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Motivation

Symmetry is common in real-world objects
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Problem

Most algorithms ignore (and sometimes destroy)

symmetries when they proce
o Rendering artifacts
o Simulation errors
o etc.

Symmetric Asymmetric

Input Mesh Output Mesh
[Cohen-Steiner04] )
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Goal

We need methods to detect, analyze, represent, and
exploit symmetries in 3D models
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Symmetry

A shape has reflective symmetry w.r.t. some plane p
If the reflection Ref; through p fixes the collection
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Symmetry

A shape has rotational symmetry of order k w.r.t.
some axis p if the rotation Rot ¥ by an angle of
360°/k about p fixes the collection.
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Approximate Symmetry
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... but many shapes in computer graphics are not
perfectly symmetric




Symmetry Distance

The symmetry distance of a boundary is the
L2 distance to the nearest symmetric boundary

I I, P
Input Shape I\Il'earest 3-fold Symmetry Distance
symmetric

. i IWVF, 1994. Zabrodsky et al.
Requires point correspondences IEEE, 1995. Zabrodsky et al.
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Symmetry Distance

For circular functions, can replace distances
between correspondences with correlation

>ﬁ

2D Shape

Function

Sym(SD, &) = 2fSD(t — &)SD(t)dt

PRL, 1995. Sun
RTI, 1999. Sun et al.
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Symmetry Distance

~N

e W

For images, can consider circular restrictions and
compute correlations efficiently with Fourier
transform

scale factor
’.Ju‘

Sym(t,y)= 1 Sym(

cale factor scale factor
- -

; 7)+e

PRL, 1995. Sun

RTI, 1999. Sun et al.
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Symmetry Distance

e W

For 3D functions, can consider spherical restrictions
and compute correlation efficiently with spherical
harmonics and Wigner-D-1 transform

scale factor scale factor scale factor
- ~ -

sym(f,R)= r Sym(“R)+ r SmC'R)+ r  Sym{*,R)+..

ECCV, 2002. Kazhdan et al. )
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Symmetry Distance

For boundaries, can approximate symmetry
distance by converting to a function and then
computing correlation
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Symmetry Distance
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Can use this method to compute symmetry distance
for any 3D mesh (without finding correspondences)

Sym(m,p) = 0.3
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Back to the Goal ...
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Symmetry Descriptor

TR

Measure the symmetry of an object with respect to
every transformation through its center

D

Input Shape Planar Reflective

Symmetry Descriptor
J
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Symmetry Descriptor

Planar reflective symmetry descriptors:

Input Mesh §
Planar Reflective
Symmetry Descriptor
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Symmetry Descriptor

Planar reflective symmetry descri
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Symmetry Descriptor

Planar reflective symmetry descriptors:
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Symmetry Descriptor

Planar reflective symmetry descriptors:
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Symmetry Descriptor

Planar reflective symmetry descriptors:
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Symmetry Descriptor

Rotational symmetry descriptors:
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Symmetry Descriptor

Rotational symmetry descriptors:
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Symmetry Descriptor

Properties:
o Canonical parameterization
» Parameterized over the (projective) sphere
o Insensitive to noise:

* Integration scales down high frequency
Fourier coefficients

o Global:
» For functions f and g, and any reflection r:

Sym(f,r)—Sym(g,r)/<|f - gH2
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Symmetry Transform

Measure the symmetry of an object
with respect to all transformations

Input Shape
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Symmetry Transform
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Symmetry Transform

Planar reflective symmetry transform:
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Symmetry Transform

Stabllity with noise:
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Symmetry Transform

Stablility with small extra features:

Planar Reflective
Symmetry Transform

Medial Axis Transform
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Symmetry Transform

Highlights large symmetric features of shape:
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Symmetry Transform

Computation:
»Brute Force: O(n°)

O(n?3) planes
X = O(n®)

N planes

O(n3) correlation
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Symmetry Transform

Computation:
o Brute Force: O(n®)
»Convolution: O(n°logn)

O(n?) normal directions
X = O(n®log n)

O(n3log n) per direction

N planes
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Symmetry Transform

Computation:
o Brute Force: O(n®)
»Convolution: O(n>logn)

Translate planes

AN K N

AN AN NN NN

Rotate planes




-

Symmetry Transform

Computation:
o Brute Force: O(n®)
o Convolution: O(n°logn)
»Monte Carlo: O(n%) for surfaces

O(n?) surface points
X = O(n%)

N planes

O(n?) pairs
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Symmetry Transform

Monte Carlo algorithm:

Angle

Input Model Symmetry Transform




Symmetry Transform

Monte Carlo algorithm:

Monte Carlo sample [
‘\ for single plane

Input Model Symmetry Transform
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Symmetry Transform

Monte Carlo algorithm:

Angle

Input Model Symmetry Transform
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Symmetry Transform

Monte Carlo algorithm:

Angle

Input Model Symmetry Transform




Symmetry Transform

Monte Carlo algorithm:

Input Model Symmetry Transform



Symmetry Transform

Monte Carlo algorithm:

Input Model Symmetry Transform



Symmetry Transform

Monte Carlo algorithm:

Input Model Symmetry Transform
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Symmetry Transform

Compute time:
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Principal Symmetries

Motivation: finding and representing significant
symmetries Is sufficient for many applications

— Principal Symmetries
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Principal Symmetries

Observation: significant symmetries are usually
local maxima of symmetry transformation

— Principal Symmetries
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Principal Symmetries

Computing local maxima precisely:
o Start from local maxima of discrete transform
o Establish closest point correspondences
o Refine transformation
o Iterate until find local maxima

Discrete Closest Point ~ Continuous
Local Maximum  Correspondences Local Maximum

J




Principal Symmetries

Computing local maxima precisely:



localmaxima.avi
localmaxima.avi
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Related Work

Exploiting symmetry in geometric processing
o Completion — Zabrodsky93, Thrun et al. 2005
o Alignment — Zabrodsky et al. 1995, Kazhdan et al. 2002
o Symmetrization - Zabrodsky et al. 1997, Mitra et al. 2007
o Feature detection — Reisfeld et al. 1995
o Reverse engineering - Mills et al. 2001
o Instancing - Martinet et al. 2005
o Matching — Kazhdan et al. 2002, Gal et al. 2005
o Compression - Simari et al. 2006
o Segmentation - Mitra et al. 2006, Podolak et al. 2006
o Viewpoint selection — Podolak et al. 2006
o Editing — Mitra et al. 2006
o Simplification — Podolak et al. 2007




-
Applications

Alignment
Matching
Segmentation
Viewpoint selection
Simplification
Beautification

Texture synthesis




-

Symmetry-Aware Processing
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Application: Alignment

Motivation: registration, modeling, etc.

|

PCA Alighment
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Application: Alignment

Approach: align planes with highest symmetries
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Application: Alignment

Approach: align planes with highest symmetries
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Application: Alignment

Approach: align planes with highest symmetries
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Application: Alignment

Approach: align planes with highest symmetries
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Application: Alignment

Results:

-
Center of symmetry and principal symmetry axes
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Application: Alignment

Results:

Center of symmetry and principal symmetry axes
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Application: Alignment

Results:

(Center of Symmétry) (Center of Mass)
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Application: Alignment

Results:

—Principal Axes
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Applications

Alignment
Matching <
Segmentation
Viewpoint selection
Simplification
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Texture synthesis
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Application: Matching

Motivation: similarity search of database

Query Database Best Match
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Application: Matching

Observation: symmetry is more consistent than
shape for some object classes
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Application: Matching

TR

~N

Approach: use symmetry transform (or descriptor)
as shape descriptor

Query Symmetry  Database Best Match
Transform




-

Application: Matching .::

Lt

Results: symmetry is not as discriminating as shape
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Application: Matching

Results: symmetry is not as discriminating as shape,
but it Is better for some classes, and so
the two together are better than either alone
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Applications

Alignment

Matching
Segmentation
Viewpoint selection
Simplification
Beautification

Texture synthesis
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Application: Segmentation

Motivation: animation, modeling by parts, etc.
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Application: Segmentation

Observation: distinct parts have strong local
symmetries not shared by other parts
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Application: Segmentation

Observation: distinct parts have strong local
symmetries not shared by other parts
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Application: Segmentation

Observation: distinct parts have strong local
symmetries not shared by other parts
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Application: Segmentation

Observation: distinct parts have strong local
symmetries not shared by other parts
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Application: Segmentation

Observation: distinct parts have strong local
symmetries not shared by other parts
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Application: Segmentation

Approach: cluster points on the surface by how
much they support different symmetries

Support = 0.1 Support = 0.5 Support = 0.9

Symmetry Vector={0.1,0.5,....,0.9}




Application: Segmentation

Approach: cluster points on the surface by how
much they support different symmetries

Not
Symmetric

:

Symmetric



segmentation.avi
segmentation.avi
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Application: Segmentation

Results:
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Applications

Alignment

Matching

Segmentation

Viewpoint selection <
Simplification
Beautification

Texture synthesis
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Application: Viewpoint Selection

Motivation: visualization, icon generation, etc.

Picture from Blanz et al. ‘99
\\ J
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Application: Viewpoint Selection
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Observation: symmetry represents redundancy

Bad Viewpoint
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Application: Viewpoint Selection

~N

Approach: Minimize visible symmetry

o Every plane of symmetry votes for a viewing direction
perpendicular to it

Directions

Best Viewing /
—




-
Application: Viewpoint Selection

Results:
Viewpoint Best Worst
Function Viewpoint Viewpoint
/
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Application: Viewpoint Selection

Results:

Viewpoint Function  Best Viewpoint ~ Worst Viewpoint
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Applications

Alignment
Matching
Segmentation
Viewpoint selection
Simplification G
Beautification

Texture synthesis
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Application: Simplification

TR

Motivation: preserve symmetry when simplify mesh

Standard Symmetric
Simplification Simplification
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Application: Simplification

Approach 1: detect (approximate) symmetries and
then preserve them as decimate

Symmetry Symmetry
Analysis Aware
Decimation

Input
Mesh

Symmetric
Simplification

J
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Application: Simplification

Results:

Original Qslim
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Application: Simplification

Results:

Symmetry-Preserving Qslim
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Application: Simplification

Results:

Symmetry-Preserving Qslim
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Application: Parameterization

Preserve symmetries in base domain
Input Mesh

Base Domain

Parameterization
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Applications

Alignment

Matching
Segmentation
Viewpoint selection
Simplification
Beautification

Texture synthesis
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Application: Beautification

Goal: make meshes of symmetric objects
perfectly symmetric

QO

Input Mesh Symmetric Mesh y
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Application: Beautification

Approach: iterative non-rigid deformation
to align symmetric points (symmetrization)

Input sHape Corresp(:)ndences Shape Pr:eserving

Between Deformation to
Symmetric Enhance Symmetry
Points
A

Iterate J
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Application: Beautification

Approach: iterative non-rigid deformation
to align symmetric points (symmetrization)
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Application: Beautification

Results:

Input Mesh Mesh overlaid with its reflection
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Application: Beautification

Results:

Symmetrized Mesh Mesh overlaid with its reflection
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Application: Beautification

Results:

Input Mesh
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Application: Beautification

Results:

Principal
Symmetry Planes
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Results:

Output Mesh
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Application: Beautification

Results:

Output Mesh
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Application: Beautification

Results:

Input Mesh
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Application: Denoising

Results:

Input Symmetrized
Mesh Mesh

Bilateral
Filtering
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Applications

Alignment
Matching
Segmentation
Viewpoint selection
Simplification
Beautification

Texture synthesis <
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Application: Texture Synthesis
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Maintain symmetries during texture synthesis

Input

Symmetry
Representation

Not Symmetry-guided

Symmetry Guided
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Application: Texture Manipulation

Edit symmetries during texture synthesis

Input Not Symmetry-guided Symmetry Guided

Symmetry

Representation
Contrast +4
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Application: Texture Manipulation

~

Edit symmetries during texture synthesis

Input

Symmetry
Representation

Not Symmetry-guided

Contrast -4

Symmetry Guided
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Summary

Representations
o Symmetry descriptor
o Symmetry transform
o Principal symmetries

Applications
o Alignment
o Matching
o Segmentation
o Viewpoint Selection
o Simplification
o Beautification
o Texture synthesis
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