
Spectral Meshes

COS 526, Fall 2014

Slides from Olga Sorkine, Bruno Levy, Hao (Richard) Zhang

Motivation

Want frequency domain representation for

3D meshes
 Smoothing

 Compression

 Progressive transmission

 Watermarking

 etc.

Frequencies in a mesh

One possibility = multiresolution meshes
 Like wavelets

[Hoppe]

Frequencies in a mesh

This lecture = spectral meshes
 Like Fourier

[Hoppe]

Fourier Transform

Figure 2.6 Wolberg

Frequency domain

=Σ

sin(kx)

f

Filtering

=x

Filtering

Geometric space

Frequency space

Inverse

Fourier

Transform

Fourier

Transform

Filtering

Convolution

x

Filtering on a mesh

Geometric space

Frequency space

Filtering

[Taubin 95]

?? x

Frequencies in a function

Fourier analysis
 2D bases for 2D signals (images)

cos (2 1) cos (2 1)
16 16

u v
x y

    
    

   

How about 3D shapes?

Problem: 2D surfaces embedded in 3D

are not (height) functions

Height function, regularly

sampled above a 2D domain

General 3D shapes

Basis functions for 3D meshes

Need extension of the Fourier basis to a general

(irregular) mesh

on ?

sin(kx)

Basis functions for 3D meshes

We need a collection of basis functions
 First basis functions will be very smooth, slowly-varying

 Last basis functions will be high-frequency, oscillating

We will represent our shape (mesh geometry) as a linear

combination of the basis functions

Harmonics

sin(kx) are the stationary vibrating modes = harmonics of a string

Harmonics

Harmonics

Line

Stationary vibrating modes

Spherical Harmonics

Sphere

Harmonics

Stationary vibrating modes

Manifold Harmonics

?
Harmonics

Stationary vibrating modes

Harmonics

Wave equation:

T ∂²y/∂x² = μ ∂²y/∂t²

T: stiffness μ: mass

Stationary modes:

y(x,t) = y(x)sin(ωt)

∂²y/∂x² = -μω²/T y

eigenfunctions of ∂²/∂x²

y
x

Harmonics

Harmonics are eigenfunctions of ∂²/∂x²

On a mesh, ∂²/∂x² is the Laplacian Δ

Frequency domain basis functions for 3D meshes

are eigenfunctions of the Laplacian

The Mesh Laplacian operator

Measures the local smoothness at each mesh

vertex

() ()

1
()i i i j i i j

j N i j N ii

L d d
d 

 
    

 
 v v v v v

Laplacian operator in matrix form

1 1 1

2 2 2

3

1 1 1

1 0 1 0

0 1 1

0 1 1 1

1 1 1

n n n

n n n

d

d

d

d

d









  

     
    

 
    
    
    
    
    
    
    
      
    
          

v

v

v

v

L matrix

Spectral bases

L is a symmetric nn matrix

Eigenfunctions of L computed with spectral analysis

L =

T
1

2

n

1 2

| | |

| | |

nb b b 1 2

| | |

| | |

nb b b

Basis vectors Frequencies,

sorted in ascending

order

The spectral basis

First functions are smooth and slow, last oscillate a lot

horse connectivity

spectral basis of L =

the DCT basis

chain connectivity

2nd basis

function

10th basis

function

100th basis

function

The spectral basis

First functions are smooth and slow, last oscillate a lot

Spectral mesh representation

Coordinates represented in spectral basis:

X, Y, Z  R
n
. 1

2

1 1 2 2

1

2

1 1 2 2

1

2

1 1 2 2

n n

n

n n

n

n n

n

x

x

x

y

y

y

z

z

z

  

  

  

 
 
    
 
  
 

 
 
    
 
  
 

 
 
    
 
  
 

X b b b

Y b b b

Z b b b

Spectral mesh representation

Coordinates represented in spectral basis:

T T T1

1 2

2

1 1 2 2

1 2

n

n n

n

n

  

  

  

 
      
                
     

        
 

v

v
b b b

v

The first

components are

low-frequency

The last

components are

high-frequency

The spectral basis

Most shape information is in low-frequency

components

[Karni and Gotsman 00]

Applications

Smoothing

Compression

Progressive transmission

Watermarking

etc.

Mesh smoothing

Aim to remove high frequency details

[Taubin 95]

Spectral mesh smoothing

Drop the high-frequency components

T T T1

1 2

2

1 1 2 2

1 2

n

n n

n

n

  

  

  

 
      
                
     

        
 

v

v
b b b

v

High-frequency components!

Mesh compression

Aim to represent surface with fewer bits

1.4 bits/vertex36 bits/vertex

Mesh compression

Most of mesh data is in geometry
 The connectivity (the graph) can be very efficiently

encoded

» About 2 bits per vertex only

 The geometry (x,y,z) is heavy!

» When stored naively, at least 12 bits per coordinate

are needed, i.e. 36 bits per vertex

Mesh compression

What happens if quantize xyz coordinates?

original 8 bits/coordinate

Mesh compression

Quantization of the Cartesian coordinates

introduces high-frequency errors to the surface.

High-frequency errors alter the visual appearance of

the surface – affect normals and lighting.

Mesh compression

Transform the Cartesian coordinates to another

space where quantization error will have low

frequency in the regular Cartesian space

Quantize the transformed coordinates.

Low-frequency errors are less apparent to a human

observer.

Spectral mesh compression

The encoding side:
 Compute the spectral bases from mesh connectivity

 Represent the shape geometry in the spectral basis and decide how
many coeffs. to leave (K)

 Store the connectivity and the K non-zero coefficients

The decoding side:
 Compute the first K spectral bases from the connectivity

 Combine them using the K received coefficients and get the shape

Spectral mesh compression

Low-frequency errors are hard to see

Progressive transmission

First transmit the lower-eigenvalue coefficients (low

frequency components), then gradually add finer details by

transmitting more coefficients.

[Karni and Gotsman 00]

Mesh watermarking

Embed a bitstring in the low-frequency coefficients

 Low-frequency changes are hard to notice

[Ohbuchi et al. 2003]

Caveat

Performing spectral decomposition of a large matrix (n>1000)
is prohibitively expensive (O(n3))
 Today’s meshes come with 50,000 and more vertices

 We don’t want the decompressor to work forever!

Possible solutions:
 Simplify mesh

 Work on small blocks (like JPEG)

