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Motivation

Symmetry is common in real-world objects



Problem

Most algorithms ignore (and sometimes destroy) 

symmetries when they process 3D models
 Rendering artifacts

 Simulation errors

 etc.

[Cohen-Steiner04]
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Goal

We need methods to detect, analyze, represent, and 

exploit symmetries in 3D models
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Symmetry

A shape has reflective symmetry w.r.t. some plane p

if the reflection Refp through p fixes the collection

p
p



Symmetry

A shape has rotational symmetry of order k w.r.t. 

some axis p if the rotation Rotp
k by an angle of 

360o/k about p fixes the collection.

p p
k=4 k=2



Approximate Symmetry

… but many shapes in computer graphics are not 

perfectly symmetric

p

?



Symmetry Distance

The symmetry distance of a boundary is the 

L2 distance to the nearest symmetric boundary

Input Shape Nearest 3-fold 

symmetric

Symmetry Distance

IWVF, 1994. Zabrodsky et al.

IEEE, 1995. Zabrodsky et al. Requires point correspondences



Symmetry Distance

For circular functions, can replace distances 

between correspondences with correlation
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Symmetry Distance

For images, can consider circular restrictions and 

compute correlations efficiently with Fourier 

transform

PRL, 1995. Sun

RTI, 1999. Sun et al. 
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Symmetry Distance

For 3D functions, can consider spherical restrictions 

and compute correlation efficiently with spherical 

harmonics and Wigner-D-1 transform 

  
...),  (),  (),  (),(

factor  scale

3

factor  scale

2

factor  scale

1  RSymrRSymrRSymrRfSym

ECCV, 2002. Kazhdan et al. 

f



Symmetry Distance

For boundaries, can approximate symmetry 

distance by converting to a function and then 

computing correlation )(),( fffD  



Symmetry Distance

Can use this method to compute symmetry distance

for any 3D mesh (without finding correspondences)

m

p

Sym(m,p) = 0.3



Back to the Goal …

We need methods to detect, analyze, represent, 

and exploit symmetries in 3D models
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Symmetry Descriptor

Measure the symmetry of an object with respect to 

every transformation through its center

Input Shape Planar Reflective

Symmetry Descriptor



Symmetry Descriptor

Planar reflective symmetry descriptors:

Planar Reflective 
Symmetry Descriptor

Input Mesh



Symmetry Descriptor

Planar reflective symmetry descriptors:



Symmetry Descriptor

Planar reflective symmetry descriptors:



Symmetry Descriptor

Planar reflective symmetry descriptors:



Symmetry Descriptor

Planar reflective symmetry descriptors:



Symmetry Descriptor

Rotational symmetry descriptors:



Symmetry Descriptor

Rotational symmetry descriptors:



Symmetry Descriptor

Properties:
 Canonical parameterization

 Parameterized over the (projective) sphere

 Insensitive to noise:

 Integration scales down high frequency 

Fourier coefficients

 Global:

 For functions f and g, and any reflection r:

2
),(),( gfrgSymrfSym 
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Symmetry Transform

Measure the symmetry of an object 

with respect to all transformations

?
Planar Reflective

Symmetry Transform

Input Shape



Symmetry Transform

Planar reflective symmetry transform: 



Symmetry Transform

Stability with noise:



Symmetry Transform

Stability with small extra features:

Planar Reflective
Symmetry Transform

Medial Axis Transform



Symmetry Transform

Highlights large symmetric features of shape:
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Symmetry Transform

Computation:
Brute Force: O(n6)

O(n3) planes 

X  =            O(n6)

O(n3) correlation
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Symmetry Transform

Computation:
 Brute Force: O(n6)

Convolution: O(n5 logn) 

O(n2) normal directions 

X  =            O(n5log n) 

O(n3log n) per direction



Symmetry Transform

Computation:
 Brute Force: O(n6)

Convolution: O(n5 logn) 

Translate planes Rotate planes
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Symmetry Transform

Computation:
 Brute Force: O(n6)

 Convolution: O(n5 logn)

Monte Carlo: O(n4) for surfaces

O(n2) surface points

X  =            O(n4) 

O(n2) pairs



Symmetry Transform
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Input Model Symmetry Transform

Monte Carlo algorithm:



Symmetry Transform

Monte Carlo algorithm:
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Monte Carlo sample 

for single plane

Input Model Symmetry Transform



Symmetry Transform
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Symmetry Transform
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Input Model Symmetry Transform

Monte Carlo algorithm:



Symmetry Transform

Compute time:
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Principal Symmetries

Motivation: finding and representing significant 

symmetries is sufficient for many applications

Principal Symmetries



Principal Symmetries

Observation: significant symmetries are usually 

local maxima of symmetry transformation

Principal Symmetries



Principal Symmetries

Computing local maxima precisely:
 Start from local maxima of discrete transform

 Establish closest point correspondences

 Refine transformation

 Iterate until find local maxima

Discrete 
Local Maximum

Closest Point
Correspondences

Continuous
Local Maximum



Principal Symmetries

Computing local maxima precisely:

localmaxima.avi
localmaxima.avi
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Related Work

Exploiting symmetry in geometric processing
 Completion – Zabrodsky93, Thrun et al. 2005

 Alignment – Zabrodsky et al. 1995, Kazhdan et al. 2002

 Symmetrization - Zabrodsky et al. 1997, Mitra et al. 2007

 Feature detection – Reisfeld et al. 1995

 Reverse engineering - Mills et al. 2001

 Instancing - Martinet et al. 2005

 Matching – Kazhdan et al. 2002, Gal et al. 2005

 Compression - Simari et al. 2006

 Segmentation - Mitra et al. 2006, Podolak et al. 2006

 Viewpoint selection – Podolak et al. 2006

 Editing – Mitra et al. 2006

 Simplification – Podolak et al. 2007
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Symmetry-Aware Processing
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Application: Alignment

Motivation: registration, modeling, etc.

PCA Alignment



Application: Alignment

Approach: align planes with highest symmetries
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Approach: align planes with highest symmetries
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Results:
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Application: Matching

Motivation: similarity search of database

Database Best MatchQuery

=



Application: Matching

Observation: symmetry is more consistent than 

shape for some object classes



Application: Matching

Approach: use symmetry transform (or descriptor) 

as shape descriptor

Database Best MatchQuery

=

Symmetry

Transform



Application: Matching

Results: symmetry is not as discriminating as shape

Shape X Symmetry
Shape Alone

Symmetry Alone



Application: Matching

Results: symmetry is not as discriminating as shape, 

but it is better for some classes



Application: Matching

Results: symmetry is not as discriminating as shape, 

but it is better for some classes, and so

the two together are better than either alone

Shape X Symmetry
Shape Alone

Symmetry Alone
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Application: Segmentation

Motivation: animation, modeling by parts, etc.



Application: Segmentation

Observation: distinct parts have strong local 

symmetries not shared by other parts  
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Application: Segmentation

Observation: distinct parts have strong local 

symmetries not shared by other parts



Application: Segmentation

Approach: cluster points on the surface by how 

much they support different symmetries

Symmetry Vector = { 0.1 , 0.5 , …. , 0.9 }

Support = 0.1 Support = 0.5 Support = 0.9

…..



Application: Segmentation

Approach: cluster points on the surface by how 

much they support different symmetries

segmentation.avi
segmentation.avi


Application: Segmentation

Results:
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Application: Viewpoint Selection

Motivation: visualization, icon generation, etc.

[Blanz ’99][Vasquez ’01]

[Lee ’05][Abbasi ’00]
Picture from Blanz et al.  ‘99



Application: Viewpoint Selection

Observation: symmetry represents redundancy

Bad Viewpoint



Application: Viewpoint Selection

Approach: Minimize visible symmetry
 Every plane of symmetry votes for a viewing direction 

perpendicular to it

Best Viewing 

Directions



Application: Viewpoint Selection

Results:

Viewpoint 

Function

Best 

Viewpoint

Worst 

Viewpoint



Application: Viewpoint Selection

Results:

Viewpoint Function Best Viewpoint Worst Viewpoint
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Application: Simplification

Motivation: preserve symmetry when simplify mesh

Input
Mesh

Standard
Simplification

Symmetric
Simplification



Application: Simplification

Approach 1: detect (approximate) symmetries and 

then preserve them as decimate

Input
Mesh

Symmetric
Simplification

Symmetry
Analysis

Symmetry
Aware

Decimation

Symmetric Correspondences



Application: Simplification

Results:

Original Qslim



Application: Simplification

Results:

Symmetry-Preserving Qslim



Application: Simplification

Results:

Symmetry-Preserving Qslim



Application: Parameterization

Preserve symmetries in base domain

Input Mesh

Base Domain Parameterization
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Application: Beautification

Goal: make meshes of symmetric objects

perfectly symmetric

Input Mesh Symmetric Mesh



Application: Beautification

Approach: iterative non-rigid deformation 

to align symmetric points (symmetrization)

Input shape Correspondences
Between

Symmetric
Points

Shape Preserving
Deformation to

Enhance Symmetry

Iterate



Application: Beautification

Approach: iterative non-rigid deformation 

to align symmetric points (symmetrization)



Application: Beautification

Results:

Input Mesh Mesh overlaid with its reflection



Application: Beautification

Results:

Symmetrized Mesh Mesh overlaid with its reflection



Application: Beautification

Results:

Input Mesh



Application: Beautification

Results:

Principal

Symmetry Planes



Application: Beautification

Results:

Output Mesh



Application: Beautification

Results:

Output Mesh



Application: Beautification

Results:

Input Mesh



Application: Denoising

Results:

Input

Mesh
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Application: Texture Synthesis

Maintain symmetries during texture synthesis

Input

Symmetry
Representation

Not Symmetry-guided Symmetry Guided



Application: Texture Manipulation

Edit symmetries during texture synthesis

Contrast +4

Input

Symmetry
Representation

Symmetry GuidedNot Symmetry-guided



Application: Texture Manipulation

Edit symmetries during texture synthesis

Input

Symmetry
Representation

Symmetry GuidedNot Symmetry-guided

Contrast -4



Summary

Representations
 Symmetry descriptor

 Symmetry transform

 Principal symmetries

Applications
 Alignment

 Matching

 Segmentation

 Viewpoint Selection

 Simplification

 Beautification

 Texture synthesis
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