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Summary

Mesh parameterization is a powerful geometry processing tool with numerous computer
graphics applications, from texture mapping to animation transfer. This course outlines
its mathematical foundations, describes recent methods for parameterizing meshes over
various domains, discusses emerging tools like global parameterization and inter-surface
mapping, and demonstrates a variety of parameterization applications.

Prerequisites

The audience should have had some prior exposure to mesh representation of geometric
models and a working knowledge of vector calculus, elementary linear algebra, and the
fundamentals of computer graphics. Optional pre-requisites: some lectures may also
assume some familiarity with differential geometry and graph theory.

Intended Audience

Graduate students, researchers, and application developers who seek to understand the
concepts and technologies used in mesh parameterization and wish to utilize them. Lis-
teners get an overview of the spectrum of processing applications that benefit from para-
meterization and learn how to evaluate different methods in terms of specific application
requirements.

Sources

These course notes include material of two recent surveys on mesh parameterization
co-authored by the course organizers:

• M. S. Floater and K. Hormann. Surface parameterization: a tutorial and sur-
vey. In Advances in Multiresolution for Geometric Modelling, Mathematics and
Visualization, pages 157–186. Springer, 2005.

This survey addresses the more theoretical aspects of mesh parameterization and
focuses on planar parameterizations.

• A. Sheffer, E. Praun, and K. Rose. Mesh parameterization methods and their
applications. Foundations and Trends in Computer Graphics and Vision, 2(2):105–
171, 2006.

This survey focuses on applications as well as non-planar parameter domains.

The course notes from our ACM SIGGRAPH 2007 course as well as additional material
can be found at the course website:

http://www.in.tu-clausthal.de/~hormann/parameterization/index.html
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Speakers

Kai Hormann, Clausthal University of Technology, Germany

Kai Hormann is an assistant professor for computer graphics in the Department of
Informatics at Clausthal University of Technology in Germany. His research interests are
focussed on the mathematical foundations of geometry processing algorithms as well as
their applications in computer graphics and related fields. Dr. Hormann has co-authored
several papers on parameterization methods, surface reconstruction, and barycentric
coordinates. Kai Hormann received his PhD from the University of Erlangen in 2002
and spent two years as a postdoctoral research fellow at the Multi-Res Modeling Group
at Caltech, Pasadena and the CNR Institute of Information Science and Technologies in
Pisa, Italy.

Konrad Polthier, Freie Universität Berlin, Germany

Konrad Polthier is full professor of mathematics at Freie Universität Berlin and the DFG
research center MATHEON, and member of the Berlin Mathematical School. Konrad
Polthier received his PhD from University of Bonn in 1994, and headed research groups
at Technische Universität Berlin and Zuse-Institute Berlin. His current research focuses
on discrete differential geometry and mathematical problems in geometry processing
applications. Dr. Polthier co-edited several books on mathematical visualization, and
co-produces mathematical video films. His recent video MESH (www.mesh-film.de, joint
with Beau Janzen, Los Angeles) has received international awards including “Best An-
imation” at the New York International Independent Film Festival. Polthier served as
paper co-chair on international conferences including ACM/Eurographics Symposium
on Geometry Processing 2006.

Alla Sheffer, University of British Columbia, Canada

Alla Sheffer is an associate professor in the Computer Science department at the Univer-
sity of British Columbia. Dr. Sheffer investigates algorithmic aspects of digital geometry
processing, focusing on several fundamental problems of mesh manipulation and edit-
ing. Her recent research addresses algorithms for mesh parameterization, processing
of developable surfaces, mesh editing, reconstruction, and shape analysis. Her work
on these topics had been published at top venues, including Siggraph, Eurographics,
and the Symposium on Geometry Processing. She co-authored several parameterization
methods, including ABF/ABF++, which are used in popular 3D modelers including
Blender, Maya, and Catia. Alla Sheffer received her PhD from the Hebrew University of
Jerusalem in 1999. Prior to moving to UBC in 2003, she was a postdoc at the University
of Illinois at Urbana-Champaign and an assistant professor at Technion, Israel.
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Syllabus

First session

• Introduction [10 min, Alla]

• Barycentric Mappings [25 min, Kai]

• Differential Geometry Primer [25 min, Kai]

• Non-Linear Methods [30 min, Alla]

• Comparison and Applications of Planar Methods [15 min, Kai]

Second session

• Non-Planar Domains [15 min, Kai]

• Cross-Parameterization and Constraints [40 min, Alla]

• Global Parameterizations and Cone Points [45 min, Konrad]

• Open Problems and Q/A [5 min, all]
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Chapter 1

Introduction

For any two surfaces with similar topology, there exists a bijective mapping between
them. If one of these surfaces is a triangular mesh, the problem of computing such
a mapping is referred to as mesh parameterization. The surface that the mesh is
mapped to is typically called the parameter domain. Parameterization was introduced
to computer graphics for mapping textures onto surfaces. Over the last decade, it has
gradually become a ubiquitous tool for many mesh processing applications, including
detail-mapping, detail-transfer, morphing, mesh-editing, mesh-completion, remeshing,
compression, surface-fitting, and shape-analysis. In parallel to the increased interest in
applying parameterization, various methods were developed for different kinds of para-
meter domains and parameterization properties.

The goal of this course is to familiarize the audience with the theoretical and practical
aspects of mesh parameterization. We aim to provide the skills needed to implement or
improve existing methods, to investigate new approaches, and to critically evaluate the
suitability of the techniques for a particular application.

The course starts with an introduction to the general concept of parameterization
and an overview of its applications. The first half of the course then focuses on pla-
nar parameterizations while the second addresses more recent approaches for alternative
domains. The course covers the mathematical background, including intuitive expla-
nations of parameterization properties like bijectivity, conformality, stretch, and area-
preservation. The state-of-the-art is reviewed by explaining the main ideas of several
approaches, summarizing their properties, and illustrating them using live demos. We
conclude by presenting a list of open research problems and potential applications that
can benefit from parameterization.

1.1 Applications

Surface parameterization was introduced to computer graphics as a method for mapping
textures onto surfaces [Bennis et al., 1991; Maillot et al., 1993]. Over the last decade, it
has gradually become a ubiquitous tool, useful for many mesh processing applications,
discussed below.
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Texture Mapping Normal Mapping Detail Transfer

Morphing Mesh Completion Editing

Databases Remeshing Surface Fitting

Figure 1.1: Parameterization Applications.

Figure 1.2: Application of parameterization: texture mapping (Least Squares Conformal
Maps implemented in the Open-Source Blender modeler).
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Figure 1.3: Application of parameterization: appearance-preserving simplification. All
the details are encoded in a normal map, applied onto a dramatically simplified version
of the model (1.5% of the original size).

Figure 1.4: A global parameterization realizes an abstraction of the initial geometry.
This abstraction can then be re-instanciated into alternative shape representations.
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Detail Mapping

Detailed objects can be efficiently represented by a coarse geometric shape (polygonal
mesh or subdivision surface) with the details corresponding to each triangle stored in
a separate 2D array. In traditional texture mapping the details are the colors of the
respective pixels. Models can be further enriched by storing bump, normal, or displace-
ment maps. Recent techniques [Peng et al., 2004; Porumbescu et al., 2005] model a thick
region of space in the neighborhood of the surface by using a volumetric texture, rather
than a 2D one. Such techniques are needed in order to model detail with complicated
topology or detail that cannot be easily approximated locally by a height field, such as
sparsely interwoven structures or animal fur. The natural way to map details to surfaces
is using planar parameterization.

Detail Synthesis

While the goal of texture mapping is to represent the complicated appearance of 3D
objects, several methods make use of mesh parameterization to create the local detail
necessary for a rich appearance. Such techniques can use as input flat patches with
sample detail, e.g. [Soler et al., 2002]; parametric or procedural models; or direct user
input and editing [Carr and Hart, 2004]. The type of detail can be quite varied and the
intermediate representations used to create it parallel the final representations used to
store it.

Morphing and Detail Transfer

A map between the surfaces of two objects allows the transfer of detail from one object to
another (e.g. [Praun et al., 2001]), or the interpolation between the shape and appearance
of several objects [Alexa, 2000; Kraevoy and Sheffer, 2004; Schreiner et al., 2004]. By
varying the interpolation ratios over time, one can produce morphing animations. In
spatially-varying and frequency-varying morphs, the rate of change can be different for
different parts of the objects, or different frequency bands (coarseness of the features
being transformed) [Allen et al., 2003; Kraevoy and Sheffer, 2004]. Such a map can
either be computed directly or, as more commonly done, computed by mapping both
object surfaces to a common domain. In addition to transferring the static appearance
of surfaces, inter-surface parameterizations allow the transfer of animation data between
shapes, either by transferring the local surface influence from bones of an animation rig,
or by directly transferring the local affine transformation of each triangle in the mesh
[Sumner and Popović, 2004].

Mesh Completion

Meshes from range scans often contain holes and multiple components. Lévy [2003]
uses planar parameterization to obtain the natural shape for hole boundaries and to
triangulate those. In many cases, prior knowledge about the overall shape of the scanned
models exists. For instance, for human scans, templates of a generic human shape are
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readily available. Allen et al. [2003] and Anguelov et al. [2005] use this prior knowledge to
facilitate completion of scans by computing a mapping between the scan and a template
human model. Kraevoy and Sheffer [2005] develop a more generic and robust template-
based approach for completion of any type of scans. The techniques typically use an
inter-surface parameterization between the template and the scan.

Mesh Editing

Editing operations often benefit from a local parameterization between pairs of models.
Biermann et al. [2002] use local parameterization to facilitate cut-and-paste transfer of
details between models. They locally parameterize the regions of interest on the two
models in 2D and overlap the two parameterizations. They use the parameterization to
transfer shape properties from one model to the other. Lévy [2003] uses local parameter-
ization for mesh composition in a similar manner. They compute an overlapping planar
parameterization of the regions near the composition boundary on the input models and
use it to extract and smoothly blend shape information from the two models.

Creation of Object Databases

Once a large number of models are parameterized on a common domain one can perform
an analysis determining the common factors between objects and their distinguishing
traits. For example on a database of human shapes [Allen et al., 2003] the distinguishing
traits may be gender, height, and weight. Objects can be compared against the database
and scored against each of these dimensions, and the database can be used to create new
plausible object instances by interpolation or extrapolation of existing ones.

Remeshing

There are many possible triangulations that represent the same shape with similar levels
of accuracy. Some triangulation may be more desirable than others for different applica-
tions. For example, for numerical simulations on surfaces, triangles with a good aspect
ratio (that are not too small or too skinny are important for convergence and numerical
accuracy. One common way to remesh surfaces, or to replace one triangulation by an-
other, is to parameterize the surface, then map a desirable, well-understood, and easy
to create triangulation of the domain back to the original surface. For example, Gu
et al. [2002] use a regular grid sampling of a planar square domain, while other methods,
e.g. [Guskov et al., 2000] use regular subdivision (usually 1-to-4 triangle splits) on the
faces of a simplicial domain. Such locally regular meshes can usually support the cre-
ation of smooth surfaces as the limit process of applying subdivision rules. To generate
high quality triangulations, Desbrun et al. [2002] parameterize the input mesh in the
plane and then use planar Delaunay triangulation to obtain a high quality remeshing of
the surface. One problem these methods face is the appearance of visible discontinuities
along the cuts created to facilitate the parameterization. Surazhsky and Gotsman [2003]
avoid global parameterization, and instead use local parameterization to move vertices
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along the mesh as part of an explicit remeshing scheme. Recent methods such as [Ray
et al., 2006] use global parameterization to generate a predominantly quadrilateral mesh
directly on the 3D surface.

Mesh Compression

Mesh compression is used to compactly store or transmit geometric models. As with
other data, compression rates are inversely proportional to the data entropy. Thus higher
compression rates can be obtained when models are represented by meshes that are as
regular as possible, both topologically and geometrically. Topological regularity refers
to meshes where almost all vertices have the same degree. Geometric regularity implies
that triangles are similar to each other in terms of shape and size and vertices are close
to the centroid of their neighbors. Such meshes can be obtained by parameterizing the
original objects and then remeshing with regular sampling patterns [Gu et al., 2002].
The quality of the parameterization directly impacts the compression efficiency.

Surface Fitting

One of the earlier applications of mesh parameterization is surface fitting [Floater, 2000].
Many applications in geometry processing require a smooth analytical surface to be
constructed from an input mesh. A parameterization of the mesh over a base domain
significantly simplifies this task. Earlier methods either parameterized the entire mesh
in the plane or segmented it and parameterized each patch independently. More recent
methods, e.g. [Li et al., 2006] focus on constructing smooth global parameterizations
and use those for fitting, achieving global continuity of the constructed surfaces.

Modeling from Material Sheets

While computer graphics focuses on virtual models, geometry processing has numerous
real-world engineering applications. Particularly, planar mesh parameterization is an
important tool when modeling 3D objects from sheets of material, ranging from garment
modeling to metal forming or forging [Bennis et al., 1991; Julius et al., 2005]. All of
these applications require the computation of planar patterns to form the desired 3D
shapes. Typically, models are first segmented into nearly developable charts, and these
charts are then parameterized in the plane.

Medical Visualization

Complex geometric structures are often better visualized and analyzed by mapping the
surface normal-map, color, and other properties to a simpler, canonical domain. One of
the structures for which such mapping is particularly useful is the human brain [Hurdal
et al., 1999; Haker et al., 2000]. Most methods for brain mapping use the fact that the
brain has genus zero, and visualize it through spherical [Haker et al., 2000] or planar
[Hurdal et al., 1999] parameterization.
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Chapter 2

Barycentric Mappings

In many applications, and in particular in computer graphics, it is nowadays common
to work with piecewise linear surfaces in the form of triangle meshes, and we will mainly
stick to this type of surface for most of these course notes.

2.1 Triangle Meshes

Let us denote points in R3 by p = (x, y, z) and points in R2 by u = (u, v). An edge
is then defined as the convex hull of (or, equivalently, the line segment between) two
distinct points and a triangle as the convex hull of three non-collinear points. We will
denote edges and triangles in R3 with capital letters and those in R2 with small letters,
for example, e = [u1,u2] and T = [p1,p2,p3].

A triangle mesh ST is the union of a set of surface triangles T = {T1, . . . , Tm} which
intersect only at common edges E = {E1, . . . , El} and vertices V = {p1, . . . ,pn+b}. More
specifically, the set of vertices consists of n interior vertices VI = {p1, . . . ,pn} and b
boundary vertices VB = {pn+1, . . . ,pn+b}. Two distinct vertices pi,pj ∈ V are called
neighbours, if they are the end points of some edge E = [pi,pj] ∈ E , and for any pi ∈ V
we let Ni = {j : [pi,pj] ∈ E} be the set of indices of all neighbours of pi.

A parameterization f of ST is usually specified the other way around, that is, by
defining the inverse parameterization g = f−1. This mapping g is uniquely determined
by specifying the parameter points ui = g(pi) for each vertex pi ∈ V and demanding that
g is continuous and linear for each triangle. In this setting, g|T is the linear map from a
surface triangle T = [pi,pj,pk] to the corresponding parameter triangle t = [ui,uj,uk]

and f |t = (g|T )−1 is the inverse linear map from t to T . The parameter domain Ω finally
is the union of all parameter triangles (see Figure 2.1).

2.2 Parameterization by Affine Combinations

A rather simple idea for constructing a parameterization of a triangle mesh is based on
the following physical model. Imagine that the edges of the triangle mesh are springs
that are connected at the vertices. If we now fix the boundary of this spring network
somewhere in the plane, then the interior of this network will relax in the energetically

7



ST

Ω

f|t

t T

g|T

Figure 2.1: Parameterization of a triangle mesh.

most efficient configuration, and we can simply assign the positions where the joints of
the network have come to rest as parameter points.

If we assume each spring to be ideal in the sense that the rest length is zero and the
potential energy is just 1

2
Ds2, where D is the spring constant and s the length of the

spring, then we can formalize this approach as follows. We first specify the parameter
points ui = (ui, vi), i = n + 1, . . . , n + b for the boundary vertices pi ∈ VB of the mesh
in some way (see Section 2.4). Then we minimize the overall spring energy

E = 1
2

n+b∑
i=1

∑
j∈Ni

1
2
Dij‖ui − uj‖2,

where Dij = Dji is the spring constant of the spring between pi and pj, with respect
to the unknown parameter positions ui = (ui, vi) for the interior points1. As the partial
derivative of E with respect to ui is

∂E

∂ui

=
∑
j∈Ni

Dij(ui − uj),

the minimum of E is obtained if∑
j∈Ni

Dijui =
∑
j∈Ni

Dijuj

holds for all i = 1, . . . , n. This is equivalent to saying that each interior parameter point
ui is an affine combination of its neighbours,

ui =
∑
j∈Ni

λijuj, (2.1)

with normalized coefficients
λij = Dij

/ ∑
k∈Ni

Dik

that obviously sum to 1.
1The additional factor 1

2 appears because summing up the edges in this way counts every edge twice.
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By separating the parameter points for the interior and the boundary vertices in the
sum on the right hand side of (2.1) we get

ui −
∑

j∈Ni,j≤n

λijuj =
∑

j∈Ni,j>n

λijuj,

and see that computing the coordinates ui and vi of the interior parameter points ui

requires to solve the linear systems

AU = Ū and AV = V̄ , (2.2)

where U = (u1, . . . , un) and V = (v1, . . . , vn) are the column vectors of unknown coordi-
nates, Ū = (ū1, . . . , ūn) and V̄ = (v̄1, . . . , v̄n) are the column vectors with coefficients

ūi =
∑

j∈Ni,j>n

λijuj and v̄i =
∑

j∈Ni,j>n

λijvj

and A = (aij)i,j=1,...,n is the n× n matrix with elements

aij =


1 if i = j,

−λij if j ∈ Ni,

0 otherwise.

The sparse linear systems (2.2) can be solved efficiently with state-of-the-art methods,
like TAUCS [Toledo, 2003].

2.3 Barycentric Coordinates

The question remains how to choose the spring constants Dij in the spring model, or
more generally, the normalized coefficients λij in (2.1). The simplest choice of constant
spring constants Dij = 1 goes back to the work of Tutte [1960, 1963] who used it in
a more abstract graph-theoretic setting to compute straight line embeddings of planar
graphs, and the idea of taking spring constants that are proportional to the lengths of
the corresponding edges in the triangle mesh was used by Greiner and Hormann [1997].
A main drawback of both approaches is that they do not fulfill the following minimum
requirement that we should expect from any parameterization method.

Linear reproduction: Suppose that ST is contained in a plane so that its vertices
have coordinates pi = (xi, yi, 0) with respect to some appropriately chosen orthonormal
coordinate frame. Then a globally isometric (and thus optimal) parameterization can be
defined by just using the local coordinates xi = (xi, yi) as parameter points themselves,
that is, by setting ui = xi for i = 1, . . . , n + b. As the overall parameterization then is
a linear function, we say that a parameterization method has linear reproduction if it
produces such an isometric mapping in this setting.
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Figure 2.2: Notation for the construction of barycentric coordinates.

In the setting from the previous section, linear reproduction can be achieved if the
parameter points for the boundary vertices are set correctly and the values λij are chosen
such that

xi =
∑
j∈Ni

λijxj and
∑
j∈Ni

λij = 1

for all interior vertices. Values λij with both these properties are also called barycentric
coordinates of xi with respect to its neighbours xj, j ∈ Ni. If some xi has exactly three
neighbours, then the λij are uniquely defined and these barycentric coordinates inside
triangles actually have many useful applications in computer graphics (e.g., Gouraud and
Phong shading, ray-triangle-intersection), geometric modelling (e.g., triangular Bézier
patches, splines over triangulations), and many other fields (e.g., the finite element
method, terrain modelling).

For polygons with more than three vertices, the barycentric coordinates of a point
in the interior are, however, not unique anymore and there are several ways of defining
them. The most popular of them can all be described in a common framework [Floater
et al., 2006] that we shall briefly review. For any interior point xi and one of its neigh-
bours xj let rij = ‖xi − xj‖ be the length of the edge eij = [xi,xj] between the two
points and let the angles at the corners of the triangles adjacent to eij be denoted as
shown in Figure 2.2. The barycentric coordinates λij of xi with respect its neighbours
xj, j ∈ Ni can then be computed by the normalization λij = wij

/∑
k∈Ni

wik from any
of the following homogeneous coordinates wij.

• Wachspress coordinates : The earliest generalization of barycentric coordinates goes
back to Wachspress [1975] who suggested to set

wij =
cotαji + cot βij

rij
2

.

While he was mainly interested in applying these coordinates in finite element
methods, Desbrun et al. [2002] used them for parameterizing triangle meshes and
Meyer et al. [2002] for interpolating e.g. colour values inside convex polygons.
Moreover, a simple geometric construction of these coordinates was given by Ju
et al. [2005b].
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p2 = (-1,-1,0) p3 = (1,-1,0)

p4 = (1,1,0)
p5 = (-1,1,0)

p1 = (3,0,1)

Figure 2.3: Example of a triangle mesh for which only the barycentric mapping with
mean value coordinates is a bijection.

• Discrete harmonic coordinates : Another type of barycentric coordinates that stem
from finite element methods and actually arise from the standard piecewise linear
approximation to the Laplace equation are given by

wij = cot γij + cot γji.

In the context of mesh parameterization, these coordinates were first used by Eck
et al. [1995], but they have also been used to compute discrete minimal surfaces
[Pinkall and Polthier, 1993].

• Mean value coordinates : By discretizing the mean value theorem, Floater [2003a]
found yet another set of barycentric coordinates with

wij =
tan

αij

2
+ tan

βji

2

rij

.

While his main application was mesh parameterization, Hormann and Tarini [2004]
and Hormann and Floater [2006] later showed that they have many other useful
applications, in particular in computer graphics.

The beauty of all three choices is that the weights wij depend on angles and distances
only, so that they can not only be computed if xi and its neighbours are coplanar, but
more generally for any interior vertex pi ∈ VI of a triangle mesh if these angles and
distances are just taken from the triangles around pi. Of course, an alternative approach
that was introduced by Floater [1997] is to locally flatten the one-ring of triangles around
pi into the plane, e.g. with an exponential map, and then to compute the weights wij

from this planar configuration.
A triangle mesh parameterization that is computed by solving the linear systems (2.2)

with any set of barycentric coordinates λij is called a barycentric mapping and obviously
has the linear reproduction property, provided that an appropriate method for computing
the parameter points for the boundary vertices, e.g. mapping them to the least squares
plane (see Section 2.4), is used.

Despite this property, it may happen that a barycentric mapping, when constructed
for a non-planar mesh, gives an unexpected result, as the simple example in Figure 2.3
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x4 = (-1,-1)

x5 = (1,0)

x6 = (-1,1)

x7 = (-1/3,0)

x1 = (-1/5,0)

x3 = (1/3,0)

x2 = (0,0)

Figure 2.4: Example of a triangle mesh for which the linear system with Wachspress
coordinates is singular.

illustrates. If we use u2 = (−1,−1), u3 = (1,−1), u4 = (1, 1), u5 = (−1, 1) as parameter
points for the four boundary vertices and compute the barycentric weights λ12, λ13, λ14,
λ15 with the formulas described above, then we get the following positions for u1:

Wachspress coordinates: u1 = (−35.1369, 0),

discrete harmonic coordinates: u1 = (2.1138, 0),

mean value coordinates: u1 = (0.4538, 0).

That is, only the mean value coordinates yield a position for u1 that is contained in
the convex hull of the other four parameter points, and using the other coordinates will
create parameter triangles that overlap, thus violating the bijectivity property that any
parameterization should have.

The reason behind this behaviour is that the Wachspress and discrete harmonic co-
ordinates can assume negative values in certain configurations like the one in Figure 2.3,
whereas the mean values coordinates are always positive. And while overlapping trian-
gles may occur for negative weights, this never happens if all weights are positive and
the parameter points of the boundary vertices form a convex shape. The latter fact has
first been proven by Tutte [1963] for the special case of λij = 1/ηi where ηi = #Ni is
the number of pi’s neighbours, which are not true barycentric coordinates, but Floater
[1997] observed that the proof carries over to arbitrary positive weights λij. Recently,
Gortler et al. [2006] could even show that the restriction to a convex boundary can be
considerably relaxed, but this requires to solve a non-linear problem.

Another important aspect concerns the solvability of the linear systems (2.2) and it
has been shown that the matrix A is always guaranteed to be non-singular for discrete
harmonic [Pinkall and Polthier, 1993] and mean value coordinates [Floater, 1997]. For
Wachspress coordinates, however, it may happen that the sum of homogeneous coordi-
nates Wi =

∑
k∈Ni

wik is zero so that the normalized coordinates λij and thus the matrix
A are not even well-defined. In the example shown in Figure 2.4 this actually happens
for all interior vertices x1, x2, x3. But even if we skip the normalization and try to solve
the equivalent and well-defined homogeneous systems WAU = WŪ and WAV = WV̄
with W = diag(W1, . . . ,Wn) instead, we find that the matrix WA is singular in this
particular example, namely WA =

(
0 −50 0
40 0 −24
0 18 0

)
.
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2.4 The Boundary Mapping

The first step in constructing a barycentric mapping is to choose the parameter points
for the boundary vertices and the simplest way of doing it is to just project the bound-
ary vertices into the plane that fits the boundary vertices best in a least squares sense.
However, for meshes with a complex boundary, this simple procedure may lead to un-
desirable fold-overs in the boundary polygon and cannot be used. In general, there are
two issues to take into account here: (1) choosing the shape of the boundary of the
parameter domain and (2) choosing the distribution of the parameter points around the
boundary.

Choosing the shape

In many applications, it is sufficient (or even desirable) to take a rectangle or a circle
as parameter domain, with the advantage that such a convex shape guarantees the
bijectivity of the parameterization if positive barycentric coordinates like the mean value
coordinates are used to compute the parameter points for the interior vertices. The
convexity restriction may, however, generate big distortions near the boundary when
the boundary of the triangle mesh ST does not resemble a convex shape. One practical
solution to avoid such distortions is to build a “virtual” boundary, i.e., to augment the
given mesh with extra triangles around the boundary so as to construct an extended
mesh with a “nice” boundary. This approach has been successfully used by Lee et al.
[2002], and Kós and Várady [2003].

Choosing the distribution

The usual procedure mentioned in the literature is to use a simple univariate parameteri-
zation method such as chord length [Ahlberg et al., 1967] or centripetal parameterization
[Lee, 1989] for placing the parameter points either around the whole boundary, or along
each side of the boundary when working with a rectangular domain [Hormann, 2001,
Section 1.2.5].

Despite these heuristics working pretty well in some cases, having to fix the boundary
vertices may be a severe limitation in others and the next chapter studies parameteri-
zation methods that can include the position of the boundary parameter points in the
optimization process and thus yield parameterizations with less distortion.
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Chapter 3

Differential Geometry Primer

Barycentric mappings are efficient to compute and often give pretty good parameteriza-
tions. However, in order to quantify “good” and to derive more sophisticated parame-
terization methods, let us quickly review some of the basic properties from differential
geometry that will be essential for understanding the motivation behind the methods
described later. For more details and proofs of these properties, we refer the interested
reader to the standard literature on differential geometry and in particular to the books
by do Carmo [1976], Klingenberg [1978], Kreyszig [1991], and Morgan [1998].

3.1 Basic Definitions

Suppose that Ω ⊂ R2 is some simply connected region (i.e., without any holes), for
example,

the unit square: Ω = {(u, v) ∈ R2 : u, v ∈ [0, 1]}, or
the unit disk : Ω = {(u, v) ∈ R2 : u2 + v2 ≤ 1},

and that the function f : Ω → R3 is continuous and an injection (i.e., no two distinct
points in Ω are mapped to the same point in R3). We then call the image S of Ω under
f a surface,

S = f(Ω) = {f(u, v) : (u, v) ∈ Ω},

and say that f is a parameterization of S over the parameter domain Ω. It follows from
the definition of S that f is actually a bijection between Ω and S and thus admits to
define its inverse f−1 : S → Ω. Here are some examples:

1. simple linear function:

parameter domain: Ω = {(u, v) ∈ R2 : u, v ∈ [0, 1]}
surface: S = {(x, y, z) ∈ R3 : x, y, z ∈ [0, 1], x+ y = 1}

parameterization: f(u, v) = (u, 1− u, v)

inverse: f−1(x, y, z) = (x, z)
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2. cylinder:

parameter domain: Ω = {(u, v) ∈ R2 : u ∈ [0, 2π), v ∈ [0, 1]}
surface: S = {(x, y, z) ∈ R3 : x2 + y2 = 1, z ∈ [0, 1]}

parameterization: f(u, v) = (cos u, sinu, v)

inverse: f−1(x, y, z) = (arccos x, z)

3. paraboloid:

parameter domain: Ω = {(u, v) ∈ R2 : u, v ∈ [−1, 1]}
surface: S = {(x, y, z) ∈ R3 : x, y ∈ [−2, 2], z = 1

4
(x2 + y2)}

parameterization: f(u, v) = (2u, 2v, u2 + v2)

inverse: f−1(x, y, z) = (x
2
, y

2
)
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4. hemisphere (orthographic):

parameter domain: Ω = {(u, v) ∈ R2 : u2 + v2 ≤ 1}
surface: S = {(x, y, z) ∈ R3 : x2 + y2 + z2 = 1, z ≥ 0}

parameterization: f(u, v) = (u, v,
√

1− u2 − v2)

inverse: f−1(x, y, z) = (x, y)

Having defined a surface S like that, we should note that the function f is by no
means the only parameterization of S over Ω. In fact, given any bijection ϕ : Ω → Ω,
it is easy to verify that the composition of f and ϕ, i.e., the function g = f ◦ ϕ, is
a parameterization of S over Ω, too. For example, we can easily construct such a
reparameterization ϕ from any bijection ρ : [0, 1] → [0, 1] by defining

for the unit square: ϕ(u, v) = (ρ(u), ρ(v)), or
for the unit disk: ϕ(u, v) = (uρ(u2 + v2), vρ(u2 + v2)).

In particular, taking the function ρ(x) = 2
1+x

and applying this reparameterization of
the unit disk to the parameterization of the hemisphere in the example above gives the
following alternative parameterization:

5. hemisphere (stereographic):

parameter domain: Ω = {(u, v) ∈ R2 : u2 + v2 ≤ 1}
surface: S = {(x, y, z) ∈ R3 : x2 + y2 + z2 = 1, z ≥ 0}

parameterization: f(u, v) = ( 2u
1+u2+v2 ,

2v
1+u2+v2 ,

1−u2−v2

1+u2+v2 )

inverse: f−1(x, y, z) = ( x
1+z

, y
1+z

)
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3.2 Intrinsic Surface Properties

Although the parameterization of a surface is not unique—and we will later discuss how
to get the “best” parameterization with respect to certain criteria—it nevertheless is a
very handy thing to have as it allows to compute a variety of properties of the surface.
For example, if f is differentiable, then its partial derivatives

fu =
∂f

∂u
and fv =

∂f

∂v

span the local tangent plane and by simply taking their cross product and normalizing
the result we get the surface normal

nf =
fu × fv

‖fu × fv‖
.

To simplify the notation, we will often speak of fu and fv as the derivatives and of nf

as the surface normal, but we should keep in mind that formally all three are functions
from R2 to R3. In other words, for any point (u, v) ∈ Ω in the parameter domain, the
tangent plane at the surface point f(u, v) ∈ S is spanned by the two vectors fu(u, v)
and fv(u, v), and nf (u, v) is the normal vector at this point1. Again, let us clarify this
by considering two examples:

1. For the simple linear function f(u, v) = (u, 1− u, v) we get

fu(u, v) = (1,−1, 0) and fv(u, v) = (0, 0, 1)

and further
nf (u, v) = (−1√

2
, 1√

2
, 0),

showing that the normal vector is constant for all points on S.

2. For the parameterization of the cylinder, f(u, v) = (cosu, sinu, v), we get

fu(u, v) = (− sinu, cosu, 0) and fv(u, v) = (0, 0, 1)

and further
nf (u, v) = (cosu, sinu, 0),

showing that the normal vector at any point (x, y, z) ∈ S is just (x, y, 0).

Note that in both examples the surface normal is independent of the parameterization.
In fact, this holds for all surfaces and is therefore called an intrinsic property of the
surface. Formally, we can also say that the surface normal is a function n : S → S2,
where S2 = {(x, y, z) ∈ R3 : x2 + y2 + z2 = 1} is the unit sphere in R3, so that

n(p) = nf (f
−1(p))

1We tacitly assume that the parameterization is regular, i.e., fu and fv are always linearly indepen-
dent and therefore nf is non-zero.
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for any p ∈ S and any parameterization f . As an exercise, you may want to verify this
for the two alternative parameterizations of the hemisphere given above. Other intrinsic
surface properties are the Gaussian curvature K(p) and the mean curvature H(p) as
well as the total area of the surface A(S). To compute the latter, we need the first
fundamental form

If =

(
fu · fu fu · fv

fv · fu fv · fv

)
=

(
E F
F G

)
,

where the product between the partial derivatives is the usual dot product in R3. It
follows immediately from the Cauchy-Schwarz inequality that the determinant of this
symmetric 2 × 2 matrix is always non-negative, so that its square root is always real.
The area of the surface is then defined as

A(S) =

∫
Ω

√
det If du dv.

Take, for example, the orthographic parameterization f(u, v) = (u, v,
√

1− u2 − v2)
of the hemisphere over the unit disk. After some simplifications we find that

det If =
1

1− u2 − v2

and can compute the area of the hemisphere as follows:

A(S) =

1∫
−1

√
1−v2∫

−
√

1−v2

1√
1− u2 − v2

du dv

=

1∫
−1

[
arcsin

u√
1− v2

]√1−v2

−
√

1−v2

dv

=

1∫
−1

π dv

= 2π,

as expected. Of course we get the same result if we use the stereographic parameteriza-
tion, and you may want to try that as an exercise.

In order to compute the curvatures we must first assume the parameterization to be
twice differentiable, so that its second order partial derivatives

fuu =
∂2f

∂u2
, fuv =

∂2f

∂u∂v
, and fvv =

∂2f

∂v2

are well defined. Taking the dot products of these derivatives with the surface normal
then gives the symmetric 2× 2 matrix that is known as the second fundamental form

IIf =

(
fuu · nf fuv · nf

fuv · nf fvv · nf

)
=

(
L M
M N

)
.
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Gaussian and mean curvature are finally defined as the determinant and half the trace
of the matrix I−1

f IIf , respectively:

K = det(I−1
f IIf ) =

det IIf

det If

=
LN −M2

EG− F 2

and
H = 1

2
trace(I−1

f IIf ) =
LG− 2MF +NE

2(EG− F 2)
.

For example, carrying out these computations reveals that the curvatures are constant
for most of the surfaces from above:

simple linear function: K = 0, H = 0,

cylinder: K = 0, H = 1
2
,

hemisphere: K = 1, H = −1.

As an exercise, show that the curvatures at any point p = (x, y, z) of the paraboloid
from above are K(p) = 1

4(1+z)2
and H(p) = 2+z

4(1+z)3/2 .

3.3 Metric Distortion

Apart from these intrinsic surface properties, there are others that depend on the pa-
rameterization, most importantly the metric distortion. Consider, for example, the two
parameterizations of the hemisphere above. In both cases, the image of the surface on
the right is overlaid by a regular grid, which actually is the image of the corresponding
grid in the parameter domain shown on the left. You will notice that the surface grid
looks more regular for the stereographic than for the orthographic projection and that
the latter considerably stretches the grid in the radial direction near the boundary.

To better understand this kind of stretching, let us see what happens to the surface
point f(u, v) as we move a tiny little bit away from (u, v) in the parameter domain. If
we denote this infinitesimal parameter displacement by (∆u,∆v), then the new surface
point f(u+ ∆u, v+ ∆v) is approximately given by the first order Taylor expansion f̃ of
f around (u, v),

f̃(u+ ∆u, v + ∆v) = f(u, v) + fu(u, v)∆u+ fv(u, v)∆v.

This linear function maps all points in the vicinity of u = (u, v) into the tangent plane
Tp at p = f(u, v) ∈ S and transforms circles around u into ellipses around p (see
Figure 3.1). The latter property becomes obvious if we write the Taylor expansion more
compactly as

f̃(u+ ∆u, v + ∆v) = p + Jf (u)
(
∆u
∆v

)
,

where Jf = (fu fv) is the Jacobian of f , i.e. the 3×2 matrix with the partial derivatives
of f as column vectors. Then using the singular value decomposition of the Jacobian,

Jf = UΣV T = U

(
σ1 0

0 σ2

0 0

)
V T ,
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Figure 3.1: First order Taylor expansion f̃ of the parameterization f .

Figure 3.2: SVD decomposition of the mapping f̃ .

with singular values σ1 ≥ σ2 > 0 and orthonormal matrices U ∈ R3×3 and V ∈ R2×2

with column vectors U1, U2, U3, and V1, V2, respectively, we can split up the linear trans-
formation f̃ as shown in Figure 3.2:

1. The transformation V T first rotates all points around u such that the vectors V1

and V2 are in alignment with the u- and the v-axes afterwards.

2. The transformation Σ then stretches everything by the factor σ1 in the u- and by
σ2 in the v-direction.

3. The transformation U finally maps the unit vectors (1, 0) and (0, 1) to the vectors
U1 and U2 in the tangent plane Tp at p.

As a consequence, any circle of radius r around u will be mapped to an ellipse with
semi-axes of length rσ1 and rσ2 around p and the orthonormal frame [V1, V2] is mapped
to the orthogonal frame [σ1U1, σ2U2].

This transformation of circles into ellipses is called local metric distortion of the
parameterization as it shows how f behaves locally around some parameter point u ∈ Ω
and the corresponding surface point p = f(u) ∈ S. Moreover, all information about
this local metric distortion is hidden in the singular values σ1 and σ2. For example, if
both values are identical, then Jf is just a rotation plus uniform scaling and f does not
distort angles around u. Likewise, if the product of the singular values is 1, then the
area of any circle in the parameter domain is identical to the area of the corresponding
ellipse in the tangent plane and we say that f is locally area-preserving.

Computing the singular values directly is a bit tedious, so that we better resort to
the fact that the singular values of any matrix A are the square roots of the eigenvalues
of the matrix ATA. In our case, the matrix Jf

TJf is an old acquaintance, namely the
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first fundamental form,

Jf
TJf =

(
fu

T

fv
T

)
(fu fv) = If =

(
E F
F G

)
,

and we can easily compute the two eigenvalues λ1 and λ2 of this symmetric matrix by
using the nifty little formula

λ1,2 = 1
2

(
(E +G)±

√
4F 2 + (E −G)2

)
.

We now summarize the main properties that a parameterization can have locally:

f is isometric or length-preserving ⇐⇒ σ1 = σ2 = 1 ⇐⇒ λ1 = λ2 = 1,

f is conformal or angle-preserving ⇐⇒ σ1 = σ2 ⇐⇒ λ1 = λ2,

f is equiareal or area-preserving ⇐⇒ σ1σ2 = 1 ⇐⇒ λ1λ2 = 1.

Obviously, any isometric mapping is conformal and equiareal, and every mapping that
is conformal and equiareal is also isometric, in short,

isometric ⇐⇒ conformal + equiareal.

Thus equipped, let us go back to the examples above and check their properties:

1. simple linear function:

parameterization: f(u, v) = (u, 1− u, v)

Jacobian: Jf =
(

1 0
−1 0
0 1

)
first fundamental form: If =

(
2 0
0 1

)
eigenvalues: λ1 = 2, λ2 = 1

This parameterization is neither conformal nor equiareal.

2. cylinder:

parameterization: f(u, v) = (cos u, sinu, v)

Jacobian: Jf =
(

cos u 0
− sin u 0

0 1

)
first fundamental form: If =

(
1 0
0 1

)
eigenvalues: λ1 = 1, λ2 = 1

This parameterization is isometric.
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3. paraboloid:

parameterization: f(u, v) = (2u, 2v, u2 + v2)

Jacobian: Jf =
(

2 0
0 2
2u 2v

)
first fundamental form: If =

(
4+4u2 4uv

4uv 4+4v2

)
eigenvalues: λ1 = 4, λ2 = 4(1 + u2 + v2)

This mapping is not equiareal and conformal only at (u, v) = (0, 0).

4. hemisphere (orthographic):

parameterization: f(u, v) = (u, v, 1
d
) with d = 1√

1−u2−v2

Jacobian: Jf =
( 1 0

0 1
−ud −vd

)
first fundamental form: If =

(
1+u2d2 uvd2

uvd2 1+v2d2

)
eigenvalues: λ1 = 1, λ2 = d2

This mapping is isometric at (u, v) = (0, 0), but neither conformal nor equiareal
elsewhere.

5. hemisphere (stereographic):

parameterization: f(u, v) = (2ud, 2vd, (1− u2 − v2)d) with d = 1
1+u2+v2

Jacobian: Jf =

(
2d−4u2d2 −4uvd2

−4uvd2 2d−4v2d2

−4ud2 −4vd2

)
first fundamental form: If =

(
4d2 0
0 4d2

)
eigenvalues: λ1 = 4d2, λ2 = 4d2

This mapping is always conformal, but equiareal and thus isometric only at the
boundary of Ω, i.e., for u2 + v2 = 1.

It turns out that the only parameterization that is optimal in the sense that it is
isometric everywhere and thus does not introduce any distortion at all is the one for the
cylinder. In fact, it was shown by Gauß [1827] that a globally isometric parameteriza-
tion exists only for developable surfaces like planes, cones, and cylinders with vanishing
Gaussian curvature K(p) = 0 at all surface points p ∈ S. As an exercise, you can try to
find such a globally isometric parameterization for the planar surface patch from the first
example. Other interesting parameterizations are those that are globally conformal like
the stereographic projection for the hemisphere, and it was shown by Riemann [1851]
that such a parameterization exists for any surface that is topologically equivalent to a
disk and any simply connected parameter domain.
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Chapter 4

Minimizing Metric Distortion

Using the machinery of the previous chapter, the “best” parameterization f of a surface
S over a parameter domain Ω is generally found as follows. We first need a bivariate non-
negative function E : R2

+ → R+ that measures the local distortion of a parameterization
with singular values σ1 and σ2. Usually, this function has a global minimum at (1, 1) so as
to favour isometry, but depending on the application, it may also be defined such that the
minimal value is taken along the whole line (x, x) for x ∈ R+, for example, if conformal
mappings shall be preferred. The overall distortion of a particular parameterization f
is then measured by simply averaging the local distortion over the whole domain,

Ē(f) =

∫
Ω

E(σ1(u, v), σ2(u, v)) du dv
/
A(Ω), (4.1)

and the best parameterization with respect to E is then found by minimizing Ē(f) over
the space of all admissible parameterizations.

4.1 Distortion of Piecewise Linear Parameterizations

We are mainly interested in the case where the surface S is a triangle mesh ST and f
is a piecewise linear mapping from the parameter triangles t ∈ Ω to the corresponding
surface triangles T ∈ T (cf. Section 2.1). In this setting, the distortion is constant per
triangle with singular values σt

1 and σt
2 and the overall distortion (4.1) simplifies to

Ē(f) =
∑
t∈Ω

E(σt
1, σ

t
2)A(t)

/ ∑
t∈Ω

A(t). (4.2)

Alternatively, we can also consider the overall distortion of the inverse parameterization
g = f−1,

Ē(g) =
∑
T∈T

E(σT
1 , σ

T
2 )A(T )

/ ∑
T∈T

A(T ), (4.3)

with the advantage that the sum of surface triangle areas in the denominator is constant
and can thus be neglected upon minimization. Note that the singular values of the linear
map g|T are just the inverse of the linear map f |t, that is, σT

1 = 1/σt
2 and σT

2 = 1/σt
1.
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f|t

t T

g|T

p0

p1

p2

u0

u2

u1

Figure 4.1: Local linear maps between a parameter triangle t and a surface triangle T .

In either case, the best parameterization with respect to the distortion measure E
is then found by minimizing Ē with respect to the unknown parameter points. To this
end, it helps to express its main constituents in terms of the unknowns ui and the given
vertices pi. The areas of the parameter triangle t = [u0,u1,u2] and its corresponding
surface triangle T = [p0,p1,p2] are given by the formulas

A(t) = 1
2
det(u1 − u0,u2 − u0) and A(T ) = 1

2
‖(p1 − p0)× (p2 − p0)‖.

And some basic calculations reveal the following identities for the singular values of the
local linear maps f |t and g|T between both triangles (see Figure 4.1):

(σt
1)

2
+ (σt

2)
2

=
1

A(t)2

2∑
i=0

‖ui+2 − ui+1‖2
[
(pi+1 − pi) · (pi+2 − pi)

]
,

σt
1σ

t
2 =

A(T )

A(t)

(4.4)

and

(σT
1 )

2
+ (σT

2 )
2

=
1

A(T )2

2∑
i=0

‖ui+2 − ui+1‖2
[
(pi+1 − pi) · (pi+2 − pi)

]
,

σT
1 σ

T
2 =

A(t)

A(T )
,

(4.5)

where all indices of parameter points and vertices must be taken modulo 3. Note that
A(t) as well as the two quantities in (4.5) are quadratic in the unknowns ui, whereas
the two expressions in (4.4) are rational functions of ui.

4.2 Harmonic Maps

One of the first parameterization methods that were used in computer graphics [Pinkall
and Polthier, 1993; Eck et al., 1995] considers the Dirichlet energy of the inverse para-
meterization g, which is given by Ē(g) in (4.3) with the local distortion measure

ED(σ1, σ2) = 1
2

(
σ1

2 + σ2
2
)
.
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As mentioned above, the energy Ē(g) is quadratic in the parameter points ui in this
case. It can thus be minimized by solving a linear system and it turns out that the
inverse f = g−1 of the resulting (discrete) harmonic map g is exactly the barycentric
mapping with discrete harmonic coordinates that we already discussed in Section 2.3.

A potential disadvantage of harmonic maps is that they require to fix the bound-
ary of the parameterization in advance. Otherwise, the parameterization degenerates,
because ED takes its minimum for mappings with σ1 = σ2 = 0, so that an optimal
parameterization is one that maps all surface triangles T to a single point. And even if
the boundary is set up correctly, it may happen that the parameterization violates the
bijectivity property (cf. Section 2.3).

4.3 Conformal Maps

Another approach that was independently discovered by Desbrun et al. [2002] and Lévy
et al. [2002] is to use the conformal energy

EC(σ1, σ2) = 1
2
(σ1 − σ2)

2

as a local distortion measure in (4.3). This still yields a linear problem to solve, but
only two of the boundary vertices need to be fixed in order to give a unique solution.
Unfortunately, the resulting parameterization depends on the choice of these two vertices
and can vary significantly, but Mullen et al. [2008] recently showed how to get the best
of all choices. However, the problem of potential non-bijectivity remains.

Conformal and harmonic maps are closely related. Indeed, we first observe for the
local distortion measures that

ED(σ1, σ2)− EC(σ1, σ2) = σ1σ2

and it is then straightforward to conclude that the overall distortions defer by

ĒD(g)− ĒC(g) =
∑
t∈Ω

A(t)
/ ∑

T∈T

A(T ) =
A(Ω)

A(ST )
.

Therefore, if we take a conformal map, fix its boundary and thus the area of the para-
meter domain Ω, and then compute the harmonic map with this boundary, then we get
the same mapping, which illustrates the well-known fact that any conformal mapping is
harmonic, too.

The conformal energy EC is clearly minimal for locally conformal mappings with
σ1 = σ2. However, it is not the only energy that favours conformality. Hormann and
Greiner [2000a] introduced the so-called MIPS energy

EM(σ1, σ2) =
σ1

σ2

+
σ2

σ1

=
σ1

2 + σ2
2

σ1σ2

,

which is also minimal if and only if σ1 = σ2. An advantage of this distortion measure is
the symmetry with respect to inversion,

EM(σT
1 , σ

T
2 ) = EM(σt

1, σ
t
2),
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so that it measures the distortion of both mappings f |t and g|T at the same time. The
disadvantage is that minimizing either of the overall distortion energies in (4.2) and (4.3)
is a non-linear problem. However, ĒM(f) is a quadratic rational function in the ui

and ĒM(g) is a sum of quadratic rational functions, and both can be minimized with
standard gradient descent methods. Moreover, it is possible to determine the first and
second derivatives analytically and to guarantee the bijectivity of the resulting mapping
[Hormann, 2001].

4.4 Other Distortion Measures

A variety of other local distortion measures have been proposed in the literature, which
all yield different non-linear optimization problems. The Green-Lagrange deformation
tensor [Maillot et al., 1993]

EG(σ1, σ2) = (σ1
2 − 1)

2
+ (σ2

2 − 1)
2

as well as the energy by Degener et al. [2003],

Eθ(σ1, σ2) =

(
σ1

σ2

+
σ2

σ1

) (
σ1σ2 +

1

σ2σ1

)θ

with θ > 0,

are both minimal for locally isometric mappings with σ1 = σ2 = 1. But while the first
one tends to favour shrinking, e.g., EG(1, 1/2) = EG(2, 1)/4, the second one is symmetric
with respect to shrinking and stretching, e.g., Eθ(1, 1/2) = Eθ(2, 1), which is similar to
the difference between the conformal and the MIPS energy. Moreover, the parameter
θ allows to mediate between angle and area distortion, and a good heuristic is θ ≈ 3
[Tarini et al., 2004].

Sander et al. [2001] introduced the L∞ stretch energy

E∞(σ1, σ2) = σ1

and the L2 stretch energy

E2(σ1, σ2) =
√

1
2

(
σ1

2 + σ2
2
)
,

where the latter is just the square root of the local Dirichlet energy ED. Still, the results
of Sander et al. [2001] are different from harmonic maps, because they consider the
singular values of the piecewise linear maps f |t instead of g|T .

Finally, Sorkine et al. [2002] suggested to symmetrize the L∞ stretch and use

ES(σ1, σ2) = max(σ1, 1/σ2)

as a local deformation measure.
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4.5 Angle-Space Methods

Instead of defining a planar parameterization in terms of vertex coordinates, both the
ABF/ABF++ method [Sheffer and de Sturler, 2000, 2001; Sheffer et al., 2005] and the
circle-patterns algorithm [Kharevych et al., 2006] define it in terms of the angles of
the planar triangles. Figure 5.3 provides a comparison between angle-space and direct
conformal methods. As demonstrated, angle-space methods introduce significantly less
stretch into the parameterization on models that have regions of high Gaussian curvature.

The ABF method (Angle Based Flattening) [Sheffer and de Sturler, 2000, 2001]
is based on the following observation: a planar triangulation is uniquely defined by
the corner angles of its triangles (modulo a similarity transformation). Based on this
observation the authors reformulate the parameterization problem – finding (ui, vi) co-
ordinates – in terms of angles, that is to say finding the angles αt

k, where αt
i denotes the

angle at the corner of triangle t incident to vertex k.
To ensure that the 2D angles define a valid triangulation, a set of constraints needs

to be satisfied.

• Triangle validity (for each triangle t):

∀t ∈ T, αt
1 + αt

2 + αt
3 − π = 0.

• Planarity (for each internal vertex v):

∀v ∈ Vint,
∑

(t,k)∈v∗

αt
k − 2π = 0,

where Vint denotes the set of internal vertices, and where v∗ denotes the set of
angles incident to vertex v.

• Positivity: αt
k > 0 for all angles. We note that this constraint can be ignored in

most practical setups [Sheffer et al., 2005], simplifying the solution process.

• Reconstruction (for each internal vertex): this constraints ensures that edges
shared by pairs of triangles has the same length:

∀v ∈ Vint,
∏

(t,k)∈v∗

sinαt
k⊕1 −

∏
(t,k)∈v∗

sinαt
k	1 = 0.

The indices k ⊕ 1 and k 	 1 denote the next and previous angle in the triangle.
Intuitively, note that the product sinαt

k⊕1 sinαt
k	1 corresponds to the product of

the ratio between the lengths of two consecutive edges around vertex k. If they do
not match, it is the possible to “turn around” vertex k without “landing” on the
starting point.

They search for angles that are as close as possible to the original 3D mesh angles
βt

k and which satisfy those constraints.
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(a) (b) (c)

Figure 4.2: Convergence of ABF++ (cf. Table 4.1). Parameterization result after one
(a), two (b), and ten iteration (c).
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iterations Lstretch
2 Lshear

2 AngD
1 1.10634 4.69 · 10−4 4.19 · 10−4

cow 2 1.10641 4.64 · 10−4 3.81 · 10−4

10 1.10638 4.64 · 10−4 3.81 · 10−4

1 1.09616 5.21 · 10−3 5.09 · 10−3

camel 2 1.09645 5.15 · 10−3 5.04 · 10−3

10 1.09639 5.15 · 10−3 5.04 · 10−3

Table 4.1: Convergence of ABF++ (cf. Figure 4.2). The formulas for the stretch, shear
and angular distortion are taken from [Sheffer et al., 2005].

The constrained numerical optimization problem is solved using the Lagrange mul-
tipliers method. The stationary point of the Lagrangian is computed using Newton’s
method. Each step requires to solve a linear system of size 2nV +4nF , where nV denotes
the number of interior mesh vertices and nF the number of facets. They then convert the
solution angles into actual (u, v) vertex coordinates using a propagation procedure. The
resulting parameterizations are guaranteed to have no flipped triangles, i.e. be locally
bijective, but can contain global overlaps. The authors provided a mechanism for resolv-
ing such overlaps, but it has no guarantees of convergence. The original ABF method
is relatively slow and suffers from stability problems in the angle-to-uv conversion stage
for large meshes.

ABF was augmented to yield ABF++ [Sheffer et al., 2005], a technique addressing
both problems. ABF++ introduces a stable angle-to-uv conversion using the LSCM
method to obtain (u, v) coordinates from the set of angles. Sheffer et al. [2005] also
drastically speeds up the solution by introducing both direct and hierarchical solution
approaches. For the direct solver they switch from Newton to Gauss-Newton solution
setup, simplifying the structure of the linear system solved at each step. They then use
the structure of the Hessian matrix to solve the linear system without explicitly inverting
the entire Hessian. Thus they manage to reduce the size of the explicitly inverted matrix
at each step by a factor of five to about 2nV (note that on a manifold mesh 2nV ≈ nF ).
This is what one may expect for a parameterization problem since this corresponds
to the number of degrees of freedom. We make an interesting observation about the
convergence behaviour of ABF+ throughout the Gauss-Newton process. While it takes
five to ten iterations to reduce the minimization error (the gradient of the Lagrangian)
below 10−6, practically all the changes from iteration two and on occur in the Lagrange
multipliers. Even after one iteration (Figure 4.2(a)) the computed angles are very close
to the final ones and they completely converge within a couple of iterations (Figure 4.2
and Table 4.1).

Several modifications of the formulation were proposed over the last few years. For
instance, Zayer et al. [2003] introduced additional constraints on the angles enforcing
the parameter domain to have convex boundaries, thus guaranteeing global bijectivity.

Kharevych et al. [2006] use a circle patterns approach where each circle corresponds
to a mesh face. In contrast to classical circle packing, they use intersecting circles, with
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Figure 4.3: Circle patterns notations.

prescribed intersection angles θe (Figure 4.3). Given these angles, the circle radii follow
as the unique minimizer of a convex energy. The method first computes the intersection
angles using non-linear constrained optimization and then finds the circle radii using
unconstrained minimization. To find the intersection angles it first computes a set of
feasible triangle angles αk

ij which are close to the 3D angles βk
ij and satisfy the following

constraints:

• Triangle validity (for each triangle t):

∀tijk ∈ T, αt
ij + αt

ik + αt
kj − π = 0.

• Planarity (for each internal vertex v):

∀v ∈ Vint,
∑

(t,ij)∈v∗

αt
ij − 2π = 0,

where Vint denotes the set of internal vertices, and where v∗ denotes the set of
angles incident to vertex v.

• Positivity: αt
ij > 0 for all angles.

• Local Delaunay property (for each edge eij):

∀eij ∈ E, αk
ij + αl

ij < π

We note that three of these constraints are similar to those imposed by the ABF
setup, with the non-linear reconstruction constraint on interior vertices replaced by the
inequality local Delaunay constraint per edge. The intersection angles are computed
from the feasible triangle angles using a simple formula. Since the solution for the
intersection angles is conformal only for a Delaunay triangulation, the authors employ a
pre-processing stage that involves “intrinsic” Delaunay triangulation. At the final stage
of the method, the computed radii are converted to actual uv-coordinates. The method
supports equality and inequality constraints on the angles along the boundary of the
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Figure 4.4: Fixed and free-boundary parameterizations computed using circle patterns.

planar parameter domain. Similar to ABF, the parameterization is locally bijective,
but can contain global overlaps. The amount of distortion introduced by the method is
comparable with that of ABF/ABF++ techniques.

Kharevych et al. [2006] propose an extension of the method to global parameteri-
zation of meshes by introducing cone singularities. They observe that in angle space
formulation the only difference between parameterizing the mesh boundary and its in-
terior mesh is the constraints imposed on the interior vertices which are not imposed on
boundary ones, and that it is possible to define a global parameterization by specifying
an unconnected subset of mesh vertices as boundary vertices. Thus they first compute
a solution in angle space with a set of cone singularity vertices specified by the user as
boundary. For planar parameterization, to perform the angle-to-uv conversion they later
compute edge paths between these vertices. The obtained parameterization is globally
continuous up to translation and rotation, everywhere except at the cone singularities.
The proposed approach can be directly applied to other angle-space methods such as
ABF/ABF++.
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Figure 4.5: Global parameterization with cone singularities.
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Chapter 5

Comparison of Planar Methods

The different methods reviewed minimize different types of distortion metrics. Ide-
ally, most parameterization applications work best on zero distortion parameterizations,
though most are tolerant to some amount of distortion, some being more tolerant to
shear and others to stretch. In general, applications that depend on regular grids for
sampling, such as different types of detail mapping and synthesis, as well as compression
and regular resampling schemes (e.g. geometry images [Gu et al., 2002]), tend to per-
form better on stretch minimizing parameterizations, since stretch is directly related to
under-sampling. In contrast, applications based on irregular sampling, such as remesh-
ing [Desbrun et al., 2002], are very sensitive to shearing, but can handle quite significant
stretch. When acceptable levels of shear or stretch are not attainable because a surface
is too complex, the surface needs to be cut prior to parameterization in order to achieve
acceptable distortion.

In addition to distortion, several other factors should be considered when choosing a
parameterization method for an application at hand:

• Free versus fixed boundary. Many methods assume the boundary of the planar
domain is pre-defined and convex. Fixed boundary methods typically use very
simple formulations and are very fast. Such methods are well suited for some
applications, for instance those that utilize a base mesh parameterization, see
Section 5.1. Free-boundary techniques, which determine the boundary as part of
the solution, are often slower, but typically introduce significantly less distortion.

• Robustness. Most applications of parameterization require it to be bijective. For
some applications local bijectivity (no triangle flips) is sufficient while others re-
quire global bijectivity conditions (the boundary does not self-intersect). Only a
subset of the parameterization methods can guarantee local or global bijectivity.
Some of the others can guarantee bijectivity if the input meshes satisfy specific
conditions.

• Numerical Complexity. The existing methods can be roughly classified according
to the optimization mechanism they use into linear and non-linear methods. Linear
methods are typically significantly faster and simpler to implement. However, as
expected the simplicity usually comes at the cost of increased distortion.
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Table 1 summarizes the more commonly used methods in terms of these properties.
Table 2 lists the runtimes for some of the more commonly used methods. We used the
Ray et al. [2003] 3D modeling system to time the fixed boundary methods, LSCM and
ABF++. For the other methods the timings were provided by the authors. As expected,
linear techniques are about one order of magnitude faster than the non-linear ones.
Nevertheless, even the non-linear methods are fairly fast taking less than two minutes
to process average size models. Figures 5.1 to 5.3 show some typical parameterization
results.
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Figure 5.1: Surfaces with nearly convex boundaries parameterized with linear methods
(images made with Graphite, http://alice.loria.fr/software).
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Figure 5.2: Surfaces with non-convex boundaries parameterized with linear methods
(images made with Graphite, http://alice.loria.fr/software).
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Figure 5.3: Surfaces with non-convex boundaries parameterized with non-linear methods
(images made with Graphite, http://alice.loria.fr/software).
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Chapter 6

Non-Planar Domains

Some applications are quite sensitive to discontinuities in the parameterization, or can-
not tolerate them at all. In such cases, when the object to be parameterized is not a
topological disc, it is worthwhile to use a different base domain for the parameteriza-
tion. Examples of such domains that have been investigated include spheres, simplicial
complexes, and periodic planar regions with transition curves.

In addition, numerous applications of parameterization require cross-parameterization
or intersurface mapping between multiple models; see Chapter 7. Pairwise mapping be-
tween models can be used for the transfer of different properties between the models,
including straightforward ones, such as texture, and less obvious ones such as defor-
mation and animation. It can also be used for blending and morphing, as well as mesh
completion and repair. The most common approach for pair-wise mapping is to parame-
terize both models on a common base domain. Free-boundary planar parameterization
is clearly unsuitable for this purpose. Instead alternate domains such as a sphere or a
simplicial complex are commonly used.

6.1 The Unit Sphere

The big advantage of the spherical domain over the planar one is that it allows for
seamless, continuous parameterization of genus-0 models, and there are a large number
of such models in use. Thus, the spherical domain has received much attention in the
last few years, with several papers published about this topic. Some rigorous theory is
being developed, getting close to the level of understanding we have of planar parame-
terizations. These notes cover four main types of spherical parameterization approaches:
Gauss-Seidel iterative extension of planar barycentric methods; stereographic projection;
spherical generalization of barycentric coordinates; and multi-resolution embedding.

One attractive approach for spherical parameterization is to extend the barycentric,
convex boundary planar methods to the sphere. Several methods [Alexa, 2000; Gu and
Yau, 2002; Kobbelt et al., 1999] used Gauss-Seidel iterations to obtain such parameteri-
zation. They start by computing an initial guess and then moving the vertices one at a
time, first computing a 3D position for the vertex using a barycentric formulation [Eck
et al., 1995], and then projecting the vertex to the unit sphere. Isenburg et al. [2001]
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Figure 6.1: Spherical Parameterization.
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split the mesh in two, map the cut onto a great circle and embed each half-mesh onto
a hemisphere using a modified Tutte procedure. Regrettably, as proven by Saba et al.
[2005] projected Gauss-Seidel iterations decrease the residual for only a finite number of
iterations. As the result approaches a bijective solution, the scheme ultimately becomes
unstable, the residual increases, and the system collapses to a degenerate solution. Saba
et al. [2005] note that this behaviour is independent of step size.

Haker et al. [2000] compute a planar parameterization of the mesh first, using one
of the triangles as a boundary. They then use the stereographic projection to obtain
the spherical mapping. The result depends quite heavily on the choice of the boundary
triangle. This approach works quite well in practice, however it doesn’t offer any theo-
retical guarantees since the stereographic projection is bijective only for the continuous
case, and can produce triangle flips in the discrete case. A simple proof by example of
this statement can be obtained by imagining the great circle supporting the edge AB
of a mapped spherical triangle ABC. The (continuous) stereographic projection maps
this great circle to a circle in the original plane. The third vertex C can be perturbed
in the plane to cross from the interior to the exterior of the circle, without changing
the triangle orientation. The spherical triangle ABC will flip however as a result of this
perturbation, as the image of C on the sphere will cross from one side to the other of
the spherical edge AB.

Gotsman et al. [2003] showed how to correctly generalize the method of barycentric
coordinates, with all its advantages, to the sphere. The generalization is based on results
from spectral graph theory due to de Verdière [1993] and extensions due to Lovász and
Schrijver [1999]. They provide a quadratic system of equations which is a spherical
equivalent of the barycentric formulation. The authors do not provide an efficient way
to solve the resulting system, and thus their method is limited to very small meshes.
Saba et al. [2005] introduce a method for efficiently solving the system, by providing
a good initial guess and using a robust solver. First, similar to [Isenburg et al., 2001],
they partition the mesh in two, and embed each half on a hemisphere using a planar
parameterization followed by a stereographic projection. They then use a numerical
solution mechanism which combines Gauss-Seidel iteration with nonlinear minimization
to obtain the final solution.

An efficient and bijective alternative is suggested by multi-resolution techniques.
These methods obtain an initial guess by simplifying the model until it becomes a tetra-
hedron (or at least, convex), trivially embed it on the sphere, and then progressively
add back the vertices [Shapiro and Tal, 1998; Praun and Hoppe, 2003]. Shapiro and Tal
[1998] compute the embedding using purely topological operations and do not attempt to
minimize any type of distortion. Praun and Hoppe [2003] obtain a spherical parameteri-
zation by alternating refining steps that add vertices from a multi-resolution decomposi-
tion of the object with relaxation of single vertex locations inside their neighbourhoods.
The relaxation is aimed to minimize the stretch metric of the parameterization and is
guaranteed to maintain a valid embedding.
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Figure 6.2: A,B: Parameterization methods for disk-topology combined with segmenta-
tion algorithms can create a texture atlas from a shape of arbitrary topology. However,
the large number of discontinuities can be problematic for the applications. C: Global
parameterization algorithms do not suffer from this problem. (Data courtesy of the Digital
Michelangelo Project, Stanford).

6.2 Simplicial and Quadrilateral Complexes

As seen in Chapters 2 and 4, parameterization methods can put a 3D shape with disk
topology in one-to-one correspondence with a 2D domain. For a shape with arbitrary
topology, it is possible to decompose the shape into a set of charts, using a segmentation
algorithm (e.g. VSA [Cohen-Steiner et al., 2004]). Each chart is then parameterized (see
Figure 6.2-A,B). Even if this solution works, it is not completely satisfactory: why one
should “damage” the surface just to define a coordinate system on it? From the appli-
cation point of view, chart boundaries are difficult to handle in remeshing algorithms,
and introduce artefacts in texture mapping applications. For this reason, we focus in
this section on global parameterization algorithms, that do not require segmenting the
surface (Figure 6.2-C).

To compute such a global parameterization, the geometry processing community first
developed methods that operate by segmenting, parameterizing, and resampling the ob-
ject. To our knowledge, this idea was first developed in the MAPS method [Lee et al.,
1998] (Multiresolution Adaptive Parameterization of Surfaces). As shown in Figure 6.3,
this method starts by partitioning the initial object (Figure 6.3-A) into a set of trian-
gular charts, called the base complex (Figure 6.3-C). Then, a parameterization of each
chart is computed, and the object is regularly resampled in parametric space (Figure
6.3-C). Further refinements of the method improved the inter-chart continuity [Kho-
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Figure 6.3: The MAPS method and its derivatives compute a global parameterization
by decomposing the initial surface (A) into a set of triangular charts (B) and regularly
re-samples the geometry in the parameter space of these charts (C).

dakovsky et al., 2003], formalized by the notion of transition function, explained further
in this section. This representation facilitates defining hierarchical representations and
implementing multiresolution processing tools on top of it [Guskov et al., 1999].

Historically, the most popular non-planar base domain has been a simplicial complex
[Lee et al., 1998, 1999; Guskov et al., 2000, 2002; Lee et al., 2000; Praun et al., 2001;
Khodakovsky et al., 2003; Purnomo et al., 2004; Schreiner et al., 2004; Kraevoy and
Sheffer, 2004]. A simplicial complex can be considered as just the connectivity part of
a traditional triangle mesh: the sets of vertices, edges, and faces. Most applications
typically use simplicial complexes representing 2-manifolds with a boundary (an edge
can only be adjacent to 1 or 2 faces) with a small number of elements. One method for
obtaining such complexes is to simplify an original mesh. Once a suitable base mesh
has been chosen, the original mesh is parameterized by assigning each of its vertices to
a simplex of the base domain (vertex, edge, or face), along with barycentric coordinates
inside it.

Early methods took a two-step approach to computing a parameterization; in the
first step, elements of the fine mesh were assigned to faces of the base simplicial complex,
while the second step would compute barycentric coordinates for these elements, usually
using one of the fixed boundary parameterization methods discussed earlier. These steps
could be repeated, but typically not mixed. More recent methods, such as [Khodakovsky
et al., 2003], try to perform both steps at the same time.

6.2.1 Computing base complexes

To obtain the simplicial complex, [Eck et al., 1995] grow Voronoi regions of faces from
seed points and then use the dual triangulation. The seed points are initially linked
using shortest paths across mesh edges that provide the initial boundaries of the patches
corresponding to base domain faces. To straighten each of these paths, the two adjacent
patches are parameterized to a square. The path in question is then replaced with the
diagonal of the square mapped onto the mesh surface.
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Lee et al. [1998] simplify the original mesh, keeping track of correspondences between
the original vertices and the faces of the simplified mesh. Others, like [Guskov et al.,
2000] and [Khodakovsky et al., 2003] use clustering techniques to generate the patch
connectivity and derive the base-mesh from it.

The construction becomes more challenging when multiple models need to be pa-
rameterized on the same complex [Praun et al., 2001; Schreiner et al., 2004; Kraevoy
and Sheffer, 2004]. Praun et al. [2001] partition a mesh into triangular patches, which
correspond to the faces of a user given simplicial complex, by drawing a network of paths
between user-supplied feature vertices that correspond to the vertices of the base mesh.

Schreiner et al. [2004] and Kraevoy and Sheffer [2004] extend the methods of Praun
et al. [2001] and Kraevoy et al. [2003] to construct the simplicial complex automatically,
in parallel to the patch formation. The input to both methods includes a set of corre-
spondences between feature vertices on the two input models. The methods use those as
the vertices of the base complex. They simultaneously trace paths on the input meshes
between corresponding pairs of vertices, splitting existing mesh edges if necessary. Tarini
et al. [2004] were the first, to our knowledge, to use a quadrilateral base domain. Such
a domain is much more suitable for quadrilateral remeshing of the input surface and for
spline fitting. Tarini et al. [2004] generate the base domain manually.

6.2.2 Mapping to the base mesh

Once the discrete assignment to base domain faces has been done, the barycentric coordi-
nates can be computed using fixed-boundary planar parameterization. Earlier methods
computed the barycentric coordinates once, based on the initial assignment of the ver-
tices to the base triangles. More recent methods [Khodakovsky et al., 2003; Kraevoy
and Sheffer, 2004, 2005; Tarini et al., 2004] use an iterative process where vertices can
be reassigned between base faces.

Khodakovsky et al. [2003] perform the vertex-to-patch assignment and coordinate re-
laxation in a single procedure, by letting vertices cross patch boundaries using transition
functions. A transition function expresses the barycentric coordinates of a vertex with
respect to a base domain face as barycentric coordinates for a neighboring base domain
face. For this procedure only the images of the base domain vertices needs to be fixed,
rather than the edges as well as in the previous methods. The authors relax the base
domain vertices separately, prompting a new run of the main relaxation. In practice, this
cycle is repeated only very few times. The implementation sometimes needs to discard
some relaxation results when mesh vertices moved around base domain vertices end up
with barycentric coordinates that are invalid for all the base domain faces around that
vertex.

Tarini et al. [2004] and Kraevoy and Sheffer [2004, 2005] fix the boundary of a group
of base mesh faces, update the barycentric coordinates in the interior, and then possibly
re-assign some vertices to different faces inside the group. The methods differ in the
grouping they use and the choice of parameterization technique used for the barycentric
coordinates computation.
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Chapter 7

Cross-Parameterizations and Constraints

In a cross-parameterization or inter-surface-mapping setup the parameter domain for
one mesh is another surface mesh. Cross-parameterization is used to morph or blend
between meshes and to transfer properties between them. For morphing in addition to
obtaining a mapping it is necessary to obtain a common compatible connectivity for the
two meshes. The most common approach for pair-wise mapping is to parameterize both
models on a common base domain. Free-boundary planar parameterization is clearly
unsuitable for this purpose. Instead alternate domains such as a simplicial complex or
a sphere are commonly used.

7.1 Base Complex Methods

Many methods use mapping to a common base-complex to obtain a cross-parameteriza-
tion. Since the base must be shared the construction is significantly more challenging
than when parameterizing a single mesh. Praun et al. [2001] partition a mesh into
triangular patches, which correspond to the faces of a user given simplicial complex, by
drawing a network of paths between user-supplied feature vertices that correspond to
the vertices of the base mesh.

Schreiner et al. [2004] and Kraevoy and Sheffer [2004] extend the methods of Praun
et al. [2001] and Kraevoy et al. [2003] to construct the simplicial complex automatically,
in parallel to the patch formation. The input to both methods includes a set of corre-
spondences between feature vertices on the two input models. The methods use those as
the vertices of the base complex. They simultaneously trace paths on the input meshes
between corresponding pairs of vertices, splitting existing mesh edges if necessary.

Once the base is created, the meshes can be mapped to the base using the techniques
reviewed in the chapter on alternative domains. Schreiner et al. [2004] use an alternative
approach. They never compute an explicit map between the full-resolution objects
and the base domain. Instead, they alternate the role of base domain between the
two meshes, at various complexity levels in a multi-resolution representation. They
progressively refine each mesh by adding new vertices and relaxing their location using a
stretch-based metric measured on a temporary planar unfolding of their neighborhoods.
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Figure 7.1: Base complex construction.
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7.2 Energy Driven Methods

Several methods use an energy-driven approach for cross-parameterization, where one
mesh is directly attracted towards the other [Allen et al., 2003; Sumner and Popović,
2004]. The attraction energy function consists of components that pull the vertices of
one mesh towards nearest locations on the other while trying to preserve the shape of the
mesh as much as possible. To facilitate correspondence they require the user to specify
several dozen point-to-point correspondences between the input models. The methods
work well when the meshes are very similar, e.g. humans in the same pose [Allen et al.,
2003] but tend to converge to a poor local minimum with increase in shape difference.
These methods are quite sensitive to the weights used inside the energy functional to
account for the different components. One advantage of these approaches is that they
can find mappings between models of different topology (genus, etc.), though these maps
are no longer bijective.

7.3 Compatible Remeshing

For applications such as morphing it is not enough to obtain a cross-parameterization
between the two models. For these applications, at the end of the process the two models
are typically required to have the same connectivity. There are three main approaches
for generating such common connectivity.

• Base mesh subdivision: Several methods including [Praun et al., 2001] use the
base mesh connectivity and refine it using the one-to-four subdivision pattern,
introducing as many levels of subdivision as necessary to capture the geometry
of both models. The advantage of the method is simplicity. It’s drawback is the
dependence on the shape of base mesh triangles. The method also tends to require
large triangle count to achieve acceptable accuracy (roughly factor 10 compared
to input mesh sizes).

• Overlay: Another approach for generating common connectivity [Alexa, 2000;
Schreiner et al., 2004] is to intersect the two input meshes in the parameter domain,
combining all their vertices and generating new vertices at edge-edge intersections.
The method preserves exactly the input geometries but is not-trivial to implement
and like subdivision increases the triangle count by roughly a factor of 10.

• Remeshing: In [Kraevoy and Sheffer, 2004] the authors propose an alternative
where they use the connectivity of one of the input meshes as a basis and then
refine it as necessary based on an approximation error with respect to the second
mesh. The resulting meshes have significantly lower triangle count than using the
other two approaches. The result heavily depends on which of the inputs is selected
as the source for common connectivity. Unlike in the overlay approach, some fine
features of the second mesh are only approximated and it is difficult to faithfully
reproduce sharp features.
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Figure 7.2: Two examples of constrained texture mapping [Lévy, 2001]

(a) (b) (c)

Figure 7.3: Constraint enforcement with Matchmaker [Kraevoy et al., 2003]: (a) Texture
(two photos) with feature points specified; (b) input model with corresponding vertices
highlighted; (c) resulting texture.

7.4 Constraints

Sometimes a parameterization needs to accommodate user constraints, specifying corre-
spondences between vertices of the mesh. The most important application of constrained
parameterization is texture mapping 3D models from photographs [Lévy, 2001; Kraevoy
et al., 2003] (see Figures 7.2 and 7.3). Zhou et al. [2005] use more complex constraints to
allow the user to combine several images to produce a complete texture for a mesh. Con-
strained parameterization can also be used to hide cross-seam discontinuities [Kraevoy
et al., 2003; Zhou et al., 2005].

The methods for enforcing constraints can be split into two types, those that enforce
soft or approximate constraints and that that enforce hard constraints. Methods based
on energy minimization can accommodate soft constraints by adding a quadratic term
to the energy function, measuring the distance between the constraint features in the
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current configuration and their desired location [Lévy, 2001]. Such constraints work
reasonably well in practice, and can be solved efficiently, since they only add linear
terms to the energy, but sometimes break theoretical guarantees about the original
parameterization method, such as bijectivity. The degree of constraint approximation
typically decreases with the distance between the constrained and unconstrained vertex
locations. Some applications, such as hiding texture discontinuities along seams in the
parameterization [Kraevoy et al., 2003; Zhou et al., 2005] require hard constraints to
achieve perfect alignment of the texture along the seams.

One way to enforce hard constraints is by adding them into a regular parameteriza-
tion formulation using Lagrange multipliers [Desbrun et al., 2002]. This approach allows
constraints to be defined on points inside triangles and on arbitrary line segments (the
vertices of the triangulation can be constrained more easily by taking the corresponding
variables out of the system). However, it is easy to show that for a given mesh connec-
tivity not every set of constraints can be satisfied. Thus methods like this that preserve
the mesh connectivity will fail to generate bijective parameterizations for many inputs.

Methods that enforce hard-constraints robustly, introduce additional vertices into
the mesh as they go along to ensure that a constrained solution exists. Eckstein et al.
[2001] enforce hard constraints by deforming an existing embedding while adding new
vertices when necessary. Theoretically, this method can handle large sets of constraints
but is extremely complicated.

The Matchmaker algorithm [Kraevoy et al., 2003] compute the parameterization by
establishing coarse patch correspondences between the input and the parameter do-
main. The provided feature points on the input model and the parameter domain are
connected using a network of curves that partition the surface into patches that are
then parameterized while trying to maintain continuity and smoothness between them.
The curve tracing process is guided by a set of topological rules that ensure that the
resulting patches will be consistent between the objects being parameterized and the
domain. They compute the triangulations of the input and the parameter domain si-
multaneously. Continuity and smoothness between patches can be obtained by relaxing
the parameterization.

Zhou et al. [2005] allow the user to combine several images to produce texture for a
mesh, by assigning some surface patches to different images, as well as using in-painting
techniques to create texture for any unassigned transition patches between them. In
addition to geometric smoothness of the map, they take into account the continuity
of the texture signal being applied since it may come from different sources for two
neighboring patches.

48



Chapter 8

Global Parameterizations and Cone Points

The parameterization algorithms presented in previous sections mainly focused on map-
ping the surface continuously onto the parameter domain. On simply connected surfaces,
the parameterization can then be visualized by showing the pre-image of a quadrilateral
grid on the surface. On higher genus surfaces, one first has to cut the surface open
resulting in discontinuous gaps of the grid lines across the cuttings.

We will now focus on parameterizations, whose grid lines form a global closed quadri-
lateral grid. The QuadCover algorithm [Kälberer et al., 2007] produces parameteriza-
tions of this kind. Furthermore, the alignment of the parameter lines can be driven by
user given user input (e.g. align to principle curvature directions).

8.1 Overview

This chapter focuses on the automatic construction of a global surface parameteriza-
tion. The parameterization is guided by a so-called frame field, which can be seen as
a collection of four vectors in each point (for example, the field of principal curvature
directions).

Starting from a given frame field, the algorithm first constructs a locally integrable
frame field. Second, this field is integrated yielding a parameterization. Third, the

Figure 8.1: The QuadCover algorithm generates high quality parameter lines on simpli-
cial surfaces. The automatic parameterization is guided by a user-given frame field, such
as principal curvature directions, and is well suited for regular quadrilateral remeshing.
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Figure 8.2: Left: Frame field. Right: Corresponding parameterization.

parameterization gets adapted such that the grid lines are connected across the cuttings.
Special issues arise, when the frame field has singularities. In QuadCover, they are

resolved by using branched covering spaces. The frame field naturally simplifies to a
single vector field on the covering, and then standard Hodge decomposition techniques
are used to assure global integrability. The details are explained in Section 8.2.2.

Given a global parameterization on any simplicial surface there is a wealth of fu-
ture applications. From texture mapping to extension of image processing algorithms,
from remeshing to the automatic construction of hierarchical subdivision surfaces, all
applications using natural coordinates will benefit from the added structure of a global
parameterization.

8.1.1 Algorithms for global parameterization

The research area of surface parameterization has a long and fruitful tradition. There
already exists a wealth of different approaches to surface parameterization and, more
general, the generation of quad and quad dominant meshes from given triangle meshes.

The method of Boier-Martin et al. [2004] clusters the surface into macropatches and
parameterizes each surface patch. Kharevych et al. [2006] find a conformal parameter-
ization via circle patterns. In contrast to Gu and Yau, they use cone-singularities to
increase the flexibility of purely conformal mappings. Dong et al. [2006] compute the
Morse-Smale complex of eigenfunctions of the mesh Laplacian to compute a patch lay-
out. The nodes of the complex are then utilized similarly to the cone singularities in
[Kharevych et al., 2006].

Early approaches for quadrangular remeshing guided by principal curvature direc-
tions are from Alliez et al. [2003]. They were extended by Marinov and Kobbelt [2004],
and base on the integration of curvature lines on the surface. Dong et al. [2005b]
presented an algorithm which traces isolines in two conjugate harmonic vector fields.
Marinov and Kobbelt [2006] focus on creating coarse quad-dominant meshes by approx-
imating the surface with very few patches, which are then individually subdivided into
quads.

Tong et al. [2006] use harmonic one-forms for surface parameterization. They enlarge
the space of harmonic one-forms by allowing additional singular points on the surface.
The extended cut graph increases the homology group and thus the space of harmonic
one-forms on the surface. As a consequence, the user-defined choice of placing the
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singular points and the cut graph allows a controlled modeling of the harmonic one-
forms. Still, the approach is constrained by the global nature of harmonic one-forms, in
some sense, similar to the algorithm of Gu and Yau [2003].

Ray et al. [2006] parameterize surfaces of arbitrary genus with periodic potential
functions guided by two orthogonal input vector fields. This leads to a continuous pa-
rameterization except in the vicinity of singular points on the surface. These singular
regions are detected and reparameterized afterwards. Our approach was strongly in-
spired by their work.

8.1.2 QuadCover algorithm

QuadCover is an algorithm to compute a global continuous parameterization for an arbi-
trary given simplicial 2-manifold. The algorithm runs automatically and the parameter
lines align optimally with a user-defined frame field, for example, the principal curvature
directions.

In a first stage of the algorithm, the frame field is slightly changed, such that it
turns into a locally integrable field. After cutting the surface open, the frame field is
integrated yielding a parameterization, which is discontinuous at the cuttings.

In the second part of QuadCover, the frame field is once more altered, such that the
parameter lines close globally, even at the cuttings. The details are explained in the
following sections.

8.2 Setting

In this section the underlying concepts of the QuadCover algorithm are introduced.

8.2.1 Matchings

Smooth setting. Given a smooth 2-manifold M with charts Ui ⊂ M . A parameter-
ization maps all charts into the parameter domains fi : Ui → Ωi ⊂ R2. One can now
visualize the parameter grid on M as the pre-image under fi of the unit grid lines N×R
and R × N. A globally continuous parameterization consists of a set of charts Ui

with parameter functions fi for which the parameter lines coincide in all regions where
two charts Ui, Uj overlap.

The transition functions between adjacent charts of a global parameterization satisfy
two conditions, see also [Ray et al., 2006]:

First, the gradients of the parameterization functions have to agree up to a cyclic
permutation of the vectors (∇ufi,∇vfi,−∇ufi,−∇vfi), because u- and v-lines should
not be distinguished on the parameterized surface. Thus, the Jacobians of the charts
are related by

Dfi(p) = JrijDfj(p), J :=

(
0 1
−1 0

)
, p ∈ Ui ∩ Uj (8.1)
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Figure 8.3: Parameterization of two overlapping charts with a matching of rij = 3 (left),
and of a cube with matchings r01 = r12 = 0, r20 = 1 (right).

with a constant integer rij ∈ {0, 1, 2, 3} on the intersection Ωi ∩ Ωj. We call the values
rij matchings between charts Ui and Uj. See Figure 8.3 for nontrivial matchings.

Second, the parameter values may differ only by integer values in the u and v coor-
dinate, since the unit grid is invariant under translations by integer values.

The transition functions fj ◦ f−1
i of a parameterization fulfilling the two conditions

above are automorphisms of the unit grid. We call a linear function f : R2 → R2 which
meets

f(z) = Jrz + t, r ∈ N, t ∈ N2, z ∈ R2 (8.2)

a grid automorphism.

Discretization. Each triangle of the mesh is considered as a chart. The transition
function between two adjacent triangles is fully determined by the matching and the
translation vector associated to their common edge (see Equation 8.2).

8.2.2 Frame fields

A parameterization f can be characterized by its derivatives. In each chart, the gradient
fields ∇uf and ∇vf are continuous vector fields. At the transition between two charts
Ui, Uj, the vectors ∇uf , ∇vf , −∇uf and −∇vf interchange cyclically depending on the
matching number.

Thus, we cannot describe the derivatives of f as globally defined vector fields, but
have to introduce frame fields which are invariant under cyclic permutations (see Figure
8.4 for examples).

Definition 1. Given a manifold M with charts Ui and matchings r. A frame field on
M is a collection of four vector fields Xi,0, Xi,1, Xi,2, Xi,3, in each chart Ui which satisfy
in all overlapping charts Ui ∩ Uj:

Xj,k = Xi,(k−rij) mod 4, k ∈ {0, 1, 2, 3}.

This means that the vectors Xj,k are cyclically permuted to Xi,k by a shift of −rij. If
Xi,2 = −Xi,0, Xi,3 = −Xi,1 in all domains Ωi, the frame field is called symmetric.
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Figure 8.4: A set of four vectors given in each point which cannot be described with
global vector fields. Left: On a flat torus an integral line meets itself perpendicularly.
Right: Around the vertex of a cube exists no match of vectors.

In the example of Figure 8.3 (left), Xi,1 coincides with Xj,0, corresponding to rij = 3.
Figure 8.4 shows examples of a frame field on a flat torus and a cube, which cannot be
expressed in terms of 4 global vector fields.

A parameterization f can be represented in differential form by a global frame field
on M using the following two vector fields in each chart Ui:

Xi,0 := (Dfi)
−1(e1), Xi,1 := (Dfi)

−1(e2) (8.3)

with the unit vectors e1, e2 in R2. With e3 := −e1, e4 := −e2 and Xi,2 := (Dfi)
−1(e3),

Xi,3 := (Dfi)
−1(e4), we obtain indeed a frame field: for k ∈ {0, 1, 2, 3}

Xj,k = (Dfj)
−1(ek) = (D(Jrijfi))

−1(ek)

= (Dfi)
−1(J−rijek) = Xi,(k−rij) mod 4

(8.4)

Discretization. The frame fields are discretized to be constant on each triangle. For
symmetric frame fields, only two of the four vectors are stored. Together with the
matchings, this defines discrete symmetric frame fields uniquely.

Definition 2. A matching on a discrete manifold M is a map

r : {edges eij |Ti ∩ Tj = eij} → {0, 1, 2, 3},

which determines the matching rij for two adjacent triangles Ti and Tj. We denote the
space of all those maps by RM .

8.2.3 Branched covering spaces

The QuadCover algorithm uses the notion of branched covering surfaces for an equivalent
description of frame fields. A frame field on the input surface can be seen as a vector
field on a covering surface. The advantage of this notion is, that standard vector field
calculus can now be applied to frame fields.

First, recall some definitions about Riemann surfaces, see [Farkas and Kra, 1992],
[Fulton, 1995], [Jost, 2002].
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Figure 8.5: From left to right: trivial covering; patching two coverings together; a frame
field lifted to a vector field on the covering; branch point.

Definition 3. Let M be a Riemann surface. An n-sheeted covering M ′ of M is a
Riemann surface with a local homeomorphism π : M ′ →M , such that there exists a disk
Up of each point p ∈ M , whose pre-image π−1(Up) is the union of exactly n pairwise
disjoint open sets (Figure 8.5, left, shows a 2-sheeted covering).

In our setting, we allow some exceptional points p (branch points), where the pre-
image of a neighbourhood of p is the union of less than n pairwise disjoint open sets
(Figure 8.5, right).

Definition 4. A trivial n-sheeted covering of a map Ui ⊂M is an n-sheeted covering
U ′

i which consists of n disjoint components which are mapped by π homeomorphically onto
Ui.

The components π−1(U) of a trivial covering are called layers. They will be denoted
by U l ⊂ U ′, l ∈ {0, . . . ,#layers − 1}. Let τ l

U = (π|U l)−1 : U → U l be the inverse of the
projection operator in the given layer l.

Here we consider coverings whose metric is induced from the surfaceM by π−1. Thus,
an n-sheeted trivial covering of M can be seen as just n copies of M , cf. Figure 8.5, left.

One way of constructing a covering on M is to take trivial coverings of all charts
and glue them together at their intersection: For each two charts Ui, Uj of M with
Ui ∩ Uj 6= ∅, let % : π−1

i (Ui ∩ Uj) → π−1
j (Ui ∩ Uj) be an isomorphism. The patches can

then be merged together by identifying the corresponding points of the two coverings,
cf. Figure 8.5, second image.

The following construction shows, how the matchings rij of a manifold M canonically
induce a covering of M . We restrict to 4-sheeted coverings as they naturally appear in
the study of frame fields.

Definition 5. Let (U ′
i , πi) be 4-sheeted trivial coverings of the charts Ui. For two over-

lapping charts Ui, Uj, the map % : π−1
i (Ui ∩ Uj) → π−1

j (Ui ∩ Uj), which maps a point
p ∈ τ l

Ui
(Ui ∩ Uj) from layer l to τ

(rij+l) mod 4
Uj

◦ πU(p) into layer (rij + l) mod 4, is an
isomorphism. Thus, by identifying the two layers with %, the trivial coverings of the
charts can be glued together (Figure 8.5, second image). We call the resulting covering
M ′ of the covering induced by r.
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The covering M ′ induced by the matchings has no branch points. To enlarge the
space of possible frame fields on the manifold, the covering surface may possess single
points p ∈M , which have less than 4 pre-images. One can get these points by excluding
them from the surface (see Figure 8.5, right). See below for the construction of branch
points in the discrete setting.

Discretization. In the discrete setting, branch points are located at vertices. On a 4-
sheeted covering they occur when the (oriented) sum of all matchings of outgoing edges
differs from 0 (modulo 4). This means starting somewhere in the neighborhood of v and
walking around the vertex, ends on a different layer in the covering than the start point.
The following notion is used for describing different types of branch points.

Definition 6. Let v be a vertex of M , T0, . . . , Tn−1 the triangles incident to v in counter-
clockwise order, Tn = T0 and ri,i+1 the matching at the edge between adjacent triangles.
The layer shift around v is then given by:

ls(v) :=
( n∑

i=0

ri,i+1

)
mod 4 (8.5)

8.2.4 Vector fields on covering spaces

In this section, we show how frame fields can be described with vector fields on a covering
surface. This result allows us to apply the classical theory for vector fields to frame fields.

A frame field Xi,k on M with matchings r canonically lifts to a vector field X on the
covering: in each chart Ui, lift Xi,k to a vector field X on a trivial 4-sheeted covering U ′

i

of Ui as follows: For p ∈ τ l
U(U), set X(p) = Xi,l(πi(p)) (Figure 8.5, third image). The

result is a globally defined vector field X on the covering M ′ induced by the matchings
r.

When the coverings of the charts are patched together as described in Definition 5, X
becomes a well defined vector field on M ′, since the layers of the covering are connected
in the same way as the vector fields permute when another chart is chosen.

Definition 7. Let M be a manifold with matchings r and M ′ the induced covering. A
frame field lifted to a vector field X on M ′ is called a covering field of M .

8.3 QuadCover Algorithm

Computing the potential function. Given a surface M together with a frame field
Xi,j on M . Equivalently, given a covering surface M ′ with a vector field X on M ′.
The parameterization is a scalar function f ′ : M ′ → R. It can be projected back to a
parameter function f : M → R2 by taking the values of f ′ on the first two layers.

The parameterization should align with the given input field as well as possible, i.e.,
f ′ should minimize the energy

E(f) =

∫
M ′
‖∇f −K‖2dA. (8.6)
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Figure 8.6: Parameterization after first stage of the QuadCover algorithm. The grid
lines are discontinuous across the cuttings.

Recall, that K is a symmetric covering field and the covering surface is symmetric
due to a cyclic permutation of the layers by 2. Since the energy has a unique minimum,
the solution f ′ is also symmetric.

This optimization problem can also be formulated using covering fields instead of
the scalar function f ′. The Hodge-Helmholtz decomposition of a vector field K on a
manifold M ′ is a unique description of K as

K = PK + CK +HK (8.7)

with a gradient field PK , a cogradient field CK and a harmonic field HK . Discarding
the second term leads to a curl free field X̃ := PK +HK whose integral is the minimizer
of Energy (8.6). For details on the Hodge decomposition of discrete vector fields see
[Polthier and Preuss, 2003].

So far, the parameterization algorithm outlines as follows:

1. Perform Hodge-Helmholtz decomposition of input field K.

2. Discard second term and obtain a locally integrable field.

3. Cut the surface open to be simply connected and lift the cut graph to the covering,
such that the covering gets cut into 4 connected pieces.

4. Obtain the parameterization f ′ by integration.

8.3.1 Global continuity

If we take the solution f ′ from the previous paragraph as parameterization map, the
parameter lines would not be continuous everywhere on the surface. They may have a
mismatch at the cut graph G (see Figure 8.6).

Definition 8. Given a cut graph G on M . Let {γi} be a set of cutting paths with
∪iγi = G. Each cutting path is closed or connect a boundary or branchpoint with another
boundary or branch point.

For all paths γi and each point p ∈ γi, one can measure the gap (discontinuous jump)
as the difference of function values on the right and left side of the path.
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The parameterization can now be “repaired” such that the grid lines match up. This
is the case iff all gaps are integer values. The repairing algorithm bases on the following
observation: Along each path γi, the gap is always a constant di, since the derivative
of the function is locally integrable. Note, that there is an exception if two paths γi, γj

merge and run on top of each other. In this case, the gap turns into di + dj. For further
details, see [Kälberer et al., 2007].

Thus, the grid lines are globally continuous if and only if all di ∈ Z. In order to adapt
f to fulfill the global continuity condition, we add another scalar covering function ψ to
f ′ such that f̃ ′ := f ′ + ψ satisfies d̃′j ∈ Z (where d̃′j are the gaps of f̃ ′).

The remaining problem is to find this scalar function, with given gaps. In order
to distort the initial parameterization as few as possible, ψ is taken to be a harmonic
function, because they are the smallest functions with given gaps in L2 norm. ψ is found
via minimizing the Dirichlet energy. For the exact algorithm, refer to [Kälberer et al.,
2007].

The second stage of QuadCover has the following outline:

1. Compute cutting paths γi.

2. Measure gaps di.

3. Find harmonic map ψ with gaps round(di)− di.

4. Add ψ to f ′.

8.4 Resulting Parameterizations of QuadCover

The algorithm delivers parameterizations on a wide range of models, as shown in Fig-
ures 8.1, 8.7, 8.8, 8.9, and 8.10. Comparisons to state-of-the-art show that QuadCover
produces very competitive results, see Figure 8.10. As the figure illustrates, it roughly
shares the curvature alignment of [Ray et al., 2006], but managed to drastically reduce
the occurrence of irregular points. In contrast to the methods of [Tong et al., 2006] and
[Dong et al., 2006], QuadCover is suited to handle arbitrary locations of branch points,
as it does not restrict the branch points to be the corners of some coarse meta mesh.

Table 8.1 shows that QuadCover exhibits the smallest edge length variation, at
the cost of higher angular deviation. Discarding the curvature alignment term dur-
ing smoothing significantly reduces angular deviation, but generally, more wrinkles in
the final quad mesh are introduced where parameter lines do not follow high curvature.
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Figure 8.7: Parameterized minimal surfaces: Trinoid (left), Schwarz P-surface with its
cut graph, and the Hyperboloid parameterized using non-orthogonal frames.

Figure 8.8: Parameterization of the hand model. Branch points are marked red.

Figure 8.9: Comparison of the remeshed hand model with [Tong et al., 2006] (top).
Bottom: constructed with QuadCover. The hand model is courtesy of Pierre Alliez.
Except from setting preprocessing parameters, no interaction was involved.
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Figure 8.10: Comparison of remeshing results of the Stanford bunny. Models were
produced by [Ray et al., 2006] and [Tong et al., 2006] (top), [Dong et al., 2006] and
QuadCover (bottom). The upper histogram next to each model shows the distribution
of edge lengths, the lower histogram represents angle distribution.

[Ray et al., 2006] [Tong et al., 2006] [Dong et al., 2006] QuadCover
vertices 6355 6576 7202 6535
irreg. vert. 314 34 26 37
RSD edge 25.0% 28.3% 30.8% 18.2%
RSD angle 10.7% 12.6% 7.8% 14.8%

Table 8.1: The number of total and irregular vertices of the models shown in Figure 8.10,
as well as the relative standard deviation of their edge lengths and vertex angles.
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