distributed over 20 neighbors. These neighbors are also
used to determine the current density.

Tracing and storing the photons took about 140 seconds. This is slower than
tracing the 400.000 photons without density control (about 100 seconds), because
of a lookup in the importance map (quite fast due to precomputation) and a lookup
in the current photon map to determine the current density (slower as the tree is not
yet balanced). Compared to the final rendering time this difference is negligible.

Figure 3.6 shows the final rendering of the scene. Full global illumination is
computed using a global photon map. The final rendering took around 80 minutes.

Note that in the end no photons will be stored anymore when all lit regions
reach the required density. This is an interesting advantage of the redistribution:
We can just keep shooting photons until the density for difficult parts of a caustic is
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Figure 3.6: Final rendering of the egg scene.

high enough without worrying about the many photons that would be stored in the
bright ’easy’ parts. In practice we end the photon tracing when just a tiny fraction
of photons are added as new to the map.

3.6.2 Global map

To show benefits of importance for the global photon map we use an office scene
with several desks and light sources. The camera is looking towards a single desk
with a a glossy pad and some photo stands. The view can be seen in the final
rendered figure 3.10.

Figure 3.7 shows the required density. The average of screen and footprint
importance was used with an accuracy scale factorMr = 2. The glossy pad causes
a high required density on the photo stands and part of the wall, because the global
map is visualized directly after the glossy reflection.80000 importons were stored
and importance was precomputed for the importon locations using the 200 nearest
importons.

Figure 3.8 (a) shows the resulting density of the global map.57000 photons are
stored, resulting in a good match with the required density. The20 nearest photons
were used for redistribution. Without density control,400000 photons would have
been stored (density shown in figure 3.8 (b)).
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Figure 3.7: Required density of the global map. The glossy pad causes a high
required density on the photo stands and part of the wall. Abutting surfaces also
require a higher density.

(a) (b)

Figure 3.8: Overview of the resulting density of the global photon map. (a) uses
density control, (b) does not.

Note that some parts did not reach the required density. However, the final
rendering shows no artefacts. This indicates that the accuracy could be set even
lower.

Figures 3.9 (a) and (b) show a direct visualization of the global map respec-
tively with and without density control. Diffuse irradiance was precomputed on
the photon positions. The80 nearest photons were used in the radiance estimate.

While the overall illumination is similar, a courser solution can be seen in
unimportant parts for the density controlled image. Note that these parts have a
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(a) (b)

Figure 3.9: Direct visualization of the global photon map. This overview shows
a courser solution in unimportant regions when using density control (a, 57000
photons). Overall illumination is of course the same as without density control (b,
400000 photons).

low variance due to the redistribution, but the bias or blurring is quite high (e.g.
bad shadow boundaries under the table).

Figure 3.10 shows the final rendering using the density controlled map. The
final rendering using the400000 photons is not shown as no visible differences
could be seen. The rendering took 90 minutes, which is much more than the time
needed for the importance and photon map construction.

Note that a fairly open scene was used and that even in such scenes much can be
gained by using visual importance. Typical importance examples, such as a maze
or a viewer standing in one room of a large building would give even better results.

3.7 Conclusions

Visual importance can be used effectively to reduce the number of stored photons
in the photon map. The gain depends on the complexity of the scene and on what
is visible through the camera, but it helps even for open, relatively simple scenes.

Many things, however, can and should be further investigated. We mention a
few open issues that could be interesting for future research:

• Currently the error due to the caustic or global map reconstruction is esti-
mated independently of any other illumination. Strong direct light for exam-
ple can mask errors in the caustics or indirect illumination, so that a lower
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Figure 3.10: Final render image of the the office scene. The camera is looking
towards one desk in the office.

accuracy could be allowed. One could also take into account surface texture.
Illumination errors are less visible on high frequency textures.

• The footprint estimate computed using path derivatives could be used for
other purposes:

– Compute the footprint of photons and distribute them accordingly.

– It could be used for eye paths in the rendering pass to determine the area
over which photons must be considered for illumination reconstruction.
If too few photons are found the path can be extended (for the global
map). This might help answering the question of how many photons to
use in the reconstruction.

Many other options can be explored to make the photon map (even) more efficient.
If we want to develop a fully automatic rendering algorithm using photon maps
that only requires one button ’Render’, importance is definitely necessary to help
determine the parameters of the algorithm.
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Chapter 4

Photon maps in RenderPark

RenderPark is a photo-realistic rendering tool being developed at the Computer
Graphics Research Group of the Katholieke Universiteit Leuven, in Belgium. The
goal is to offer a solid implementation of many existing photo-realistic rendering
algorithms in order to compare them on a fair basis, evaluate benefits and short-
comings, find solutions for the latter and to develop new algorithms that are more
robust and efficient than the algorithms that are available today. RenderPark will
offer you several state-of-the-art rendering algorithms that are not yet present in
many other rendering packages. Although RenderPark is in the first place a test-
bed for rendering algorithms, it is evolving towards a full-featured physics-based
global illumination rendering system.

The source code (C/C++) of RenderPark is freely available for non commercial
purposes. It can be found atwww.renderpark.be.

4.1 Overview

RenderPark can be used interactively (Motif/OpenGL) and as a batch renderer.
Rendering algorithms currently implemented in RenderPark are:

• Radiosity algorithms:

– Galerkin radiosity (hierarchical, clustering, importance driven)

– Stochastic Jacobi radiosity (idem)

– Various random walk radiosity methods

• Ray tracing methods (all usable as a second pass after radiosity):
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– Classical ray tracing

– Stochastic ray tracing

– Bidirectional path tracing

• And of course photon maps are implemented (see next section).

The main authors of RenderPark are: Philippe Bekaert, Frank Suykens, Jan Prykril
and Phil Dutŕe. The development of RenderPark is supported by the Belgian
National Science Foundation (FWO-Vl), the Flemish Institute for the Promotion
of Scientific-Technological Research in Industry (IWT). RenderPark is realized
within the context of various international collaboration projects as well.

4.2 Photon maps

This section contains a few specific details on the photon map implementation in
RenderPark.

The construction of photon maps is implemented in as a separate method. Both
a global photon map and a caustic photon map are supported. The final rendering
pass is built into stochastic ray tracing.

Support for importance driven construction of the photon maps is also included.
In a first pass two importance maps are build, that estimate a local required den-
sity for the global resp. the caustic photon map. These maps are used during the
construction of the photon map: no additional photons are stored in regions of suf-
ficient density, they are distributed over several neighbors. This limits storage use.
A detailed description can be found elsewhere in the course notes.

The implementation of photon maps is moderately optimized:

• Storage of photons can use balanced and unbalanced kd-trees (or even mixed).
Lookups in balanced trees turned out to be 2 to 3 times faster.

• Irradiance and importance is precomputed for the photon/importon locations
as described in [Christensen99].

• A maximum radius estimate is used when querying the nearest photons and
importons. For maps with large empty regions this can easily be an order
of magnitude faster, because whole parts of the tree are skipped, that are
otherwise examined completely.
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• The most notable missing optimization is Greg Ward’s irradiance caching
scheme [Ward88] in the stochastic ray tracing pass. This would make ren-
dering a lot faster, since gathering indirect diffuse illumination is now done
for each pixel.

A few results rendered with photon maps in RenderPark are shown in figure 4.1.
Both images compute full global illumination. Note the caustics, reflection of caus-
tics and the indirect illumination.
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- Eggs -

- Earth, wind, fire, water and photons -

Figure 4.1: Two images rendered using photon maps in RenderPark. Note the
caustics and indirect illumination.
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Chapter 5

Photon Mapping Tricks

Per H. Christensen

Square USA, Honolulu Studio

This chapter describes six “tricks” for improved efficiency and accuracy of
the photon map method. None of these tricks are particularly revolutionary or
hard come up with, but it is my hope that this note can save some people the
effort of reinventing them. The first trick reduces flicker in animations, while the
following three tricks reduce computation times anywhere from 25% to factors of
five-to-eight. The fifth trick describes how to combine irradiance estimates from
several independent photon maps (for example computed in parallel on separate
computers). The last trick is somewhat more experimental, but promises a speedup
close to 16 in the photon tracing phase for very complex scenes.

5.1 Frame-coherent random numbers for photon tracing

This section describes a method to reduce flickering in animations, particularly for
caustics and participating media. The variance is reduced by factors of 10 or more.

5.1.1 Frame coherency

The simplest type of animation is a camera fly-through. In this case, we obviously
only need to generate one photon map which can then be used in all frames of
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Figure 5.1: Caustics from three whisky glasses. If only the middle glass moves,
only the middle caustic should change.

the animation. The opposite extreme is an animation where the entire illumination
changes or where all objects move in all frames. In this case, we need to generate
a new photon map for each frame, and no coherency can be exploited between the
photon paths in each frame. However, a commonly occurring type of animation
is between these extremes: only one or a few objects move in an otherwise static
scene. In this case it pays off to keep as many photon paths as possible identical
between frames, thereby reducing flickering considerably.

As an example, consider caustics from three whisky glasses — see figure 5.1.
If only one of the glasses moves, only the caustic for that glass should change; we
want to avoid any random fluctuations in the other two caustics.

5.1.2 Keeping and reusing photon paths

One could keep track of all photon paths by keeping a pointer from each stored
photon to the next stored photon along the same path. (Detail: for this to work, we
would have to also store photons at emitters and purely specular surfaces.) In the
next frame, each photon follows the same path as in the previous frame unless there
is a change along the path. This works as follows. For each path step, the direction
is computed as the difference between two photon positions and the photon is shot
in the same direction. If the nearest “new” intersection point is identical, we keep
the photon at the intersection point and continue along the path. If the intersection
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point is different (either because a moving object now occludes the path or because
the receiving object moved), we delete the photons from the rest of that path and
generate a new random path continuation.

This would probably work just fine. There is, however, a simpler way to obtain
the same path coherence: we can trace the photons using random numbers that are
coherent from frame to frame. Then most photons will follow the same path in
different frames.

5.1.3 Coherent random numbers

Random numbers are used to determine photon emission origin and/or direction.
Random numbers are also used when a photon hits a surface to determine whether
the photon should be absorbed or scattered, and (depending on the reflection pa-
rameters) the scattering type and direction. The random numbers are typically
generated by a pseudo-random number generator with good statistical properties,
for exampledrand48() .

Restarting the random number generator with the same seed for each frame in
an animation unfortunately does not guarantee that most photons will follow the
same paths. If we just use one random number sequence for all photons, the path
length (the number of bounces) of one photon influences the random numbers for
all subsequently traced photons (and therefore their paths and path lengths). In an
animation, this has the unfortunate consequence that if just one photon path has a
different length (for example because one object moved slightly), then the path of
all subsequent photons will be different from their paths in the previous frame.

To avoid this, we need to associate a random number sequence with each emit-
ted photon. For example: compute a random seed as a function of the photon
number, rundrand48() a few times to get rid of coherency, and use the subse-
quent random number sequence for that photon. The current random number for
each photon is kept with the photon while it is being traced so that we can easily
compute the next random number for that photon.

As an added bonus, this use of the random numbers also makes debugging
easier since local changes in geometry only give local changes in the photon paths.
It also gives consistent results in parallel execution. (Multiple processors sharing a
single random number generator are prone to getting different random numbers in
different runs depending on the random execution order.)

93



5.1.4 Uses and limitations

This method greatly reduces noise in direct uses of the photon map: rendering of
caustics and participating media. However, since we use final gathering to calcu-
late soft indirect illumination on surfaces, we do not see the soft indirect photons
directly. So this trick gives a smaller improvement for that type of illumination.

5.1.5 Origins and references

The technique of keeping a random number with each particle originates from the
early years of Monte Carlo simulation in nuclear physics. When trying to simulate
a small change in a simulation setup (for example the thickness of a radiation shield
or the coolant temperature), they found that the change would often “drown” in
statistical noise if they didn’t associate a consistent random number sequence with
each particle. Spanier and Gelbard formulated it as follows: “... it is essential to
correlate the two runs positively so that, to as great an extent as is possible, only
the effects of the perturbation itself are subject to statistical fluctuation.” They state
that quite commonly, this very simple correlation technique reduces variances in
difference by factors of 10 or more. Details can be found in the following two
references:

• Gerald Goertzel and Malvin H. Kalos. “Monte Carlo methods in transport
problems”.Progress in Nuclear Energy, series I, vol. 2, pp. 315–369. Perg-
amon Press, 1958. (Page 361)

• Jerome Spanier and Ely M. Gelbard.Monte Carlo Principles and Neutron
Transport Problems. Addison-Wesley Publishing Co., 1969. (Sections 3.9
and 5.5)

5.2 Faster lookups, part I: automatically computed maxi-
mum search radius

This section presents a formula to automatically determine a reasonable maximum
photon search radius for photon map radiance estimates.

5.2.1 Background: radiance estimates

In the photon map method, the incident irradiance and the reflected radiance are
computed by a density estimate. For the reflected radianceLr, we add the power
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of then photons that hit a certain areaAn, multiply by the BRDFfr, and divide
by the size of the area:

Lr(x, ω) ≈
∑n

i=1 fr(x, ωi, ω)Pi
An

.

There are two ways to determine the photon density:

1. Fixed area: given a fixed area, find all photons within that area, add their
powers, and divide by the area.

2. Fixed number of photons: find the nearestn photons, add their powers, and
divide by the area they cover.

In regions with medium and high photon density, we prefer to use a fixed number
of photons. This adapts nicely to varying densities, keeps the error reasonably
constant, and avoids finding way too many photons in areas with very high photon
density (very high irradiance). However, if we use this strategy in regions with
low photon density, large parts of the kd-tree will be searched to find the nearestn

photons, only to result in a very low radiance. This is a waste of computation
time. The solution is to use a combination of the two photon density estimates: in
regions with medium and high photon density, we use a fixed number of photons,
while in regions with low photon density, we use a fixed area. As described in
chapter 2 (and in last years course notes), getting such a combination is actually
quite simple: set an upper limitn on the number of photons to find and set an
“appropriate” maximum search radiusr for the kd-tree search. An appropriate
maximum search radius can speed up the average search time by more than an
order of magnitude in photon maps with large empty regions.

5.2.2 Effects of the maximum search radius

If the maximum radius is set too high, large parts of the kd-tree will be searched to
find the nearestn photons in sparse regions, only to result in a very low radiance.
This is a waste of computation time. If the radius is much too low, a “polka dot
effect” can be seen in the images: the area of a radiance estimate either contains
a photon or not, resulting in a characteristic polka dot pattern. The “appropriate”
radiusr for a given scene is often set manually by trial-and-error: start with a very
large maximum radius and keep reducing it and rerender until artifacts become
visible. To ease the use of the photon map method, it is preferable to have the
maximum search radius computed automatically.
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5.2.3 Maximum search radius for surfaces

The “trick” presented here is a formula to automatically compute an appropriate
maximum search radius, thereby avoiding the tedious trial-and-error approach de-
scribed above. The switch between the two density estimates should be done when
the density is “low enough” that inaccuracies in the resulting radiance are not im-
portant. LetLt be the radiance threshold for the switch andrm the corresponding
maximum search radius. LetAm = πr2

m be the area corresponding torm, and
let Pmax be the maximum power of any of the photons stored in the kd-tree. We
can bound the total power of then nearest photons bynPmax and boundfr for a
diffuse BRDF by1/π to get:

Lr =
∑n

i=1 fr(x, ωi, ω)Pi
A

≤ 1/π nPmax
π r2

.

The threshold radianceLt is then

Lt =
nPmax
π2r2

m

.

From this we get the maximum search radius

rm =
1
π

√
nPmax
Lt

.

If we display colors between 0 and 1, we might for example chooseLt = 0.05.
Then we get

rm ≈ 1.4
√
nPmax .

5.2.4 Maximum search radius for volumes

There is a corresponding formula for lookups in a volume photon map. For a
volume, the radiance estimate is

Lr(x, ω) =
1

σ(x)

∑n
i=1 f(x, ωi, ω)Pi

4
3π r

3
.

— wheref is the normalized phase function andσ is the volume scattering coeffi-
cient. For an isotropic (diffuse) volume the normalized phase functionf is 1/(4π).
The formula for the maximum search radius in a volume photon map is

rm = 3

√
3nPmax
16π2 σ Lt

.
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With, for example, a threshold radiance ofLt = 0.05 we get the maximum search
radius

rm ≈ 0.72 3

√
nPmax
σ

.

5.2.5 Maximum distance to nearest photon

In the final gather stage, we can locate the nearest (single) photon and use its pre-
computed irradiance — see section 5.4. However, in dark regions there will be
very few photons, and the nearest photon can potentially be quite far away. In that
case, it can be rather incorrect to use that photon’s irradiance. It is more efficient
(and often more correct) to disregard the nearest photon if it is far away from the
lookup point and just use black for the irradiance. We therefore need a reasonable
cut-off distance so that if there is no photon within that distance, we can terminate
the search.

There are two cases for the scenario where the nearest photon is far away from
the lookup point. In one case, the nearest photon, although distant, is part of a
relatively dense cluster of photons (corresponding for example to a local bright
spot or the bright side of a shadow edge). In that case, that photon will have a fairly
high irradiance, and we would introduce a large error if we use that irradiance far
into the region with no photons (where the irradiance should be very low). In the
other case, the distant photon is part of a truly sparse photon distribution, and has
a very low irradiance value. It would be correct to use that low irradiance, but we
would not make a big error by using black instead.

After the nearest photon has been found, we can determine whether we can rea-
sonably use its irradiance by checking whether the lookup point is within the area
of the irradiance estimate of that photon. This requires us to store the irradiance
estimate radiusr with the photon, but that is only a single additional float. (This
radius would need to be stored anyways if we want to optimally combine lookups
from several photon maps, as discussed in section 5.5.) If the lookup point is out-
side the estimate area, we have to assume that the irradiance at the lookup point is
black. This is a very valuable check after we have located the nearest photon, but
for efficiency we would like to also have an a priori cut-off distance for the search.

Fortunately, we do have an a priori upper limit on the radius of the density
estimate area — that’s exactly what we computed in the previous two subsections!
We can simply use that radius (rm) as the cut-off distance for finding the nearest
photon.
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Instead of using the exact radius of the density estimate as a cut-off distance,
one can of course use a fraction or a multiple of it, according to taste (and judgment
of how far from the center of an irradiance estimate it is reasonably valid).

5.3 Faster lookups, part II: iteration instead of recursion

This section presents an iterative algorithm for finding the nearest photons from a
given point. The nearest photons are used to estimate irradiance or radiance. The
iterative algorithm is up to 25% faster than a recursive version.

5.3.1 Background: recursive algorithm

A recursive algorithm to find then photons closest to a pointp is described thor-
oughly in last years course notes, but is repeated here for easy reference.

The photons in the photon map are stored in a kd-tree. The tree is a left-
balanced binary tree, so it is conveniently stored in an array as an implicit tree:
array element 1 is the tree root, and nodei has children2i and 2i + 1. There
areN photons in the kd-tree array, andNhalf = dN/2e is the array index of
the last non-leaf node.nearestDist2 is the squared maximum distance of the
photons found so far, it is adjusted as more photons are found. The algorithm is
initially called with i = 1 (the array index of the tree root node). The algorithm
first descends down through the tree depth-first, at each recursive call choosing the
half-space that contains pointp. When a leaf is reached, its 3D distance to pointp

is computed and it is inserted into the heap of nearest photons if it is close enough.
On the way back up from the first recursive calls, the 1D distance to the other
half-space is examined. If we cannot rule out that a photon in the other half-space
could be among the nearest, we make a new recursive descent, this time in that
half-space. When one or both half-spaces have been searched, the photon itself
is examined and possibly inserted into the heap of closest photons (if it is close
enough). The recursive search algorithm is:

void FindNearestPhotons(point p, int i) { // recursive version

// Recursively examine the child nodes if node i is not a leaf
if (i < Nhalf)

dist1d = signed 1D dist. from splitting plane of node i to point p
if (dist1d < 0.0) { // p is left of plane

FindNearestPhotons(p, 2i) // search left subtree first
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if (dist1dˆ2 < nearestDist2)
FindNearestPhotons(p, 2i+1) // search right subtree

} else { // p is right of plane
FindNearestPhotons(p, 2i+1) // search right subtree first
if (dist1dˆ2 < nearestDist2)

FindNearestPhotons(p, 2i) // search left subtree
}

}

// Check photon i, add it if it is among the nearest so far,
// and update nearestDist2
CheckAddNearest(p, i)

}

The inline procedureCheckAddNearest(p, i) checks whether the 3D dis-
tance between pointp and photoni is small enough that photoni should be added
to the current set of nearest photons, and if so, adds it.

5.3.2 Iterative algorithm

It is well known that any recursive algorithm can be rewritten as an iterative algo-
rithm. Although the recursive algorithm often is most clear, the iterative version
is usually faster (since recursive calls require pushing the current state on the call
stack). However, the kd-tree lookup algorithm is doubly recursive, since we some-
times have to visit both children of a node. This complicates the rewriting as an
iterative version, and makes the iterative version somewhat inelegant.

Again, there areN photons in the kd-tree array, andNhalf = dN/2e is the
array index of the last non-leaf node. We use two auxiliary arrays: the float array
dist1d_2[] keeps track of (squared) 1D distances between pointp and photons,
while int arraychosen[] keeps track of which child we visited first on our de-
scend through the tree. Both arrays need to have at least as many elements as there
are levels in the kd-tree, ie.dlog2(N)e elements. The iterative search algorithm is:

void FindNearestPhotons(point p) { // iterative version

i = 1; level = 0 // start at root node

// Move up and down the kd-tree until return (when past the root)
while (true) {

// Move down through the subtrees containing p until a leaf is reached
while (i <= Nhalf) {

dist1d = signed 1D dist. from splitting plane of node i to point p
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dist1d_2[level] = dist1d * dist1d
i = 2i
if (dist1d > 0.0) ++i // choose left/right child
chosen[level] = i
++level

}

// Check this leaf photon, add it if it is among the nearest
// so far, and update nearestDist2
CheckAddNearest(p, i)

// Move up in tree until we reach a photon where we need to
// check that photon and the other subtree
camefrom = i
i = i/2; --level // go to parent
while (dist1d_2[level] >= nearestDist2 || camefrom != chosen[level]) {

camefrom = i
i = i/2; --level // go to parent
if (!i) return // we passed the root: return

}

// Check this non-leaf photon, add it if it is among the
// nearest so far, and update nearestDist2
CheckAddNearest(p, i)

// Step into the other subtree
i = 2i
if (i == chosen[level]) ++i // go to right subtree
++level

}
}

Depending on the processor, optimizer, and how many photons are to be found,
this iterative version can be up to 25% faster than the recursive version. The same
algorithm is used to find the nearest (single) photon for reuse of its precomputed
irradiance value (see section 5.4). It might be possible to rewrite the iterative algo-
rithm to be prettier or faster (or both) than the version presented here. If you find a
better version, please let me know!

5.3.3 References

General discussions of algorithm optimization and kd-trees can be found in many
computer science textbooks, for example:

• Thomas M. Cormen, Charles E. Leiserson, and Ronald L. Rivest.Introduc-
tion to Algorithms. MIT Press, 1990.
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• Robert Sedgewick.Algorithms in C++. Addison-Wesley, 1992.

• Mark de Berg, Marc van Kreveld, Mark Overmars, and Otfried Schwarzkopf.
Computational Geometry — Algorithms and Applications. Springer-Verlag,
1997.

5.4 Faster lookups, part III: precompute irradiance esti-
mates

Final gathering is used for rendering soft indirect illumination. This “trick” obtains
a speed-up of 5–8 for final gathering in typical scenes.

5.4.1 The basic method

This optimization is based on three observations:

1. Final gathering is the most time-consuming part of the photon map method
for global illumination calculation — especially locating the nearest 50–200
photons for the irradiance estimate where each final gather ray hits.

2. Many final gather rays (from different final gathers) hit nearly the same
point: almost identical photon map lookups are repeated again and again.

3. Since each final gather result is the average of hundreds or thousands of
radiance values, each value does not have to be very precise.

Based on these observations, the many lookups in the global photon map during
final gathering can be simplified by precomputing local irradiance values at the
photon positions and storing those values with the photons. When a final gather
ray hits a surface, we would normally do a full irradiance estimate at that point —
requiring finding the nearest 50–200 photons in the global photon map. Instead, we
simply find the (single) nearest photon with a surface normal similar to the normal
at the ray intersection point and use its precalculated irradiance value. This way,
the calculation of soft indirect illumination can be sped up by a factor of 5–8 in
typical scenes.

Using the precomputed irradiance of the nearest photon means that the irra-
diance used for final gathering is approximated as a piecewise constant function.

101



Formally, the photons divide the scene into a Voronoi diagram with a constant irra-
diance within each Voronoi cell. This approximation is acceptable because the dif-
ference between the irradiance at neighboring photon positions is relatively small
(since many photons are used to compute each radiance) and because we only use
the approximation for final gathering above a certain distance (at shorter distances
we do a secondary final gathering instead).

The precalculation typically takes less than 2% of the time saved. It is not
necessary to precompute the irradiance at all photon locations; we have found that
for typical scenes, it is sufficient to compute the irradiance at 1/4 of the photon
locations. It is very simple to select 1/4 of the photons since they are located in an
array — simply compute the irradiance for the photons in the first 1/4 of the array.
In the kd-tree, this corresponds to all the photons that are neither leaves nor parents
of leaves. The tree structure means that the selected 1/4 photons will automatically
have a fairly good spread in the scene; we cannot end up with only the photons in
one side of the scene having their irradiances precomputed.

The method requires us to store the surface normal and irradiance for each
photon in addition to the standard position, incident direction, power, and split
dimension. Using 1 byte to represent the surface normal direction and 4 bytes for
the irradiance (using Ward’s RGBE format), the storage for each photon increases
from 18 bytes to 23, an increase of less than 28%.

5.4.2 Example: interior scene

The following is an example of a scene rendered with this method. The scene
consists of more than 1 million polygons. The images have1024 × 768 pixels
sampled with up to 16 samples per pixel. The images are computed on a Linux
PC with a 733 MHz Pentium III processor and 540 MB memory. (Only a small
fraction of that memory was actually used.)

Figure 5.2(a) shows the scene rendered with classic ray tracing. It shows soft
shadows, specular reflections, and textures, but lacks soft indirect illumination. For
example, the upper right corner is completely black since it is not directly illumi-
nated. This image was computed in 2 minutes 34 seconds. Figure 5.2(b) shows the
global photon map for this scene. Photon tracing took 8 seconds and sorting the
500,000 photons into a kd-tree took 4 seconds. Figure 5.2(c) shows the precom-
puted irradiances at 125,000 photon positions. Computing these irradiances took
21 seconds. In figure 5.2(d), the radiance at each image sample point is computed
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as the nearest precomputed irradiance multiplied by the local diffuse reflection
coefficient. This is how the scene illumination “looks” to final gather rays. Fig-
ure 5.2(e) is the complete image with soft shadows, specular reflection, textures,
and soft indirect illumination. The final gathering took 2 minutes 45 seconds, and
the total render time for this image was 5 minutes 57 seconds. For comparison,
the final gather stage takes nearly 22 minutes without precomputed irradiances,
so the final gather time is reduced by a factor of 7.8. The 21 seconds spent on
precomputing the irradiances corresponds to 1.8% of the 19 minutes saved during
rendering.

5.4.3 Other applications

The same method can also be used for precomputing irradiances in a volume pho-
ton map. This speeds up ray marching through an isotropically reflecting partic-
ipating medium quite significantly. The method is also useful for precomputing
importance at the “importon” positions in an importance map.

5.4.4 Variations

There are numerous variations and possible improvements of this method.

One could find the nearestthreephotons with appropriate normals and do a
bilinear interpolation of their irradiances. This would make the approximation of
irradiance piecewise linear instead of piecewise constant. However, we have found
the resulting increase in accuracy completely unnecessary.

We can compute the irradiances “on demand” instead of as a preprocess. When
a final gather ray hits a point, we find the nearest photon with similar normal. If that
photon has an irradiance value stored with it, we simply use it. If the photon does
not have an irradiance value, we find the nearestn photons, compute the irradiance,
store it with that photon, and use that value.

The advantage of computing the irradiance “on demand” like this is that if
some photons are in parts of the scene that are never seen (neither directly nor
indirectly) in the image, then their irradiance will not be computed. (However, if
importance is used to decide where to store photons, the number of stored unim-
portant photons should be relatively small. See section 5.6 for a discussion of the
use of importance.)

On the other hand, computing all irradiances as a preprocess has the potential
advantage that coherency can be used (although I currently don’t know how that
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Figure 5.2: Interior scene: (a) Traditional ray tracing. (b) Photon map. (c) Precom-
puted irradiance estimates at 1/4 of the photon positions. (d) Radiance estimates
based on (c). (e) Complete image with direct illumination, specular reflection, and
soft indirect illumination.
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should be done): the irradiance computations can be ordered such that neighbor-
ing photons have their irradiance computed right after each other. Then most of
the found photons for the two neighboring irradiance estimates will be the same.
It might be possible to use this coherency. Currently, we just compute the irradi-
ance for each photon position independently, which intuitively seems wasteful. It
might be that another data structure than the kd-tree is better suited for this type of
coherent lookups?

Currently, we compute the irradiance at all or 1/4 of the photon positions. The
number 1/4 might seem quite arbitrary. Why not 1/16 or 1/100? We have chosen
1/4 because it is “safe”: there is hardly any visible difference between a Voronoi
diagram based on all the photon positions and one based on 1/4, and the tiny differ-
ences certainly have no impact on the final gather results. With 1/16 of the photon
positions, the Voronoi cells get quite large and the irradiances of neighboring cells
can be quite different. At that level of approximation, one might as well have traced
fewer photons in the photon tracing phase and then only precomputed irradiance at
1/4 of them. Furthermore, the time to precompute irradiances at 1/4 of the photons
is already negligible compared to the total render time, so it is not very important
to reduce it further.

When we compute irradiance at a constant fraction of the photon positions, we
automatically get a well distributed coverage of the scene, and we automatically get
most irradiance estimate calculations in the most brightly illuminated areas (areas
with high photon density, i.e. high irradiance). This is pretty good. However, we
can improve this by computing more irradiances at places with high illumination
variation (places with high photon density variation, i.e. high irradiance gradient).
One can start out computing the irradiances at 1/4 of the photons and then at the
children of the photons that have very “skewed” local photon distributions — that
is, where the photons used for the irradiance estimate are very unevenly distributed
within the estimation area. In other words, compute an irradiance estimate at a
given photon if it is one of the top 1/4 photons in the kd-tree or if its parent has
a skewed photon distribution. The result is dense irradiance estimates where the
irradiance is high and where the irradiance variation is high. During the search
for the nearest precomputed irradiance (in the rendering phase), the descend down
through the kd-tree stops when a photon either has no children or the children have
no precomputed irradiance.

Another variation is to store radiance instead of irradiance with the photons.
This is done by multiplying the irradiance estimate by the appropriate diffuse re-
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flection coefficient. Ideally, the diffuse reflection coefficient must be determined
with a texture mip map lookup at an appropriate level, corresponding to the area of
the Voronoi cell the radiance is determined for. This is of course an even coarser
approximation of the illumination of the scene: in addition to approximating the
irradiance as piecewise constant, we also approximate the textures as piecewise
constant. The advantage is that it reduces the number of texture map lookups dur-
ing rendering — which in some cases can make a significant difference in render
times.

5.4.5 Extensions

Jensen (1995) used incident photon directions to guide ray directions in the ren-
dering phase: when a ray hits a diffuse surface, the nearest (indirect) photons are
located, and their incident directions are used to bias the ray direction towards
bright regions of the scene. Peter and Pietrek (1998) applied the same approach to
guide photons in the photon tracing phase: when a photon hits a diffuse surface,
the nearest (indirect) importons are located, and their incident directions are used
to guide the photons towards important parts of the scene. In both cases, it would
be beneficial to have the incident directions stored with the photons/importons.
This directional information can easily be determined during the precomputation
of irradiance/importance — at which time the nearest photons/importons are lo-
cated anyways. The directional information can be stored and reused during ren-
dering/photon tracing. It can for example be stored in a few bytes, with each bit
corresponding to a fraction of the hemisphere: the bit is set if a significant amount
of photons/importons came from that direction, so that rays/photons should have a
higher probability of being scattered in that direction.

It might be possible to extend the method to handle surfaces with wide glossy
(aka. directional diffuse) reflection. Each incident photon causes a drop-shaped
“blobby” radiance distribution. The sum of 50–200 of these distributions will be
a wider blob. To get a useful speed-up out of storing and reusing such directional
radiance distributions would require a compact representation of the distribution as
well as a very fast way to evaluate it in a given direction. Spherical harmonics do
not seem like a promising choice, but perhaps wavelets (Christensen 1996) or mul-
tiple cosine-lobes (Lafortune 1997) are possibilities? If a suitable representation
can be found, a similar representation can be used for anisotropically scattering
participating media.
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5.4.6 References and credits

The idea of storing irradiances with the photons was originally published in:

• Per H. Christensen. “Faster photon map global illumination”.Journal of
Graphics Tools, 4(3), pp. 1–10. ACM, 1999.

The idea of computing the irradiances on demand rather than as a precomputation
was first suggested to me by Toshi Kato. The variations and extensions described
here were also discussed at the Dagstuhl seminar “Image Synthesis and Interac-
tive 3D” (Schloss Dagstuhl, Wadern, Germany, June 2000).

The following two references used incident photon directions to guide ray di-
rections in the rendering phase, and incident importon directions to guide photon
directions in the photon tracing phase, respectively:

• Henrik W. Jensen. “Importance driven path tracing using the photon map”.
Rendering Techniques ’95 (Proceedings of the 6th Eurographics Workshop
on Rendering), pp. 326–335. Springer-Verlag, 1995.

• Ingmar Peter and Georg Pietrek. “Importance driven construction of photon
maps”. Rendering Techniques ’98 (Proceedings of the Ninth Eurographics
Workshop on Rendering), pp. 269–280. Springer-Verlag, 1998.

Finally, the representation of directional distributions with wavelets and with
multiple cosine-lobes are described in:

• Per H. Christensen, Eric J. Stollnitz, David H. Salesin, and Tony D. DeRose.
“Global illumination of glossy environments using wavelets and importance”.
Transactions on Graphics, 15(1), pp. 37–71. ACM, January 1996.

• Eric P. Lafortune, Sing-Choong Foo, Kenneth E. Torrance, and Donald P.
Greenberg. “Non-linear approximation of reflectance functions”.Computer
Graphics (Proceedings of SIGGRAPH 97), pp. 117–126. ACM, August
1997.

respectively.

5.5 Combining lookup results from several photon maps

This “trick” is a formula to combine lookup results from several photon maps.
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5.5.1 Why several photon maps?

Several processors can share a photon map without conflict: storage and lookups
are done in separate phases, so no locking is needed. The only reason to split a
photon map is if there is not enough memory to store it on one machine. However,
usually only a few million photons (of 18–24 bytes each) are needed even for com-
plex scenes. Therefore it is no problem to store a full copy of the complete photon
map on each computer to enable fully independent parallel lookups.

However, if there has to be several photon maps — either because the photon
maps simply are to big or for some other reason — there are different ways the
lookups can be combined.

5.5.2 Combining lookup results

We can arrange the photons such that photons located in particular parts of the
scene are stored in particular photon maps. Sometimes we can then simply lookup
in the appropriate photon map. This method can give problems at edges between
the partial photon maps, though.

Instead, we assume that the photons are reasonably evenly distributed in the
photon maps — that is, each photon is stored in a randomly chosen photon map
or the photons are stored in the maps in a round robin fashion. Now, instead of
finding the nearestn photons in a single photon map containing all photons, we do
a lookup inM photon maps, finding the nearestn/M photons in each. The lookup
in each photon map produces a powerPm =

∑n/M
i=1 Pi and a radiusrm. See

figure 5.3 for an illustration. Then the question is: how can we best combine the
results? The first idea that comes to mind for computing the combined irradiance
is to simply add the irradiances from each photon map lookup:

Etotal =
M∑
m=1

Pm
πr2

m

However, combining the powers and radii separately turns out to be much less
sensitive to variations (probably because of the non-linearity of the formula). The
powers and radii are then combined as follows:

Etotal =
∑M

m=1 Pm

aveMm=1(πr2
m)

=
M

π

∑M
m=1 Pm∑M
m=1 r

2
m
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Figure 5.3: How to combine several independent density estimates for the same
point?

(This is very likely a well-known result from the density estimation field?) Note
that this improved formula does not require any additional information, we’re just
using the available information better.

Also note that to avoid bias, the radiusrm shouldn’t simply be the distance of
the most distant photon found in the lookup, since this will systematically under-
estimate the area and hence overestimate the irradiance. Instead, we must either
ignore the power of the most distant photon and use the average distance of the
most distant and the second-to-most distant photons, or multiply the distance of
the most distant photon by a correction factor ofj+0.5

j (wherej is the number of
photons found in the lookup). This correction is always important if the number of
photons in the lookup is small. In sparse regions where less thann/M photons are
found, the maximum search radius can be used directly without any adjustment.

5.6 Faster photon tracing using importance

The previous “tricks” have all been very thoroughly tested on many scenes of vary-
ing complexity. The present trick has only been tested on two scenes so far, so there
is still a chance that it might fail in some cases. Anyway, here we go ...

5.6.1 Motivation

If the scene is large, if large parts of it are illuminated, and if only a small fraction
of it is seen in the final image, many photons that do not contribute to the visible
illumination are emitted, scattered, and stored in the first pass. The larger the illu-
minated parts of the scene are relative to the visible parts, the smaller the fraction
of photons that are actually used.

To avoid wasting time and space, we want a photon tracing method with the
following characteristics:

• Few emitted, scattered, and stored photons.
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• No bias (or at least no visible bias).

• A homogeneous photon map (no mixing of photons with high and low power
in the same region).

The third requirement is necessary because a few high-power photons among many
low-power photons will result in extremely noisy irradiance estimates: if a high-
power photon is among the photons used to compute an irradiance, the resulting
irradiance will be very high compared to the nearby irradiances that didn’t include
that high-power photon. Visually, this means that the scene has very bright dots in
the vicinity of those high-power photons, resulting in a “polka dot” pattern. It is,
however, acceptable to have some regions in the photon map contain high-power
photons and other regions contain low-power photons, as long as they are not mixed
in the same region.

Here we present a method that satisfies all three requirements: it reduces the
number of emitted, scattered, and stored photons while keeping the bias acceptable
and the photon map homogeneous.

5.6.2 Previous work

Smits et al. (1992) introduced importance to computer graphics. In their seminal
work, they defined importance as the adjoint of radiosity that has a source term at
the view point, and used importance to reduce the number of links in a hierarchical
radiosity solution. More generally, importance can be defined as the adjoint of
any representation of light with the source term at the view point or at the directly
visible points.

The method of Peter and Pietrek (1998) used importance to reduce the number
of emitted, traced, and stored photons. Before tracing photons, they emitted impor-
tance particles (“importons”) from the view point in the directions within view and
traced them through the scene. The density of importance particles near a point is
an estimate of the importance there. In the beginning of the photon tracing phase,
they used a set of “test” photons to estimate the importance of various directions
from each light source. For each light source they emitted a set of test photons and
saw if any of them got traced into an important region of the scene. (The test pho-
tons were not stored in the photon map). From the results of these test photon paths,
a finite element approximation of the importance in different directions from each
light source was constructed. In the “real” photon tracing phase, relatively many
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photons were emitted in the important directions (each photon with low power),
while few photons were emitted in the unimportant directions (each photon with
high power). The danger in this approach is that some of the high-power photons
actually might make it to one of the important regions in the scene even though
none of the “test” photons did. When this happens, these high-power photons get
stored in an important part of the scene, resulting in a nonhomogeneous photon
map and the very bright polka dots mentioned above.

Keller and Wald (2000) used Russian roulette to determine which photons to
store in regions of low importance. The photons that are stored get increased power
to compensate for their low storage probability. Suykens and Willems (2000) used
a variation of this where they distributed the power of non-stored photons among
the nearest previously stored photons. Both methods suffer from the problem that
even though the number of stored photons is dramatically reduced, the number of
emitted and scattered photons is still high. In other words, the memory require-
ments are reduced, but the time spent on the photon tracing pass is still too high.

To summarize, none of the existing methods satisfy all three requirements listed
above: reducing the number of emitted, scattered, and stored photons while keep-
ing the bias acceptable and the photon map homogeneous.

5.6.3 Importance computation

The first step in importance-driven photon tracing is to compute the importance
distribution in the scene. This can for example be done by emitting importance par-
ticles (“importons”) from the eye/camera position, tracing them through the scene,
and storing them in an importance map. The principles from photon tracing are also
used for importon tracing, as described by Peter and Pietrek (1998). Put briefly, im-
portons are emitted from the eye in the directions within the viewing frustum and
scattered through the scene using the material properties to determine scattering
type probabilities. Russian roulette is used to terminate the paths. The importons
are stored on all diffuse surfaces they intersect on their paths.

To improve the efficiency of determining the importance at various locations
during the photon tracing phase, we then compute importance at all importon po-
sitions. This is similar to the precomputation of irradiance at photon positions as
described in section 5.4. At each importon position, we locate the nearest impor-
tons (for example the nearest 50) and use their density to determine the importance
at that importon position. These importance estimates are stored, one for each im-
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porton. The maximum computed importance is found during these computations,
and used to normalize the importance such that the maximum importance in the
scene is 1. These precomputed importances make it much faster to determine the
importance at various locations during photon tracing.

An interesting detail is that we actually need two kinds of importance: one
counting all importons (for the caustic photon map), and one counting only indirect
importons, ie. importons that have bounced at least once (for the global photon
map). This is because we compute soft indirect illumination with final gathering,
so soft indirect photons are not visualized directly.

5.6.4 Importance-driven photon emission and storage

One of the goals of this method is to store few photons (with high power) in the
regions with low importance, more photons (with intermediate powers) in the re-
gions of medium importance, and most photons (with low power) in the regions of
high importance.

In order to explain our algorithm, and see the differences from previous ap-
proaches, it is advantageous to first consider a reordering of the photon tracing
method of Peter and Pietrek. A reordered version of their method would divide the
emission directions from a light source into some number of strata (corresponding
to the finite elements they used), and treat each stratum at a time. First emit a small
number of test photons within that stratum, and see if any of them enter into an
important region of the scene. The test photons are not stored. If any of these test
photons reached something important, relatively many “real” photons are emitted
in that set of directions — each photon with low power. If none of the test photons
reach anything important, few “real” photons are emitted in that set of directions
— each photon with high power. Again, the danger in this approach is that some of
the (few) “real” high-power photons actually might make it to one of the important
regions in the scene even though none of the test photons did. When this happens,
the high-power photon gets stored among the low-power photons in an important
region, resulting in a nonhomogeneous photon map and very high incorrect irradi-
ance values when the photon map is queried for irradiance in the neighborhood of
that photon. This shows up as the aforementioned bright polka dots in the image.

Our solution is closely related to this reordered version of Peter and Pietrek’s
method, but avoids the nonhomogeneous photon map. We also emit a small set
of initial test photons — within a stratum of directions from each light source at a
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time. Each initial photon has a relatively high power. If none of the initial photons
from that set of emission directions hit anything important (with importance deter-
mined by the precomputed importance of the nearest importon), we store them in
the photon map. This is the typical case. If some of them hit an important region,
we discard all of the photons emitted within that set of directions and emit a new,
larger, set of photons with less power each. Some of these new low-power photons
will hit unimportant regions; at those locations Russian roulette is used to deter-
mine the storage probability and stored power. The low-power photons are always
stored (ie. storage probability 1) when they hit the most important regions.

A slight variation on this scheme is to never discard any photons. In the case
where some of the initial high-power photons hit a region with high importance,
the photons that hit the important regions have their power reduced, while Russian
roulette is used to decide which photons should be stored in unimportant regions.
It would be interesting to measure whether this variation results in more bias of the
solution.

5.6.5 Discussion

As with all importance-driven methods, the savings obtained using importance can
be arbitrarily high: just choose a sufficiently large test scene with a sufficiently
small part visible.

We might miss a small region of high importance if none of the initial pho-
tons hit it, but this is a standard problem of Monte Carlo. The probability of this
happening is reduced by splitting all photons originating from the same stratum,
instead of just the photon that hit a high-importance point. It is probably possible
to make an a posteriori check to see if a region of high importance has been missed
completely by finding the nearest photon for each importon with high precomputed
importance. If the nearest photon is closer to an importon with low importance (i.e.
in a different importance Voronoi cell), there is cause for concern.

The method of Suykens and Willems, distributing the power among the nearest
stored photons instead of using Russian roulette, could also be used here.

5.6.6 Future work

It should be determined experimentally how the bias and noise of this method com-
pares to the bias and noise of the method of Peter and Pietrek. It should also be
determined how the bias compares to a an alternative version of their method where
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the “stray” high-power photons that enter important regions are simply stored with
reduced power.

The method described here could be extended to photon tracing in participating
media.

5.6.7 References

The most relevant previous work on importance and photon tracing is described in
the following papers:

• Brian E. Smits, James R. Arvo, and David H. Salesin. “An importance-
driven radiosity algorithm”.Computer Graphics (Proceedings of SIGGRAPH
92), pp. 273–282. ACM, 1992.

• Henrik W. Jensen. “Importance driven path tracing using the photon map”.
Rendering Techniques ’95 (Proceedings of the 6th Eurographics Workshop
on Rendering), pp. 326–335. Springer-Verlag, 1995.

• Ingmar Peter and Georg Pietrek. “Importance driven construction of photon
maps”. Rendering Techniques ’98 (Proceedings of the Ninth Eurographics
Workshop on Rendering), pp. 269–280. Springer-Verlag, 1998.

• Alexander Keller and Ingo Wald. “Efficient importance sampling techniques
for the photon map”. Proceedings of the Fifth Fall Workshop on Vision,
Modeling, and Visualization, pp. 271–279. IEEE, November 2000.

• Frank Suykens and Yves D. Willems. “Density control for photon maps”.
Rendering Techniques 2000 (Proceedings of the Eleventh Eurographics Work-
shop on Rendering), pp. 11–22. Springer-Verlag, 2000.

5.7 Conclusion

This note has presented six optimizations of the photon map method. Simple op-
timizations such as these make the photon map method significantly faster. More
optimizations await discovery — we’ve only scratched the surface so far. So let’s
go and scratch deeper!

114



Acknowledgements

Thanks to my colleagues at Square USA for many interesting discussions regarding
parallel rendering, global illumination, and photon tracing, and for emphasizing the
need for such methods in “real world” movie production work.

115



116



Chapter 6

References and further reading

This section lists the references referenced in these course notes plus additional
background material relevant to the photon map method. The material is divided
into three groups: the photon map method, ray tracing and photon tracing and
data-structures with focus on kd-trees. Each part is in chronological order with
annotations. In addition we have listed a number of animations rendered with pho-
ton maps and finally we have provided a more detailed list of relevant background
literature.

The photon map method

[Jensen95a] Henrik Wann Jensen and Niels Jørgen Christensen.
“Photon maps in Bidirectional Monte Carlo Ray Tracing of
Complex Objects”.
Computers & Graphics19 (2), pages 215–224, 1995.
The first paper describing the photon map. The paper sug-
gested the use of a mixture of photon maps and illumination
maps, where photon maps would be used for complex surfaces
such as fractals.

[Jensen95b] Henrik Wann Jensen.
“Importance driven path tracing using the photon map”.
Rendering Techniques ’95 (Proceedings of the Sixth Euro-
graphics Workshop on Rendering), pages 326–335. Springer
Verlag, 1995.
Introduces the use of photons for importance sampling in path
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tracing. By combining the knowledge of the incoming flux
with the BRDF it is possible to get better results using fewer
sample rays.

[Jensen95c] Henrik Wann Jensen and Niels Jørgen Christensen.
“Efficiently Rendering Shadows using the Photon Maps”.
In Proceedings of Compugraphics’95, pages 285–291, Alvor,
December 1995.
Introduces the use of shadow photons for an approximate clas-
sification of the light source visibility in a scene.

[Jensen96a] Henrik Wann Jensen.
“Rendering caustics on non-Lambertian surfaces”.
Proceedings of Graphics Interface’96, pages 116-121,
Toronto, May 1996 (also selected for publication in Computer
Graphics Forum, volume 16, number 1, pages 57–64, March
1997). Extension of the photon map method to render caustics
on non-Lambertian surfaces ranging from diffuse to glossy.

[Jensen96b] Henrik Wann Jensen.
“Global illumination using photon maps”.
Rendering Techniques ’96 (Proceedings of the Seventh Euro-
graphics Workshop on Rendering), pages 21–30. Springer Ver-
lag, 1996.
Presents the global illumination algorithm using photon maps.
A caustic and a global photon map is used to optimize the ren-
dering of global illumination including the simulation of caus-
tics.

[Jensen96c] Henrik Wann Jensen.
The photon map in global illumination.
Ph.D. dissertation, Technical University of Denmark, Septem-
ber 1996.
An in-depth description of the photon map method based on
the presentations in the published photon map papers.

[Christensen97] Per H. Christensen.
“Global illumination for professional 3D animation, visualiza-
tion, and special effects” (invited paper).
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Rendering Techniques ’97 (Proceedings of the Eighth Euro-
graphics Workshop on Rendering), pages 321–326. Springer
Verlag, 1997.
Describes the requirements of a global illumination method
in a commercial environment, and motivates the choice of the
photon map method.

[Myszkowski97] Karol Myszkowski.
“Lighting reconstruction using fast and adaptive density esti-
mation techniques”.
Rendering Techniques ’97 (Proceedings of the Eighth Euro-
graphics Workshop on Rendering), pages 321–326. Springer
Verlag, 1997.
Efficient techniques for filtering and visualizing photons.

[Slusallek98] Philipp Slusallek, Mark Stamminger, Wolfgang Heidrich, J.-
C. Popp, and Hans-Peter Seidel.
“Composite Lighting Simulations with Lighting Network”.
IEEE Computer Graphics & Applications, 18(2), pages 22-31,
March/April 1998.
Describes a framework in which the photon map can be inte-
grated into a radiosity simulation.

[Peter98] Ingmar Peter and Georg Pietrek.
“Importance driven construction of photon maps.”
Rendering Techniques ’98 (Proceedings of the Ninth Euro-
graphics Workshop on Rendering), pages 269–280. Springer
Verlag, 1998.
Use of importance to focus the photons where they contribute
most to the visible solution. This requires an initial importance
(or “importons”) tracing pass from the camera before the pho-
ton tracing pass from the light sources.

[Jensen98] Henrik Wann Jensen and Per H. Christensen.
“Efficient simulation of light transport in scenes with partici-
pating media using photon maps”.
Proceedings of SIGGRAPH 98, pages 311–320. ACM, 1998.
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Extension of the photon map method to simulate global illu-
mination in scenes with participating media.

[Lange98] Thorsten Lange and Georg Pietrek.
“Rendering Participating Media using the Photon Map”.
Technical Report no. 678, University of Dortmund, 1998.
Also describes the extension of the photon map method to sim-
ulate global illumination in the presence of participating me-
dia.

[Jensen99] Henrik Wann Jensen, Justin Legakis and Julie Dorsey.
“Rendering of Wet Materials”.
Proceedings of the Tenth Eurographics Workshop on Render-
ing, pages 281-290, Granada, June 1999.
Simulates subsurface scattering using the volume photon map
in order to render wet materials.

[Dorsey99] Julie Dorsey, Alan Edelman, Henrik Wann Jensen, Justin
Legakis and Hans Køhling Pedersen.
“Modeling and Rendering of Weathered Stone”.
Proceedings of SIGGRAPH 99, pages 223–234, 1999.
Describes rendering of volumetric weathering effects in stone
based on subsurface scattering optimized using the volume
photon map.

[Christensen99] Per H. Christensen
“Faster Photon Map Global Illumination”.
Journal of Graphics Tools, 4(3), pages 1–10, 1999.
Introduces precomputed irradiance values per photon for faster
look-ups.

[Jensen00] Henrik Wann Jensen.
“Parallel Global Illumination using Photon Mapping”.
In SIGGRAPH’2000, Course 30, New Orleans, July 2000.
Describes how to implement the photon mapping algorithm to
take advantage of multi-processor/multi-host computers.

[Suykens00] Frank Suykens and Yves Willems.
“Density control for photon maps”.
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Rendering Techniques 2000 (Proceedings of the Eleventh Eu-
rographics Workshop on Rendering), pp. 11–22. Springer-
Verlag, 2000.
Introduces techniques for limiting the density of the photons
in order to get a better distribution of photons. Also presents
ideas for using visual importance to construct higher quality
photon maps.

[RPK] Ph. Bekaert and F. Suykens.
RenderPark, a physically based rendering tool.
K.U. Leuven, http://www.renderpark.be, 1996-2001.
An open-source renderer that supports photon mapping.

[Jensen01] Henrik Wann Jensen.
Realistic Image Synthesis using Photon Mapping.
AK Peters, 2001
An in-depth book describing photon mapping, all the theory,
and all the practical details. Includes an implementation of the
photon map data structure.

Ray tracing and photon tracing

[Whitted80] Turner Whitted.
“An improved illumination model for shaded display”.
Communications of the ACM, volume 23, number 6,
pages 343–349. ACM, June 1975.
The classic ray tracing paper.

[Arvo86] James Arvo.
“Backward ray tracing”.
Developments in ray tracing, SIGGRAPH 86 seminar notes.
ACM, August 1986.
Introduces light ray tracing and illumination maps for comput-
ing caustics.

[Glassner89] Andrew S. Glassner.
An introduction to ray tracing.
Academic Press, 1989.
The standard reference on ray tracing. Still a pleasure to read.
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[Shirley91] Peter Shirley.
Physically Based Lightning Calculations for Computer
Graphics.
Ph.d. thesis, University of Illinois at Urbana-Champaign,
1991.
Good overview of Monte Carlo ray tracing. Also presents one
of the first practical multi-pass global illumination methods.

[Chen91] Eric Shenchang Chen, Holly E. Rushmeier, Gavin Miller, and
Douglas Turner.
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Abstract

This paper presents a two pass global illumination method based on the concept
of photon maps. It represents a significant improvement of a previously described
approach both with respect to speed, accuracy and versatility. In the first pass two
photon maps are created by emitting packets of energy (photons) from the light
sources and storing these as they hit surfaces within the scene. We use one high
resolution caustics photon map to render caustics that are visualized directly and
one low resolution photon map that is used during the rendering step. The scene
is rendered using a distribution ray tracing algorithm optimized by using the in-
formation in the photon maps. Shadow photons are used to render shadows more
efficiently and the directional information in the photon map is used to generate
optimized sampling directions and to limit the recursion in the distribution ray
tracer by providing an estimate of the radiance on all surfaces with the exception
of specular and highly glossy surfaces.

The results presented demonstrate global illumination in scenes containing pro-
cedural objects and surfaces with diffuse and glossy reflection models. The imple-
mentation is also compared with the Radiance program.

Key words: Global Illumination, Photon Maps, Monte Carlo Ray Trac-
ing

1 Introduction

Simulating global illumination in general environments is a complex task. Currently
the most successful approaches combine radiosity and ray tracing [24, 5, 34]. Even
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though ray tracing has been extended with Monte Carlo techniques [14, 19, 27, 29,
32] and radiosity has been extended with directional capabilities [13, 26, 3, 11, 6]
neither of the two methods precludes the use of the other. In general Monte Carlo
ray tracing is very time consuming and gives noisy results while radiosity uses a lot
of memory to store directional information and it cannot handle specular reflection
properly.

Most radiosity implementations use a simplified ray tracing algorithm to render
the result in order to simulate specular reflections seen by the eye [28, 26, 25, 6].
Shirley [24] noticed that the ray tracing method could be used to render shadows as
well since radiosity has problems at discontinuities. He also introduced the use of
light ray tracing [1] to render caustics. Chen et al. [5] went even further and used
path tracing to render all diffuse reflections seen directly by the eye in order to elim-
inate all visible artifacts from the radiosity algorithm. They only used the radiosity
algorithm to model soft indirect illumination. Rushmeier et al. [22] concluded that
the radiosity solution could be simplified since the path tracing algorithm would hide
most of the artifacts in it and they introduced geometric simplification in which the
radiosity algorithm is performed on a simple geometric approximation of the orig-
inal model. Their motivation was the fact that radiosity becomes very time and
memory consuming as the number of surfaces in the model grows.

This paper introduces a two pass method in which we simplify the representation
of the illumination instead of simplifying the geometry. We obtain this simplification
by using the photon map introduced in [15]. We combine the extensions to the
photon map presented in recent papers [16, 17, 18] in order to render the scene more
efficiently. The photon map is used to generate optimized sampling directions, to
reduce the number of shadow rays, to render caustics and to limit the number of
reflections traced as the scene is rendered with distribution ray tracing.

2 Overview of the Method

The first pass in the method is constructing the photon map by emitting photons
from the light sources in the model and storing these in the photon map as they hit
surfaces. The result is a large number of photon hits stored within the scene. This
information can be seen as a rough representation of the light within the model.

Ward [29, 32] uses a comparable strategy storing irradiance values at surface
points. Our approach does however differ significantly in several aspects. The
creation of the photon map is light driven and it supplements the eye-driven ren-
dering step very well. Effects like caustics that are very difficult to compute using
traditional Monte Carlo ray tracing are easily obtained with the photon map. Fur-
thermore we store incoming flux (photons) which is much simpler and less accurate
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than irradiance values. Our motivation for doing so is that we obtain a very flexible
environment with a lot of useful information that can be applied in the rendering
step. The use of photons allows us to estimate surface radiance at surfaces with
arbitrary BRDF’s. The information can also be applied in an unbiased fashion to
optimize the rendering step. The photons can be used to compute improved control
variates [20] or as demonstrated in [16] to generate optimized sampling directions.

Our rendering engine is a distribution ray tracer in which rays are traced from the
eye into the scene. The information from the photon map is applied during rendering
in two different ways. We distinguish between situations where we need an accurate
computation and situations in which an approximate estimate can be applied. As
the rays are traced through several reflections their contribution to the final pixel
radiance becomes lower and we apply the approximate estimate which for all surfaces
equals a radiance estimate obtained from the photon map. For highly glossy surfaces
we do however trace additional sample rays since reasonable radiance estimates
for these surfaces require a large number of photons. The accurate computation
is applied at surfaces seen directly by the eye or via a few specular reflections.
This computation is performed using importance sampling where the information
about the incoming flux is integrated with the BRDF to provide optimized sampling
directions. Furthermore we use information about shadow photons to reduce the
number of shadow rays. Accurate computation of caustics is done by visualizing a
radiance estimate obtained using a separate caustics photon map which has a high
density of photons.

3 Pass 1: Constructing the Photon Maps

The photon maps are constructed by emitting a large number of photons (packets
of energy) from the light sources in the scene. Each photon is traced through the
scene using a method similar to path tracing. Every time a photon hits a surface
it is stored within the photon map and Russian roulette [2] is used to determine
whether the photon is absorbed or reflected. The new direction of a reflected photon
is computed using the BRDF of the surface.

Unlike previous implementations we use two photon maps: A caustics photon
map and a global photon map. The caustics photon map is used only to store
photons corresponding to caustics and it is created by emitting photons towards the
specular objects in the scene and storing these as they hit diffuse surfaces. Caustics
are rendered by visualizing a radiance estimate based on the caustics photon map
directly and this requires a high density of photons.

The global photon map is used as a rough approximation of the light/flux within
the scene and it is created by emitting photons towards all objects. It is not visu-
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Figure 1: The photons in the global
photon map are classified to optimize
the rendering of shadows

alized directly and therefore it does not require the same precision as the caustics
photon map. We use the extension presented in [17] and create shadow photons by
tracing rays with origin at the light source through the entire scene. At the first
intersection point a normal photon is stored and at the following intersection points
we store shadow photons. These shadow photons are used during the rendering step
to reduce the number of shadow rays (see figure 1).

The fact that we have two separate photon maps has improved both the speed,
reduced the memory requirements and improved the accuracy of the method. Ren-
dering caustics is faster since the caustics photon map contains only photons related
to caustics. Locating photons in the global photon map is also faster since it has
fewer photons and these photons have energy levels that are more similar since it
does not contain the mixture of caustics photons with high density and low energy
and normal photons with low density and high energy. This significantly improves
the accuracy of the radiance estimate.

The photons are stored in a balanced kd-tree [4]. This data-structure is both
compact and efficient. The fact that the tree is balanced guarantees that the time it
takes to locate M photons in a tree with N photons is O(M · log2(N)). In practice
the search is much more efficient since the photons are located in the same parts
of the tree. The use of a balanced kd-tree makes the rendering more efficient as
demonstrated in [18] but just as important it reduces the memory requirements for
each photon hit and allows us to represent each photon using only 20 bytes.

4 Pass 2: Rendering

The final image is rendered using Monte Carlo ray tracing in which the pixel radiance
is computed by averaging a number of sample estimates. Each sample consists of
tracing a ray from the eye through the pixel into the scene. The radiance returned
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by each ray is computed at the first surface intersected by the ray and it equals the
surface radiance, Ls(x,Ψr), leaving the point of intersection, x, in the direction,
Ψr, of the ray. Ls(x,Ψr) is computed using the rendering equation [14]:

Ls(x,Ψr) = Le(x,Ψr) +

∫
Ω

fr(x,Ψi; Ψr)Li(x,Ψi)cosθi dωi (1)

Where Le is radiance emitted by the surface, Li is the incoming radiance in the
direction Ψi, fr is the BRDF and Ω is the sphere of incoming directions. Le is taken
directly from the surface definition and needs no further calculation. The value of
the integral, Lr, depends on the radiance values in the rest of the scene and it can
be solved directly using Monte Carlo techniques like path tracing. This is however
a very expensive method and a more efficient approach can be obtained by using
the photon map in combination with our knowledge of the BRDF and the incoming
radiance.

The rendering equation (1) can be split into a sum of several components. We
omit the position and direction parameters for clarity, and express Lr as

Lr =

∫
Ω
frLi,l cos θi dωi +∫

Ω
fr,s(Li,c + Li,d) cos θi dωi +∫

Ω
fr,dLi,c cos θi dωi +∫

Ω
fr,dLi,d cos θi dωi (2)

where
fr = fr,s + fr,d and Li = Li,l + Li,c + Li,d

In this equation the incoming radiance has been split into contributions from the
light sources, Li,l, contributions from the light sources via specular reflection (caus-
tics), Li,c and indirect soft illumination, Li,d (light which has been reflected diffusely
at least once). The BRDF has been separated into a diffuse part, fr,d, and a spec-
ular part, fr,s. The diffuse part represents all reflection models from Lambertian to
slightly glossy while the specular part are highly glossy and ideal specular reflection
models (examples are presented in section 6).

Equation 2 is used to compute the radiance leaving a surface. In the following
sections we discuss the evaluation of each of the parts in the equation in more detail.
We distinguish between two different evaluations of the integrals: An accurate and
an approximate.
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We use the accurate computation if the surface is seen directly by the eye or
perhaps via a few specular reflections. We also use the accurate computation if the
distance between the ray origin and the intersection point is below a small threshold
value — otherwise we might risk inaccurate colour bleeding effects in corners. The
approximate evaluation is used if the ray intersecting the surface has been reflected
diffusely since it left the eye or if the weight of the ray is low (it contributes only
little to the pixel radiance).

4.1 Direct Illumination

The first term in (2) represents the contribution via direct illumination by the light
sources. This term is normally computed by sending shadow rays towards all light
sources to check for visibility. We compute the contribution differently depending
on whether we need an accurate or an approximate evaluation.

In the accurate evaluation of the contribution we use the observation that most
scenes have large areas that are either fully illuminated or in shadow. We can use
the information in the photon map to identify these areas in order to avoid using
shadow rays. We only use shadow rays in situations where the nearest photons
in the global photon map contains a mixture of direct illumination photons and
shadow photons or if the number of illumination and shadow photons located is too
low. This strategy is described in more detail in [17].

The approximate evaluation is simply the radiance estimate obtained from the
global photon map (no shadow rays or light source evaluations are used).

4.2 Specular Reflection

The second term in (2) is radiance reflected of specular and highly glossy sur-
faces. This value is computed using standard Monte Carlo ray tracing. By using
importance sampling based on the BRDF the computation can is most cases be
done using only a limited number of sample rays.

4.3 Caustics

The third term in (2) represents caustics on diffuse and slightly glossy surfaces. We
evaluate this term using the information in the caustics photon map (see section 5).
We never compute caustics via Monte Carlo sampling since this is almost impossible
in most situations. This means that the radiance estimate based on the caustics
photon map is visualized directly and this is the reason why the number of photons
in the caustics photon map must be high.
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4.4 Soft Indirect Illumination

The fourth term in (2) is incoming light which has been reflected diffusely at least
once since it left the light source. This light is then reflected diffusely by the surface
(using fr,d) and consequently the resulting illumination is very “soft”.

The approximate evaluation of this integral is the radiance estimate based on
the global photon map (see section 5).

In the accurate evaluation we use importance sampling to compute the indirect
illumination. As described in [16] we combine the information in the photon map
with the BRDF in order to generate optimized sampling directions. At Lambertian
surfaces we also use the irradiance gradient caching scheme [32]. This means that
we only compute indirect illumination on Lambertian surfaces if this information
cannot be interpolated from previously computed values.

5 Estimating Radiance using the Photon Map

The information in the photon map can be used to compute the radiance leaving a
surface in a given direction. Since the incoming direction is stored with each photon
we can integrate the information with any BRDF. In practice the approximation is
limited to surfaces ranging from Lambertian to slightly glossy. To compute radiance
leaving highly glossy surfaces a very large number of photons is needed. There is
nothing in our algorithm preventing this approach. We have however found that
highly glossy surfaces can be treated efficiently using Monte Carlo ray tracing and
we use this strategy in order to limit the memory requirements.

To compute the radiance, Lr, leaving an intersection point x at a surface with
BRDF fr, we locate the N photons with the shortest distance to x. Based on the
assumption that each photon p represents flux ∆Φp arriving at x from direction
Ψi,p we can integrate the information into the rendering equation as follows

Lr(x,Ψr)=

∫
Ω

fr(x,Ψr,Ψi)
d2Φi(x,Ψi)

dAdωi
dωi ≈

N∑
p=1

fr(x,Ψr,Ψi,p)
∆Φp(x,Ψi,p)

πr2
(3)

We use the same approximation of ∆A as [15] where a sphere centered at x is
expanded until it contains N photons and has radius r. ∆A is then approximated
as πr2.

An alternative could be using a sphere of a fixed size and use all the photons
within this sphere. We have tested this technique and it improves the estimate
slightly since ∆A is kept constant. It does however fail in scenes with a high
variation in the density of the photons since it either gives bad estimates in areas
with few photons or blurry estimates in areas with a high photon density. We have
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Figure 2: The effect of the cone fil-
ter. The left image is unfiltered and
the right image is filtered using the cone
with 1 as the filter constant

considered a number of adaptive strategies for computing the necessary size of the
sphere based on the local photon density. We did however find that the payoff with
respect to quality could not compensate for the extra computing time.

In situations where the density of the photons is too low the radiance estimation
strategy can give blurry results. To compensate for this situation we have success-
fully applied a cone-filter to the estimate. In the cone-filter a weight is attached to
each photon based on the distance, dp, between x and the photon p. This weight is:

wp = max(0, 1− d/(kr)) (4)

where k is a filter constant characterizing the filter. To normalize the filter we
need some knowledge on the distribution of the photons. Since we use a sphere
to locate the photons it would be natural to assume that the distribution of the
photons is 3 dimensional and related to the sphere. However, photons are stored
at surfaces which are 2 dimensional. Furthermore the area estimate is also based
on the assumption that photons are located on a surface. Our normalization is
therefore based on a 2d-distribution of the photons and it becomes 1 − 2

3k . The
filtered radiance estimate can thus be expressed as

Lr(x,Ψr) ≈

N∑
p=1

fr(x,Ψr,Ψi,p)∆Φp(x,Ψi,p)wp

(1− 2
3k )πr

2
(5)

In figure 2 we have showed the effect of the cone filter as it is applied to the
well known cardioid caustic. We used only 12000 photons to render this caustic and
the result is that the traditional radiance estimate looks blurry. Applying the cone
filter significantly reduces this blur. In the figure we use a filter constant k = 1.
This value generally works very well.
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6 Results and Discussion

We have implemented the two pass method in a program called MIRO on a 100MHz
Pentium PC with 32MB RAM running Linux.

Our first test scene is the museum shown in fig. 3. It has 5000 normal objects
(spheres, triangles etc.) and 1 procedural object (the sphere flake). All important
combinations of light reflections can be found in this scene. We have caustics from
the glass sphere onto the rough surface, caustics from the glossy cylinder on the wall
and also on the procedural sphere flake object. The sphere flake object has been
rendered using Schlick’s reflection model [23] with a diffuse-specular parameter of
0.1. Other important reflections include the colour bleeding effect between the walls,
the glossy reflection of the metallic teapot (using Ward’s anisotropic model [31]), the
transmission of light through the glass sphere and the specular reflection in the floor
and the teapot. The scene is illuminated by two small spherical area light sources.
We used 289.000 photons in the caustics photon map and 165.000 photons in the
global photon map to render this scene. This corresponds to approx. 9MB memory.
The image was rendered in the resolution 1280x960 and the rendering time was 51
min.Ṫhe photon map was constructed in 5 min. The most time consuming part of
the scene is the computation of reflection of the teapot into the glossy cylinder since
the number of reflections traced by each ray is not limited by using the photon map.

To demonstrate how the photon map actually works we have visualized the
radiance estimate directly in fig. 4. The radiance estimate is shown for all diffuse
surfaces (include the sphere flake) and it is based only on the 165.000 photons in
the global photon map. An average of 80 photons have been used to estimate the
radiance per surface intersection. Notice how all important types of reflections are
included even though they are blurry. The blur in the photon map is actually
an advantage since it reduces noise in the final gathering step where Monte Carlo
sampling is used to render the initial reflections accurately.

Our second test scene shown in fig. 5 demonstrates the looks of a caustic from a

Scene Resolution
Caustic
photons

Global
photons

Pass 1 Rendering

Diffuse Cornell Box 1280x960 21.162 286.489 67 sec. 8 min
Diffuse Cornell Box [R] 1280x960 - - - 60 min
Glossy Cornell Box 2560x1920 0 382.598 56 sec. 50 min
Glossy Cornell Box [R] 5120x3840 - - - 360 min
The Museum 1280x960 389.755 165.791 298 sec. 51 min
The Cognac Glass 1280x960 224.316 3095 27 min. 65 min

Table 1: Rendering statistics. [R] indicates the images rendered with Radiance
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cognac glass onto a rough (fractal) surface approximated by 500.000 triangles. The
reflection model for the surface is Schlick’s reflection model with a diffuse-specular
component of 0.6 — we found that this value makes the sand look more realistic.
The caustic was created using 224.000 photons. These photons represent both the
red caustic and the illumination of the surface below the cognac glass. If this model
is rendered without caustics the surface below the cognac glass would be black. We
also measured the advantage of using shadow photons in this scene and by using
only 216 shadow photons (≈ 5KB extra information) we were able to reduce the
number of shadow rays with more than 70 %

To test the performance of our method we have compared it with the Radiance
program — a superb global illumination program developed over the last 10 years
by Greg Ward [33]. It is based on a significantly optimized Monte Carlo ray tracing
scheme and it performs very well even compared with newer hierarchical radiosity
techniques [6].

We have used our photon map implementation and Radiance to render two vari-
ations of the Cornell box: One in which the floor is Lambertian and one in which
the floor is highly glossy (using the Anisotropic reflection model). We adjusted the
parameters in both programs in order to obtain good quality within a reasonable
time. The rendering times are shown in table 1.

The version with the diffuse floor was rendered in 1280x960 with both programs
and as it can be seen from the table. With photon maps the rendering time is
6 times faster than Radiance. The primary reason is that we avoid the recursive
sampling of the indirect illumination and the fact that we use fewer shadow rays to
sample the area light source. In this scene the average depth of the image sampling
rays is very close to 2 since most of the radiance computations beyond the first
diffuse reflection is handled by the photon map.

The Cornell box with the glossy floor was rendered in 2560x1920 with MIRO and
5120x3840 with Radiance. We had to increase the resolution in Radiance since it
uses path tracing to render glossy surfaces. Both images have been reduced to the
resolution 640x480 and this means that Radiance uses 64 samples per pixel (ie. 64
samples to sample the indirect illumination on the first glossy surfaces seen through
a pixel). MIRO uses distribution ray tracing and the only reason why we increased
the resolution was in order to obtain the same level of anti-aliasing as Radiance. The
distribution ray tracer in MIRO spawns a maximum of 6 sample rays at the glossy
surface. Combined with the 16 samples per pixel this gives a maximum of 96 samples
used to compute the indirect illumination on the first glossy surface seen through
a pixel. This also means that the glossy surface looks less noisy in the version
rendered by MIRO. The two images are shown in fig. 6 and fig. 7 and as we can see
they look very similar. There is a slight differences in the overall illumination caused
by different tone reproduction functions (gamma correction). The timing results in
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table 1 shows that MIRO renders the glossy Cornell box approximately 7 times faster
than Radiance. The number of pixels is 4 times higher in the Radiance version but
this number cannot be used directly due to the different sampling schemes used by
the two programs. It is more correct to look at the number of samples spawned at
the glossy surface since this is the actual reason why rendering these images takes
so relatively long.

In table 1 we have collected some statistics showing the memory and time re-
quired to render the test images. As it can be seen the number of photons used is
in the range 200.000-500.000. We have not carefully optimized these numbers since
the rendering time is only affected slightly by the number of photons. Instead we
use an appropriate number of photons and for our test images we have found that
2-500.000 photons gives nice results. In more complex scenes it would probably be
necessary to use a higher number of photons. It is however important to notice that
the necessary number of photons is not directly related to the number of objects in
the scenes. It is instead related to the complexity of the flux within the scene. We
would probably be able to render the Cornell box with detailed stone walls made of
millions of triangles using the same number of photons as we did with the simple
Cornell box. If we render a scene with too few photons we get low frequency noise
in the caustics - this kind of noise is less disturbing than the high frequency noise
that is normally seen in Monte Carlo ray tracing algorithms. The effect on the
remaining parts of the illumination is more subtle and it depends on the rendering
parameters. But if too few photons are used it means that we have to use more
sample rays to compute the indirect illumination and we might get ”poor statistics“
in the radiance estimates which in our implementation results in recursive Monte
Carlo sampling.

We believe that the results can be improved even further by using the photon
map more intelligently. As an example we might use the photons to answer questions
regarding the number of samples necessary to use for a pixel. Another interesting
use of the photon map would be reclassification of light sources as done in [5]. The
photon map could also be used to represent flux within participating media. This
should be straightforward to implement since nothing prevents photons from being
stored within a volume.

Currently we have only rendered scenes containing a few light sources (less than
10). Rendering scenes with many light sources makes the use of photon maps more
complicated since naive emission of photons from every light source will generate a
very large number of photons. We might use some kind of radiosity-like importance
to distribute the photons more intelligently within the scene. It would be very
interesting to make a 3-pass method in which an initial simple ray tracing pass
is used to generate importance information that can be used when emitting the
photons. This might also help answering the difficult question of the necessary
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number of photons. The current strategy is just to use enough photons (what the
available memory permits).

A very important aspect of the photon map is the fact that it is easy to integrate
into existing ray tracing programs since it only requires the existence of intersection
routines for each object. The scene does not have to be tessellated and the pho-
ton map structure is completely separated from the geometric representation. The
photon map code can be provided in a separate module that contains the necessary
functions (e.g. a function that given a position and a surface definition returns the
radiance in a given direction).

7 Conclusion

We have presented a general two-pass global illumination method based on photon
maps. We integrate information from an accurate caustics photon map and a less
accurate global photon map into a distribution ray tracer. Caustics are rendered by
visualizing a radiance estimate from the caustics photon map directly. The infor-
mation in the global photon map is used to generate optimized sampling directions,
to reduce the number of shadow rays and to limit the number of reflections traced
by providing an approximate radiance estimate.

We have used the method to simulate global illumination in scenes containing
procedural objects and surfaces with diffuse and glossy reflection. Comparisons
with existing global illumination techniques indicate that the photon map provides
an efficient environment for global illumination.
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Figure 3: The Museum scene

Figure 4: Direct visualization of the global photon map in the
Museum scene
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Figure 5: A Cognac glass on a fractal surface
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Figure 6: The glossy Cornell box rendered with photon maps

Figure 7: The glossy Cornell box rendered with Radiance
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Abstract

This paper presents a new technique for rendering caustics on non-
Lambertian surfaces. The method is based on an extension of the
photon map which removes previous restrictions limiting the usage to
Lambertian surfaces. We add information about the incoming direc-
tion to the photons and this allows us to combine the photon map with
arbitrary reflectance functions. Furthermore we introduce balancing
of the photon map which not only reduces the memory requirements
but also significantly reduces the rendering time. We have used the
method to render caustics on surfaces with reflectance functions vary-
ing from Lambertian to glossy specular.

Keywords: Caustics, Photon Map, Ray Tracing, Rendering.

1 Introduction

Caustics provides some of the most spectacular patterns of light in nature.
Caustics are formed when light reflected from or transmitted through a spec-
ular surfaces strikes a diffuse surface. An example is the caustic formed as
light shines through a glass of wine onto a table.

In traditional ray tracing [22] diffuse surfaces are only illuminated by the
light sources. Caustics which are indirect illumination on the diffuse surfaces
are not rendered at all. Even the stochastic ray tracing methods [5, 8] cannot
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render caustics properly. In order to integrate the computation of caustics
into ray tracing it is necessary to compute illumination from light transmitted
via specular surfaces. This computation is in most situations very complex
and it has been solved only for a simple class of specular objects (ie. polygons
[20]). Mitchell et al. [12] has presented a very comprehensive technique and
their method is capable of handling caustics from implicit surfaces. The
method is unfortunately very complex and also very time consuming.

Arvo [1] extended the standard ray tracing algorithm by introducing a
preprocessing step in which caustics are computed. This preprocessing step
uses backward ray tracing (also known as light ray tracing, illumination ray
tracing and photon tracing) in which packets of energy (photons) are emit-
ted from the light sources in the scene towards the specular surfaces. Each
photon is reflected by the specular surfaces and stored on the Lambertian
surfaces. The main problem with this approach is computing the intensity
(radiance) of the caustics. This value depends upon the number of photons
per surface area. Arvo solved this problem by using illumination maps which
is an empty texture map divided into a large number of small area-elements.
As photons hit a surface the energy is registered at the appropriate area-
elements. In this way the caustics are created as textures on the Lambertian
surfaces within the scene. A problem with this approach is the fact that
a large number of photons must be used to eliminate noise in the caustics.
Heckbert [7] introduced a method that adaptively subdivided the illumina-
tion map into area elements (rexes) with a size corresponding to the local
density of the photon-hits. Chen et al. [3] and Collins [4] use a fixed illumi-
nation map. To eliminate noise they use different filter-kernels to spread the
energy from each photon onto several area-elements. Jensen et al. [9] stored
all photon-hits explicitly in a photon map and avoided using the illumination
map. Instead they introduced a new technique for estimating the number of
photons per area by looking only on the distribution of photons within the
scene. Their method is capable of handling complex objects (ie. procedurally
defined objects) and the estimate is less prone to noise since it can be seen
as a low-pass filter. The photon map does however require large amounts of
memory in complex scenes.

In scenes with simple objects it is possible to avoid the photon based
approach. If the specular objects are polyhedral backwards beam tracing
[14, 15, 21] can be used to render caustics on the Lambertian surfaces. With
backwards beam tracing the illumination map can be replaced by caustic
polygons that represent illumination from caustics on Lambertian surfaces.

2



In bidirectional path tracing [11, 18] the rendering of caustics is signif-
icantly improved compared to traditional path tracing [8]. The method is
however still purely stochastic and it still requires a large amount of sample
rays to produce results that are not too noisy.

The most popular techniques today are clearly the backward ray tracing
techniques as introduced by Arvo. These methods are often faster and more
general than other approaches and they are often used in global illumina-
tion techniques [3, 9, 16] to render caustics. They do unfortunately have
one significant drawback - they are limited to Lambertian surfaces. In many
situations this is not a problem. However, within global illumination where
accurate rendering is important the Lambertian assumption does not always
produces satisfying results. It is however difficult to eliminate the Lamber-
tian assumption since it removes the view independence of the caustics and
therefore complicates the storage of irradiance on the surfaces.

In this paper we present a technique in which we extend the photon
map in order to store irradiance on surfaces with reflection functions that
are non-Lambertian. We achieve this by extending the information stored
with each photon with the incoming direction of the photon. This allows
us to combine the photons with general bidirectional reflectance distribution
functions. We present results which demonstrate rendering of caustics on
surfaces with reflection functions ranging from Lambertian to almost glossy
specular.

2 The Photon Map

The photon map represents a rough distribution of light throughout the
scene. It is created by emitting a large number of photons from the light
sources into the scene. In [9] the photon map is used not only to simulate
caustics but all kinds of illumination. We are only interested in caustics and
we therefore construct a caustics photon map specifically aimed at rendering
caustics.

The caustics photon map is constructed by emitting a large number of
photons towards all the specular objects within the scene. Each time a
photon hits a surface two things happen. If the surface is diffuse the photon
is stored in the photon map, and if the surface has a specular component
Russian roulette is used to determine whether the photon should be reflected
specularly or absorbed. In this way we obtain an unbiased solution without
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have to trace each photon through an infinite number of specular reflections.
Every photon is stored within the photon map. As [9] we use a kd-tree

[2] to store the photons. While rendering the scene we need a data-structure
that allows us to quickly locate photons within a given volume. Furthermore
we need a very compact data-structure since we want to be able to use
millions of photons. This makes the kd-tree a natural choice. In [9] the
kd-tree was build on the fly as photons intersected the surfaces within the
scene. This strategy can very easily result in a skew kd-tree that no longer
has optimal search times. Searching is performed very often during rendering
and we have found that balancing the kd-tree before actually rendering the
scene significantly reduces the rendering time in most scenes. The balancing
algorithm is performed after all the photons have been emitted. The photons
are stored in a linked list of large arrays (each array having 65536 photons).
The balancing algorithm manipulates this data structure directly in order
to avoid having two copies of the photon map in memory. The balancing
algorithm converts the unordered list of photons into a balanced kd-tree
by recursively selecting the root node among the data-set as the median
element in the direction which represents the largest interval. The existing
data structure can be reused since we use a heap structure to represent
the balanced tree. This completely eliminates the need for child-pointers.
Further information on how to balance kd-trees can be found in [2].

As mentioned a large number of photons might be used in the photon
map and it is necessary to use a compact representation. We have decided
to use the following representation in which each photon only uses 20 bytes:

struct photon {

float position[3];

rgbe energy;

char theta,phi; // incoming direction

short flags;

}

This representation is actually more compact than the one presented in [9]
even though we have added information about the incoming direction. The
use of a heap-like data-structure eliminates the need of two child pointers
which would otherwise increase the memory requirements for each photon
with 8 bytes (40%). The energy is represented as 3 floats packed into 4 bytes
using the technique described in [19].
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3 Rendering Caustics with the Photon Map

In standard ray tracing diffuse surfaces are only illuminated by the light
sources. By introducing the photon map we have photons representing energy
from caustics deposited on these diffuse surfaces. To render the caustics we
need to extract radiance information from the photon map. This means that
we must compute the density of the photons on all area-elements within the
scene. Assuming that we have an intersection point x with normal �n and
an outgoing direction Ψr in which we want to compute the radiance, Lr, by
using the photon map. Lr can be expressed as

Lr(x,Ψr) =
∫

all Ψi

fr(x,Ψr,Ψi)Li(x,Ψi)|�n ·Ψi| dωi (1)

where Li is the incoming radiance from the direction Ψi, and fr is the bidi-
rectional reflectance distribution function.

To compute the contribution Li we locate theN photons with the shortest
distance to x. If we assume that each photon p represents a packet of energy
(flux) ∆Φp arriving at x from direction Ψi,p then it is possible to integrate
the information into equation 1 as follows

Lr(x,Ψr) =
∫

all Ψi

fr(x,Ψr,Ψi)
d2Φi(x,Ψi)

dAdωi
dωi

≈
N∑
p=1

fr(x,Ψr,Ψi,p)
∆Φp(x,Ψi,p)

∆A
(2)

We use the same approximation of ∆A as [9]. That is we take a sphere
centered at x and expand it until it contains N photons and has radius r.
∆A is then approximated as

∆A = πr2 (3)

and we can rewrite equation 2 as

Lr(x,Ψr) ≈
1

πr2

N∑
p=1

fr(x,Ψr,Ψi,p)∆Φp(x,Ψi,p) (4)
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4 A Non-Lambertian Reflection Model

In order to test the algorithm we need a reflection model capable of simula-
ting non-Lambertian reflection. Several comprehensive models exists for the
purpose of accurately simulating the physical behavior of different materials.
However we are only interested in a simple model that can be used to validate
our algorithm. A suitable model was presented by Schlick in [13]. This model
is simple and it has the very nice property that it provides a continuous
transition from Lambertian reflection to glossy specular reflection. We omit
the usage of anisotropic reflection (even though nothing in our model prevents
us from simulating anisotropy) and use the following BRDF:

fr =
1−G(v)G(v′)

π
+
G(v)G(v′)

4πvv′

(
α

(1 + αt2 − t2)2

)
(5)

where the function G represents a geometrical self-shadowing factor:

G(v) =
v

α− αv + v
(6)

and t = �n·(Ψr+Ψi)
|�n·(Ψr+Ψi)|

, v = �n ·Ψr, v′ = �n ·Ψi and α is the diffuse-specular factor

varying from 1 (diffuse) to 0 (specular).
To test our algorithm with this reflection model we only have to modify

one parameter, α. This value determines whether the surface is diffuse or
specular. Our results in the following section refers to this value as the
diffuse-specular component.

5 Results and Discussion

We have implemented and tested our rendering algorithm on a Silicon Gra-
phics Onyx computer with 1GB RAM. Since our representation of the photon
map is quite memory efficient we never needed the 1GB memory. In general
we rendered caustics using approx. 5-10MB for the photon map. Only in
extreme cases where the caustic is rendered on surfaces with a reflection
function approaching glossy specular did we need a large number of photons.
In these cases we used approx. 10-30MB of memory for the photon map.

Our first test case is shown in figure 1. This is the standard model
used to illustrate caustics. The cardioid-shaped caustic is formed by placing
a light source on the edge of a cylinder which has a reflective inner side.
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The incoming direction of the light at the edge of the cardioid equals the
tangent to the cardioid. This information is quite useful when we remove the
Lambertian assumption from the receiving surface. It allows us to predict
how the caustic should look as the surface becomes more glossy. Figure 1
contains 4 rendered images showing how the caustic looks as we change the
diffuse-specular component of the surface from 1 to 0.01. As expected the
intensity of the caustic is reduced mostly in those parts where the incoming
direction of the light differs mostly from the incoming direction of the viewing
ray. We used approx. 340.000 photons in all the images corresponding to 7
MB of memory. The quality of the images can be improved slightly by using
more photons. The images have been rendered in 320x240 with 4 samples per
pixel and the rendering time for the images was (from left to right) 22, 24, 27
and 42 seconds - just ray tracing the images takes 7 seconds. The rendering
time increases as the surface becomes more glossy and the only reason for this
is the fact that the image sampling algorithm requires more rays to render
the caustic on the glossy surface. Using a fixed number of samples per pixel
would make the rendering time the same for all the images.

Our second test case (figure 2) is a simple scene demonstrating what
happens with the caustic from a glass sphere as the receiving surfaces become
glossy. As we can see the shape of the caustics is no longer oval but curved.
In this scene we had to use approx. 250.000 photons to obtain a nice caustic
— using fewer photons makes the caustic look more blurred. The image was
rendered in 640x480 with 4 samples per pixel and the rendering time was 182
seconds.

Our third test case (figure 3) is a more complex scene in which we bene-
fited from usage of a non-Lambertian reflection model. It is a glass of cognac
on a sand-surface. The sand is a fractal surface (with 2 · 10242 triangles) on
which we have produced a synthetic sand-texture. We have used a diffuse-
specular factor of 0.6 - using a Lambertian approximation makes the sand
look more unnatural and flat. The caustic in this image was rendered using
approx. 350.000 photons. The image was rendered in 26 minutes in the reso-
lution 640x480 with 4 samples per pixel. Notice how the red-looking caustic
is formed as light is transmitted through several layers of glass and cognac.
The intensity of each photon is modified using Beer’s law as the photon is
transmitted through a dielectric media.

In the following table we have collected some statistics of the resources
required to render the images:
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Image Photons Preprocess Rendering
Figure 1a 336.191 8 min. 22-42 s.
Figure 2 250.677 58 s. 182 s.
Figure 2b 250.677 58 s. 378 s.
Figure 2c 5.036.126 19 min. 276 s.
Figure 2d 5.036.126 19 min. 1380 s.
Figure 3 352.497 15 min. 26 min.
Figure 3e 352.497 15 min. 42 min.
a Applies to all images in figure 1
b Without balancing the photon map
c A reference image demonstrating how the ren-
dering time is (un)affected by the number of
photons used

d The same as 2c but with an unbalanced pho-
ton map

e Without balancing the photon map

As shown in the table we also rendered figure 2 and figure 3 without
balancing the photon map and this clearly affected the rendering times in
particular as the number of photons increased. The rendering times were
almost doubled with the unbalanced version. We also examined how the
rendering times were affected as more photons were added and we rendered
figure 2 using 5.0 million photons corresponding to a data-structure of al-
most 100 MB. Naturally this increased the preprocessing time due to the
extra photons emitted from the light source. The time used in the balancing
algorithm were less than a minute. As we can see from the table the balan-
cing algorithm reduces the rendering time with more than 75 % In general
we have noticed that rendering time with the balanced photon map is only
slightly affected as the number of photons is increased. This is particularly
important in situations where high quality is required or in situations where
large parts of the scene are illuminated by caustics. It also makes the pho-
ton map easier to use since the primary parameter becomes the amount of
memory available.

Currently the user must specify both how many photons should be gen-
erated at the light sources and how many photons N to use in the radiance
computation (equation 4). It would be nice to have an adaptive method that
based upon the local density of the photons determined how many photons
to use in the estimate. In general we have found that it is quite easy to pre-
dict good values for the two parameters. If the parameters are badly chosen

8



the caustic will either become too blurred or too noisy.
The computed caustics are completely view-independent (even image in-

dependent). We do not need an initial ray tracing pass to determine the
”bucket-size” as the illumination map based approaches. This also means
that if very complex caustics are being visualized the user needs to adjust
the number of photons used according to the desired resolution of the display.
Another solution is just to always use enough photons if the memory permits
it. As we have shown balancing the photon map (kd-tree) almost eliminates
the dependence of the rendering time on the number of photons.

The rendering times could also be reduced even more by optimizing the
integration of the photon map with Schlick’s reflection model. Since we only
have a discrete set of directions we could benefit from lookup tables and save
a lot of vector computations.

The next step is integration of the method into a global illumination
algorithm and extending the use of the photon map to other kinds of indirect
illumination as in [9].

6 Conclusion

We have presented a new algorithm for rendering caustics on non-Lamber-
tian surfaces. The method is based on an extension of the photon map and
it renders caustics on procedurally defined surfaces. By balancing the pho-
ton map data structure we improve the rendering time and reduce memory
requirements. The resulting method is fast and general and our test-images
demonstrate that it is possible to achieve good results using only a limited
amount of photons. The method is therefore useful in existing global illumi-
nation techniques in which caustics can be computed separately.
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Figure 1: Four images demonstrating the looks of the cardioid created as
light is reflected inside a cylinder-ring. From left to right the diffuse-specular
component α is 1.0, 0.5, 0.1 and 0.01.

Figure 2: A caustic from a glass sphere onto a glossy stone surface with a
diffuse-specular component α = 0.1. Notice how the caustic becomes curved
instead of oval as it would on a Lambertian surface.
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Figure 3: A glass of cognac on a sand-surface. The sand is a fractal surface
with a synthetic sand-texture. The diffuse-specular component of the surface
is α = 0.6 and this value improves the realism of the sand compared to a
Lambertian approximation.
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Abstract. The photon map methodallows efficient computationof global
illumination in generalscenes.Individual photonhits, generatedusingMonte
Carlo particletracing,arestoredin themapsandform a geometryindependent
representationof theillumination. Two importantissueswith thephotonmapare
memoryrequirementsto storethe photonsandthe questionhow many photons
areneededfor an accuraterepresentationof illumination in a certainscene.In
this paperwe introducea methodto control the density of photon mapsby
storing photonsselectively basedon a local requireddensity criterion. This
reducesmemoryusagesignificantlysincein unimportantor over-denseregions
lessphotonsarestored.Resultsfor causticphotonmapsandglobalphotonmaps
representingfull illumination show a decreasein numberof photonsof a factor
of 2 to 5. Therequireddensitystateshow accuratethephotonmapshouldbeat
acertainlocationanddetermineshow many photonsareneededin total. Wealso
derive sucha criterionbasedon a novel path-importance-basedfirst pass,taking
somestepstowardssolvingthedifficult ’how many photons’question.

1 Introduction

Computingglobal illumination solutionsfor generalscenesis a difficult job. Scenes
canbeverycomplex, andthematerialsusedcanhavearbitraryreflectionandrefraction
properties.

PureMonte Carlo methods,like pathtracing[11] or bidirectionalpathtracing[12,
20], are capableof computinglight transportfor suchgeneralscenes.They do not
storeany informationin thesceneandarethereforecapableof renderingverycomplex
geometry. However, not storing the illumination meansthat it hasto be recomputed
every time whenneeded.This canbevery inefficient for examplefor multiple indirect
reflectionsandcaustics(or causticsseenthroughamirror for bidirectionalpathtracing).

Two-passandmulti-passmethodsaddressthis problemby computingandstoring
illumination in thescenein oneor morepreprocessingpasses.A final MonteCarlo(or
ray-tracing)passcanusethis illumination information. In this context, radiosityand
light maps[1] have oftenbeencombinedwith ray-tracing[3, 16] or (bidirectional)path
tracing[19].

An interestingtwo-passalgorithmandstoragemethodthatusesphotonmapswas
proposedby Jensen[6, 7, 10]. In aninitial MonteCarloparticletracingpass,a number
of photonsaretracedthroughthesceneandstoredindividually in a kd-tree.To recon-
structradianceat a certainpoint thenearestphotonsarelocatedandusedin a radiance
estimate.Usually a separatehigh-densitycausticphotonmapfor direct visualization
is usednext to a globalphotonmapfor efficiently computingindirect light. Thenext
sectiongivesa moredetailedoverview of this algorithm.

An advantageof this methodis thatthestorageis independentof thegeometry, but
ratherdependenton the illumination complexity. The methodaccommodatesgeneral
materialpropertiesandincludesall possibleglobalillumination effects.



Disadvantagesarethe largememoryrequirementsfor storingthe photonsandthe
moreexpensiveradiancereconstruction(e.g.comparedto radiosity)becausethenearest
photonsmustbelocatedamongall thestoredphotons.Anotherdifficulty with photon
mapsis that it’s hardto know how many photonsshouldbeusedfor a particularscene
in orderto getasufficientaccuracy. In mostcurrentimplementationsthisnumberis set
by theuser, anddependenton hisknow-how of photonmapsandglobalillumination.

In thispaperwe introducedensitycontrolfor photonmaps.Photonsareonly stored
in a photonmap whena certainrequireddensitycriterion is not yet met, otherwise
their energy is distributedamongthe nearestneighbors.This approachhastwo main
advantages:� Thedensityof photonmapscanbecontrolledlocally in thescene.Lessphotons

are storedin over-denseor unimportantregions. This can reducememoryre-
quirementsquiteeffectively.� Introducingthe conceptof requireddensity, offersan interestingframework for
errorcontrolin photonmaps.Sincethedensityof photonmapsis relatedto their
accuracy, ahighdensityshouldbechosenfor importantregionsin thescene.The
requireddensitycanbe chosenarbitrarily andcanbe basedon principleslike
view importance,relativeerror, visualmaskingby textures,. . .

Themethodis appliedfirst to causticphotonmapsanda simpleconvergencecriterion
for thesemapsis presented.A secondapplicationusesa novel view-importance-based
first passto determinerequireddensitiesfor globalphotonmaps.Therequireddensities
arelargefor importantpartsof thesceneandtherealdensityof theglobalmapmatches
closelydueto theselectivestorage.

Bothapproachessignificantlydecreasememoryrequirementsand,maybeevenmore
important,they take stepsto letting a userchoosea morescene-independentaccuracy,
ratherthanthenumberof photons.However many interestingextensionsarepossible
within this framework, andfurtherresearchis neededto put it to full use.

Anotherapproachto controlthedensityof photonmaps,waspresentedby Peterand
Pietrek[15]. They useanimportancemapto guidemorephotonsto visually important
regionsin thescene.Thephotonmapis thenusedfor importancesamplingin astandard
path tracing pass. Their resultingphotonmapshowever containa mixture of high-
and low-poweredphotons,which can result in higher variancewhen reconstructing
illumination[8]. Our approachoffers a more localizedcontrol over the densityand
resultsin amoresmoothlyvaryingphotonenergy.

The next sectiondescribesthe currentphotonmapalgorithmin moredetail esta-
blishingsometermsandnotation.Section3 describesthenew methodfor selectively
storingthephotonsin thephotonmap.Section4 proposesa requireddensityheuristic
for theglobalphotonmapandtheresultsobtained.Section5 presentsconclusions.

2 Photon Maps

This sectionbriefly describesthestandardphotonmapmethodaspresentedby Jensen
in [6]. More detailedinformationcanbefoundin his paper(s).

It is a two-passmethod,wherein the first passa high-densitycausticmapanda
lower densityglobalphotonmapareconstructedby tracingparticlesor photonsfrom
thelight sources.Photonsareonly storedon diffuse(

�
) and(slightly) glossysurfaces

( � ). Thecausticmapcontainsphotonsthathavebeenreflectedspecularly( � ) anumber
of times,storing( �����	��
�� ��
 ��� ) paths.Theglobalphotonmapstoresanapproximation
to thefull globalilluminationsolution( ��� ��
 � 
 �	����� ��
 ��� paths).



For eachphoton� theenergy or flux ��� , theincomingdirection ��� andthelocation� � arestored.Fromthephotonmap,reflectedradiance��� canbeestimatedataposition� on asurfacein a direction � by locatingthenearest� photonsaround� :����� �! �"��#%$����� �! �"�	& '( �*),+�- ��� �! � �  �"� � �.0/21' � � �
with - � the BRDF and / ' � � � the maximumdistancebetween� and its � nearest
photons.This correspondsto nearestneighbordensityestimation[17], wherea sphere
is expandedto find thenearestneighbors.To efficiently find nearbyphotons,they are
storedin a (possiblybalanced)kd-tree.

The secondpassis a stochasticray-tracingpass,that usesthe photon mapsin
differentways. Supposea path is tracedfrom the eye 3 andhits a surfacein � . In� direct illumination is computedandthe causticmapis visualizeddirectly, because
causticsarehardto computeusingstochasticray-tracing. For other indirect illumin-
ation,scatteredraysarespawn sayto apoint 4 onanothersurface.If adiffuseor glossy
bounceis madein � , theradianceapproximationusingtheglobalphotonmapis used
in 4 . For a specularbouncethesameprocedureis repeatedfor 4 aswasdonefor � .

Advantagesof thephotonmapmethodare:� Themethodincludesall possibleglobalillumination effects.� Storageof photonmapsis independentof geometry, allowing it to beappliedto
verycomplex scenes.

Our currentimplementationof the photonmapmethodincludesboth the caustic
andglobalphotonmap.For theradianceestimatesthenumberof photons� wassetto
50. Somedifferenceswith Jensen’smethodarethatwe don’t (yet) balanceour kd-tree,
useWard’s irradiancecaching[21] for indirectdiffuseillumination nor useimportance
samplingfor directionsbasedontheglobalphotonmap[5]. Theseareall optimizations
for thesecondrenderingpassto speedup computations.Our renderingpasstherefore
cantake several hoursto computea final image. However in this paperwe focuson
the constructionof the photonmaps,andour techniquescanbe combinedwith these
optimizationswithoutmajorchange.

3 Selective Storage of Photons

Whenconstructingphotonmaps,thephotonsareemittedfrom thelight sourcesaccor-
ding to theemittedradiancedistribution. Scatteringonsurfacesis performedaccording
to the physicsinvolved (proportionalto BRDF timescosine). As a result the flux of
eachphotonis thesamein caseof asinglewavelength[8]. Dif ferencescanoccurwhen
usingmultiple wavelengthsat once(e.g.anRGB color perphoton),or whensampling
the exact underlyingphysicsis not possible(e.g. analyticalsamplingof BRDF times
cosineimpossible).

This way of constructingthe mapsresultsin a photon density that follows the
illumination intensityin thescene.Brightly lit regionscorrespondto a high densityof
themap.A highdensityalsocorrespondsto ahighaccuracy whenestimatingradiance.

However, in very bright regions(e.g. thecenterpartof caustics)thedensitymight
be much higher thanneeded,while other parts(e.g. outer part of caustics,visually
importantpartsof thescene)canhavea lowerdensity. To increasethedensityfor these
parts,morephotonsmustbe shot,but a large percentagewill againbe storedin the
alreadybright regions.



This observationhasleadto thebasisof our method:Photonsarestill generatedas
before,but storageis controlledusinga local requireddensitycriterion. If thedensity
is alreadysufficient,thephotonis notstoredbut its poweris distributedoverpreviously
storednearbyphotons.Thenext sectiondescribesthis moreformally while section3.2
describesapplicationto caustics.

3.1 A method for selective storage and redistribution

Supposewe have traceda new photon 5 to a position � on a surface.Supposealsowe
canevaluatea certainrequireddensity

� � � � � thatgivesusa measureof how densethe
photonmapmustbeat � for accuratereconstruction.Note that in our currentmethod
the requireddensityis only dependenton the position,which is sufficient for storage
on diffuseandnot too glossysurfaces.However if desired,it is possibleto adaptall
proposedmethodsto take theincomingdirectionsof thephotonsinto account.

To determinewhetheror not we want to keepthe photon,we estimatethe current
photonmapdensity

�76 � � � . This canbe doneby locatingthe � nearestphotonsand
evaluating: �76 � � �"& �.0/21' � � �
An acceptanceprobability 8�9 6:6 cannow be definedasa functionof thedensityratio:; � � �<&=� � 6 � � ��> � ��� � ��� . For 8?9 6:6 we have tried a stepfunction ( ; � � �A@CB accept,
otherwisedistribute)anda translatedcosine,bothwith goodresults.

If thephotonis acceptedit is storedin thephotonmap,otherwiseit’s power must
beaccountedfor somehow to keeptheglobal flux in themapconsistentwith the flux
emittedfrom thelight sources.

One simple (and unbiased)way to do this, is to modify the power of accepted
photonsby B2>28?9 6:6 1, which correspondsto a form of RussianRoulette.However this
canleadto hugephotonpowersandwe noticeda significantvarianceincreasein the
reconstruction.

Betterresultswereobtainedby distributingthephotonpowerover its nearestneigh-
bors.This canbejustifiedasfollows:

If we would have storedthe photon 5 thenreconstructionof radianceusingM+1
photonsat � would be:$�"��� �, �"��&ED '�*),+ - �F� �, � �  �"��� �HG - ��� �, �JI  �"���KI.0/21' � � �
Note that / ' � � � without 5 storedis equalto / ' 
 + � � � when 5 is stored,since 5 is
locatedin � .

Now sincewedon’t storethephotonthepowerof theotherphotonsmustbeadjusted,
sothatthereconstructionin � would deliver thesameresult:$� � � �! �"�	& D '�L),+ - ��� �! � �  �"�M�N� �OGQP �KISR � �.0/ 1' � � �
Different choicesfor P � ISR � can be madedependingon - � and the distanceof � to
photon� :

1For this methodtheacceptanceprobabilitymaynever becomezero



� - � � �, ���  �"� : To get an equal reconstruction $� � � �, �"� in � , P � ISR � shouldbe
zerowhen - � is zerobecausethesephotonsdo not contribute to $� � . Currently
the angle between ��� and the normal TVU in � is usedto determinewhetherP � ISR � shouldbe zero (i.e. for a non-transparentmaterial, P � ISR �A&XW whenYMZ�; �[� �  T U ��@\W ). 2� Distanceto � : The distribution of the photonpower canbe seenasapplyinga
low-passfilter (or assplatting). The dependenceof P �KISR � on the distanceto �
determinesthe filter kernel. We distribute the power equallyover the affected
photonsto keepthephotonpowershomogeneouswhich,assaid,is beneficialfor
thereconstruction.

Soto summarize,we choose:] �  ^YMZ�; �_� �  T U ��`aWcb P �KIdR � &e�KI�>f�hg
with M’ thenumberof photonsthathavea cosinè\W .

Of coursetheradianceestimateatotherlocationsthan� , will giveaslightlymodified
result. But sincethe currentdensity is high enoughanyway, this averagingcan be
expectednotto introduceartifacts(if therequireddensitydoesnotchangetooabruptly).

Note that the selective storagerequiresestimationof the map densityduring its
construction.We storethephotonsdirectly in anunbalancedkd-treesothatthelookup
is efficient. Before the final renderingpassthis treecanbe balancedfor even faster
access.

We now have a methodto control thedensityof photonmapsbasedon a required
density

� � . This density can be chosenarbitrarily, dependingon the application,
providing a flexible densitycontrolframework.

3.2 Application: Caustic maps

Theselective storagewasfirst testedon a causticmap. In this applicationtherequired
density

� � for thecausticmapis simplychosento beconstant(currentlysetmanually).
Causticphotonsarethentracedthroughthesceneasusual,but thestoreddensitywill
belimited.

One useful observation is that if the illumination at a certain location is much
larger thanthecausticmapcontribution alone,thecausticmapdoesnot have to beas
accuratesincerelative errorswill besmall. Fromthis observationwe deriveda simple
convergencecriterion for the causticmap at � : The ratio

�76 > � � is multiplied by a
factordependentontherelativecontributionof thecausticradiance$� 6 comparedto the
globalradiance $�	i (whichalsoincludesthecausticradiance):j � � ��& � 6 � � �� � � � �Fk ��$� i >J$� 6 �
If
j � � ��`lB thecausticmapcanbeconsideredconvergedat this point. Currently k is

chosenby hand,andgoodresultswereobtainedby takinga power of two or threefork . For theradiancereconstructions( $� i and $� 6 ) anoutgoingdirectionmustbeknown.
We choseit equalto thenormalin � . For diffusesurfacesthisdirectionis unimportant,
but for glossymaterialsotherchoicesmaybebetter.

2Anotherapproachcouldbeto choosea largerdeltafor photonswith adirectionsimilar to thedistributed
photon.Thismight bebetterfor non-diffusebrdf’s but at thecostof a lesssmoothlyvaryingphotonpower.
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Fig. 1. Illumination from diffuseor glossyreflectionis computedusinga radianceestimateat m
from theglobalphotonmap.

Figure5 showsascenewith aglassegglit by two light sources.Causticscanbeseen
to theleft andright of theegg. For this image

� � wassetto 80000photons/n 1 . There
areabout92.000photonsstoredin thecausticmapusingdensitycontrol. Without this
control190.000photonswould have beenstored,while thereareno differencesin the
resultingimages.Constructingthedensitycontrolledcausticmaprequired145seconds
(SGI Octane,195MHzR10000),while constructingthe normalcausticmap(190.000
photons)required90 seconds.The extra time is spentin the look-upsneededfor the
densityestimates.This overhead,however, is not a problemsincethefinal renderingis
ordersof magnitudesslower.

Figure6 visualizes
j � � � (setto ��$� i >J$� 6 �po ) for this scene.Blue color indicatesthat� 6�q � � . This is werethememoryis gained.Greencolor indicatesthat

� 6sr � � butj � � �K`eB , whichmeansthecausticmapis consideredconverged.Redcolormeansthat
morephotonsareneeded.Somevariancenearthis regionscanbeseenin theimage.

We alsocontinuedthe causticmapconstructionuntil all regionswereconverged.
This requiredabout195.000photons,while without densitycontrol 730.000photons
wouldbestored.Soa factorof 2 to 4 canbegainedeasily(Actually anarbitraryfactor
canbegainedsincethenumberof photonsusingdensitycontrolis limited.)

4 A required density estimate based on importance

The selective storageallows the photonmapdensityto be adaptedto a certainlocal
requireddensitycriterion. Many choices,dependingon the application,arepossible
andin this sectionwe developa three-passview-importance-basedmethodthatgivesa
heuristicfor therequireddensityof globalphotonmaps.Themainideais thatwhenthe
final stochasticray-tracingpassis computedfor a certaincameraposition,the global
mapdensityshouldbe high werethe contribution to the error of a pixel in the image
mightbelarge.

View-importancehasbeenusedin many other algorithms,for exampleto drive
a refinementcriterion[18] or to direct morepathsto importantpartsof the scene[14,
2]. Lischinski et. al.[13] presenteda hierarchicalradiositymethodwith error-driven
refinement(alsousingimportance)thatconsideredtheeffectof interactionsonthetotal
error.

Ourmethodis derivedfor eyepaths3 � 4 of lengthtwo (seefigure1),meaningthatin� adiffuseor glossybouncehastakenplaceandtheglobalmapis usedin 4 . Extension
to longerpathsis discussedfurtheron.



4.1 Importance and error

Whenan imageis rendered,the estimatedflux �	t (or averageradiance)of a pixel u
will exhibit a certainerror v t , thatshouldbe limited dependingon thedesiredimage
quality. The error v t is an integral over points � g on the pixel u of the error w on the
incomingradiance� : v t &exzyO{0|F} tS~�� ��3�� � g �pwd��3�� � g �~ � is theemittedpotential3. It includesa weightingfactorfor thecameramodelused
in ordernot to burdentheequations.Notethat � g canbereplacedby � in thisequation.

This equationcanbe expandedto an integral over surfaces}�� 4 wherethe global
mapis usedto approximateradiance:v�t�& x�y {0|F}�t ~ ����3�� � � x�y0� |�}�� - ����3  ��, 4��p�7� �! 4z��wd�[4�� � � (1)wd�[4�� � � is the error madeby approximating���[4�� � � with a globalmapestimate$�s�[4�� � � and �7� �! 4�� is thegeometricterm: YfZ�; ��T U  ^� ��4�� YMZ�; ��TV�  4�� � �^>���47�� � 1 . This equationrelatesthe pixel error to the reconstructionerror usingthe global
mapat indirectly visible surfaces.Notethat vKt doesnot representthetotal errorof the
pixel becausedirect light, causticmapsandspecularreflectedlight arenot taken into
account.

Thereis a closerelation betweenwS��4�� � � and the densityof the photonmap
(higherdensity, lower error). This relationshipis discussedin section4.2. Now we
want to find a suitablevaluefor w throughoutthewholescene,sothatwe canderive a
requireddensityfor constructingtheglobalmap.

A first assumptionis that the error wd�[4e� � � is independentof the direction in4 . This is no problemfor diffuse surfacesbut may breakdown for highly glossy
materials.An wd�[4�� cannow be definedasthe reconstructionerror of the global map
in any direction. Theerrorcontribution ��tF�[4�� madeby wd�[4�� to thetotal pixel error v�t
cannow bewrittenas:��tF��4z�	& |Fv t|�}�� & x yO{ |�}Kt ~ �2��3�� � � - ����3  ��, 4��p�7� �! 4���wS��4�� (2)

We wanttheerror wd�[4�� to besmall if it contributesmoreto theerrorof thepixel. Note
thatthiscorrespondsexactlyto thenotionof importance.Choosingaconstantallowable
error � for any 4 andu 5, anupperboundfor theerrorin 4 onasurfaceisnow aminimum
overall pixels u of � dividedby theimportanceof u in 4 (sothatthemaximumerrorin4 is determinedby thepixel with maximumimportance):wd�[4���@\�h�F� t�� �� yO{ |�}Kt ~ �2��3�� � � - ����3  ��! 4��p�7� �, 4���� (3)

3As importancecorrespondsto flux, potentialcorrespondsto radiance.
4The integral is expressedover the areameasure�f�,� , since the densityof the photonmapsis also

expressedin termsof area.
5Actually �H�K  �S¡ � �M�,�£¢���¤L¥S¦O A¢���� with �,� theareaseenindirectly throughpixel § . This areacan

beconservatively approximatedby for instancethetotalareaof thescene,giving afixedrelationshipbetween
thepixel flux error �¨� and ¢ .



Fig. 2. Importanceof a single
pixel (indicated by the white
dot) for surfaces indirectly
visible throughthepixel.

Fig. 3. Importanceof thewhole
screen for surfaces indirectly
visible through the screen.
Single pixel importancesare
underestimated.

Fig. 4. Path basedimportance
approximationfor apixel. Note
thesimilarity with therealpixel
importance.

To computethis upperboundtheimportancesolutionfor everypixel u is neededsepa-
rately. Sincethis is infeasible,most importancebasedalgorithmschooseto compute
importancefor the whole screenat once( }Kt©�ª}�« 6 ���p�:¬ ). This, however, averages
thepixel importances,underestimatingthetypical localizedimportanceof thesepixels.
Figure2 and3 show anexampleof this difference.In figure2 the indirect importance
of the indicatedpixel is visualized,while figure 3 shows the total screenimportance.
Theimportanceof thewall nearthepixel is too low becauseit is unimportantfor many
otherpixels.

We take a differentapproachby reducingthe pixels to an infinite small size. An
upperboundcannow beexpressedasa minimumover a screenposition � g (removing
theintegralover }Kt ):wd�[4���@\�h��� US­?® �}K¯ �*U ~ �2��3�� � � - �F��3  ��, 4��p�7� �! 4���° (4)

Note thatwe includea pixel areafactor( } ¯ �*U ) to get resultsof equalmagnitudeasin
equation(3). It canalsobe viewed asif the integral in (3) wasapproximatedby one
sample� g .

In orderto beableto evaluatewS��4�� duringphotonmapconstruction,we introducea
first passthatshootsparticles(or importons[15]) from theeyeinto thesceneandstores
theupperboundat hit pointson theindirectly visiblesurfaces.

It is importantto notethatequation(4) doesnot containany integralsanymore,so
shootingthe importonsis not a form of MonteCarlo integration,but anarbitraryway
to samplea4D functiondependenton � g and 4 . Thegeneratingpdf’sarenot takeninto
accountandreconstructionof thefunctioncanbedoneby interpolation.This function
canbeevaluatedfor theindividual pathsandwe will referto it asthepath-importance
function.

Sincewe needthe minimumover � g we do not needto storethe � g position. wd�[4��
can be reconstructedby locating nearbyimportonsand taking the minimum of their
values (A possiblevariantcould take thedistanceto 4 into accountto get a smoother
function).

Figure4 shows a reconstructionof the maximumimportance( ± Bd>�w ) over � g for
onepixel of interest. A goodmatchis obtainedwith the pixel importanceshown in
figure2.

The incomingdirectionof importonsis currentlyignored,but couldbe usedfor a
directionalmaximumerrorestimate.



4.2 Error and Densitywd�[4�� givesusanestimateof theuppererrorboundallowedin 4 . To derive therequired
density

� � �[4�� at 4 we needto find therelationshipbetweenw and
� � .

This is adifficult questionandcurrentlyweassumethemto beinverseproportional
to eachother: � ����4��	& jwd�[4��
If the allowable error is large, a lower densitycan be tolerated. The constant

j
is

combinedwith theotherconstantsin w , into oneaccuracy parameter ² of thealgorithm,
sothat: � �F�[4��	&³²�´£�h}sµ US­ � ~ ����3�� � � - �F��3  ��, 4��p�7� �! 4z�^�
Theparameter² determinesthenumberof storedphotonsneededin thescene.

This parameteris currentlychosenmanuallyanda moredetailedanalysisof the
error vs. densityrelationis definitelynecessary. However, most importantis that the
constant(s)will bevirtually independentof thescene(or at leasteasilyderivedfrom it),
sincethe allowablepixel error andthe relationlocal error - local densityareisolated
into amanageableform.

4.3 Longer paths

Theallowablereconstructionerror wd�[4�� wasderivedfor pathsof lengthtwo, assuming
adiffuseor glossybouncein � . Howeverit canhappenthattheglobalmapis usedafter
morethanonebounce(e.g. if a specularsurfaceis hit first). Longerpaths(e.g. 3 �H¶ 4 )
introduceextra integralsover intermediatevertices( ¶ ) into theerrorboundequation.

Accurateevaluationof theseintegralsfor everyimportancepathwouldbeinfeasible,
andthereforewebelievemorein acrudebut conservativeapproximation,sothatapath-
importancefunctioncaneasilybeevaluatedfor longerindividualpathsalso.

Two commoncaseswherelongerpathsoccurare:� Specular bounces: Integrals introducedby specularbouncesarevery sharply
peaked and can be approximatedby a single sample. However convergence
or divergenceof light rays is not taken into accountwhen using importance
functionsbasedon singlepaths. An interestingapproachherewould be to in-
corporateray differentials,a way to trackpixel footprintsduringray tracing[4],
into the importanceevaluation. Our currentimplementationdoesnot yet deal
with specularsurfacesin theimportance-drivenrequireddensitycase.� Corners: As canbe seenin figure 4, pixels neara cornerrequirea very high
densityontheadjacentwall, becauseasmallareaonthiswall hasabig influence
on thepixel error. Jensenrecognizedthis problemandusesanadditionalbounce
whenthedistancebetweentwo pathverticesis toosmall[6]. Wehaveexperimented
with acrudeapproximationto theintegralonesuchbounceintroduces.A detailed
analysiswould leadtoo far, but resultswerepromisingandtherequireddensity
in cornersis effectively reduced.

Currentlywe areinvestigatingtechniquesto generalizethesingle-path-importance
evaluationsso that,whenthe requireddensitywould be too high, automaticallyextra
bouncesareintroduced.Thedistinctionbetweenspecular, glossyor diffuseor corner
distancethresholdswould not be neededanymore. We believe generalizingray dif-
ferentialsto arbitrarybrdf’swould beinterestingfor this but, asIgehysays,this is still
anopenquestion[4].



4.4 Results

We implementedtheimportance-basedrequireddensitymethodinto RenderPark6 and
testedit on a numberof scenes.

Theaccuracy parameter² waschosenby hand(10000wasused)for onesceneand,
aswasexpected,alsogavegoodresultsfor otherscenes.Scenescontaineddiffuse,some
glossybut no specularsurfaces.We testedrelatively simplescenes,but themethodis
expectedto scalejust aswell asthestandardphotonmapmethod.

In a first passtherequireddensitywascomputedfor a certainview usingthepath-
importance-basedtechnique.Figure8 shows a false-coloroverview of the computed
requireddensity. Blue correspondsto a low densitywhile redis a very high density(a
logscaleis used).A minimumrequireddensityis usedif theimportanceis toolow. This
explainsthe constantblue color in unimportantpartsof the scene.Due to the glossy
desk-padahigherdensityis requiredonthecylinderandpartsof thewall. About80.000
importonswerestoredin themap,but thisnumbercouldhavebeenreduced,sincemany
of themcorrespondedto a lower requireddensitythanourminimum.

Using the computedrequireddensity, a globalphotonmapwasconstructedusing
densitycontrol. Figure9 shows the actualdensityof the global photonmapusedto
renderthe imagein figure 7. This global mapcontainedonly 40.400photons,while
without importancebaseddensitycontrol290.000photonswould havebeenstored.

Note that the glossyreflectionson the desk-padareusingthe global mapdirectly
from thecylinderandwall. Thedensitythereis adequatefor thesereflections.

Someinterestingpointslearnedfrom theexperimentswere:� Not all regionshaveenoughphotonsaccordingto therequireddensity. However
the imageshows no artifacts,soprobablyour accuracy is evenseta bit too high
or thedensity-errorrelationshipshouldbetuned.� Sinceweemitphotonsin thesamewayaswith thestandardphotonmapmethod,
dark regions can require a large numberof photonsto be tracedbefore they
containenoughphotons. However the storageremainslimited whereasin the
standardmethodthis regionaldensitywould beinfeasible.Importancesampling
whenemitting photonsas in [15] might alsobe useful to guidephotonswhere
moredensityis needed.However thetime to constructthephotonmapsis in any
casestill muchsmallerthanthetime takenby thefinal renderingpass.� We noticedsomebiasin thereconstructionwhena very low-densityregionwith
higherpoweredphotonsmeetsaveryhigh-densityregion,similar to theblurring
of causticborderswhen using the causticmap. Jensen’s techniqueto reduce
causticblurring[9] could alsobe usedhere,or onecould try to get a smoother
transitionfrom low to high densities.However, it seemednot necessaryfor the
imageswe rendered.

A few moregeneralremarksaboutthemethod:� The importance-basedderivationof the requiredstorageaccuracy couldalsobe
usedfor otheralgorithms,typically otherfinal gatheringapproaches.� A similarmethodcouldbederivedto estimatetherequireddensityfor thedirectly
visualizedcausticmap. However the handlingof specularbouncesshouldbe
furtherdevelopedfirst.� As with any importance-basedmethod,the view-independenceof, in this case,
theglobalphotonmapis lost.

6RenderPark isaphysicallybasedrenderingsystemavailableat ·�·�·�¸�¹�º�¸*»�¼£½�¾�¼M¿M¾�À�¸_Áf¹�¸*Âf¾MÃfÄ�Å�ÆMÁ�ÇMÈ2É�¹�º



5 Conclusion

This paperpresenteda methodto control the densityof photonmaps. A technique
wasintroducedto selectively storephotonsin a photonmap,while ensuringa correct
illumination representationin the map. Storagecanbe significantlyreducedin over-
denseor unimportantregions.Benefitsof theoriginalmethod,like theability to handle
complex geometryandmaterialsarepreserved.

Thedecisiontostorephotonsisbasedonarequireddensitycriterion,whichprovides
a flexible framework for densitycontrolof photonmaps.We have appliedit to caustic
mapsandderiveda convergencecriterion for thesemaps.Storagegainsof a factor2
andmorewereobtained.

Alsoanovelpath-based-importancefirstpasswasusedtoderivetherequireddensity
for global maps. Densestoragewasonly necessaryin importantpartsof the scene,
leadingto lessphotonsin themap.An accuracy parametercanbespecifiedratherthan
determiningthenumberof photonsin themap.This takesusastepcloserto answering
the ’how many photons’question,a stepthat might even be moreimportantthanthe
storagereduction.

Although good resultswere obtainedmuch more researchis neededto tune the
densitycontrol framework andto put it to full use.We assumethat theerrorof recon-
structionis simplyproportionalto theinversedensityof themap.Howevermuchmore
advancedrelationsshouldbeinvestigatedusingmoresceneinformation,for example:� Theactualilluminationcouldbetakenintoaccount.Forsmoothlyvaryingillumin-

ationahighdensitymaynotbenecessaryfor ahighaccuracy or ontheotherhand
a very bright areamight have a significantinfluencealthoughimportanceis low.
Notethattheseapproacheswouldrequireasimultaneousconstructionof illumin-
ationandrequireddensitymaps,sincethey needeachothersinformation.� Visualmaskingby highfrequency texturesor colorsaturationaftertonemapping
canreducetheneededdensity.� Storageonglossysurfacescouldgreatlybenefitfromadirectionalrequireddensity
criterion.

Currentlywe usea fixednumberof nearestphotonsin the reconstruction.A very
interestingextensionwould beto includethis numberinto theframework, for example
by adjustingit whentherequireddensityis not reachedsomewhere.

Someotherpointsfor future researcharethegeneralizationof thepath-basedim-
portanceto arbitrary pathsand the useof importancesamplingto guide photonsto
regionsweremoredensityis needed.Extendingthedensitycontrol to volumephoton
maps[10] for participatingmediais alsopossible.
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Fig. 5. Causticscastby an egg illuminated
by two light sources.About half the number
of photons were stored compared to the
standardphotonmapmethod,without visible
differences.

Fig. 6. Visualization of the caustic map
convergence criterion. (Blue: Required
densityreached,Green: requireddensitynot
reached,but otherilluminationhighenoughto
masktheerrors,Red:densitytoo low.

Fig. 7. Imagecomputedusinga globalphotonmapconstructedwith importancedrivendensity
control. For theglossyreflectionon thepad,the globalmapwasuseddirectly on the reflected
surfaces.

Fig. 8. Requireddensitydeterminedby apath
basedimportancefunction stored in an im-
portancemap. The above image shows the
view of thecamera.

Fig. 9. Actual densityof the global photon
mapusedto generatetheabove image.About
5 timeslessphotonswerestoredin theglobal
map than would be stored with a standard
photonmapmethod.


