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Motivation

Want frequency domain representation for 

3D meshes
 Smoothing 

 Compression

 Progressive transmission

 Watermarking

 etc.



Frequencies in a mesh

One possibility = multiresolution meshes
 Like wavelets

[Hoppe]



Frequencies in a mesh

This lecture = spectral meshes
 Like Fourier

[Hoppe]



Fourier Transform

Figure 2.6 Wolberg
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Filtering on a mesh

Geometric space

Frequency space

Filtering

[Taubin 95]
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Frequencies in a function

Fourier analysis
 2D bases for 2D signals (images)
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How about 3D shapes?

Problem: 2D surfaces embedded in 3D 

are not  (height) functions

Height function, regularly 

sampled above a 2D domain

General 3D shapes



Basis functions for 3D meshes

Need extension of the Fourier basis to a general 

(irregular) mesh

on ?

sin(kx)



Basis functions for 3D meshes

We need a collection of basis functions
 First basis functions will be very smooth, slowly-varying

 Last basis functions will be high-frequency, oscillating

We will represent our shape (mesh geometry) as a linear 

combination of the basis functions



Harmonics

sin(kx) are the stationary vibrating modes = harmonics of a string



Harmonics

Harmonics

Line

Stationary vibrating modes



Spherical Harmonics

Sphere

Harmonics

Stationary vibrating modes



Manifold Harmonics

?
Harmonics

Stationary vibrating modes



Harmonics

Wave equation:

T ∂²y/∂x² = μ ∂²y/∂t²

T: stiffness  μ: mass

Stationary modes:

y(x,t) = y(x)sin(ωt)

∂²y/∂x² = -μω²/T y

eigenfunctions of ∂²/∂x²

y
x



Harmonics

Harmonics are eigenfunctions of ∂²/∂x²

On a mesh, ∂²/∂x² is the Laplacian Δ

Frequency domain basis functions for 3D meshes 

are eigenfunctions of the Laplacian



The Mesh Laplacian operator

Measures the local smoothness at each mesh 

vertex
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Laplacian operator in matrix form
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Spectral bases

L is a symmetric nn matrix

Eigenfunctions of L computed with spectral analysis

L =

T
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The spectral basis

First functions are smooth and slow, last oscillate a lot

horse connectivity

spectral basis of L =

the DCT basis

chain connectivity

2nd basis 

function

10th basis 

function

100th basis 

function



The spectral basis

First functions are smooth and slow, last oscillate a lot



Spectral mesh representation

Coordinates represented in spectral basis:
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Spectral mesh representation

Coordinates represented in spectral basis:
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The spectral basis

Most shape information is in low-frequency 

components

[Karni and Gotsman 00] 



Applications

Smoothing

Compression

Progressive transmission

Watermarking

etc.



Mesh smoothing

Aim to remove high frequency details

[Taubin 95]



Spectral mesh smoothing

Drop the high-frequency components
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Mesh compression

Aim to represent surface with fewer bits

1.4 bits/vertex36 bits/vertex



Mesh compression

Most of mesh data is in geometry
 The connectivity (the graph) can be very efficiently 

encoded

» About 2 bits per vertex only

 The geometry (x,y,z) is heavy!

» When stored naively, at least 12 bits per coordinate 

are needed, i.e. 36 bits per vertex



Mesh compression

What happens if quantize xyz coordinates?

original 8 bits/coordinate



Mesh compression

Quantization of the Cartesian coordinates 

introduces high-frequency errors to the surface.

High-frequency errors alter the visual appearance of 

the surface – affect normals and lighting.



Mesh compression

Transform the Cartesian coordinates to another 

space where quantization error will have low 

frequency in the regular Cartesian space

Quantize the transformed coordinates.

Low-frequency errors are less apparent to a human 

observer.



Spectral mesh compression

The encoding side:
 Compute the spectral bases from mesh connectivity

 Represent the shape geometry in the spectral basis and decide how 
many coeffs. to leave (K)

 Store the connectivity and the K non-zero coefficients

The decoding side:
 Compute the first K spectral bases from the connectivity

 Combine them using the K received coefficients and get the shape



Spectral mesh compression

Low-frequency errors are hard to see



Progressive transmission

First transmit the lower-eigenvalue coefficients (low 

frequency components), then gradually add finer details by 

transmitting more coefficients.

[Karni and Gotsman 00] 



Mesh watermarking

Embed a bitstring in the low-frequency coefficients

 Low-frequency changes are hard to notice

[Ohbuchi et al. 2003] 



Caveat

Performing spectral decomposition of a large matrix (n>1000) 
is prohibitively expensive (O(n3))
 Today’s meshes come with 50,000 and more vertices

 We don’t want the decompressor to work forever!

Possible solutions: 
 Simplify mesh

 Work on small blocks (like JPEG)


