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Semi-supervised Learning in Support Vector Machines

1 Introduction

In traditional supervised classification, classifiers are trained using feature/label pairs and
the classifier performance is measured on unseen test data. In the current Internet age, as
the amount of data produced grows exponentially, we would like to use as much of this data
as possible to train classifiers in order to get better performance. This is especially true
in models such as neural networks that have millions of parameters and thus can overfit
to training sets that contain even millions of labeled items [4]. However, the problem is
that labeled data is hard to acquire, having high cost in terms of both time and money.
For example, ImageNet, currently the standard image classification dataset, requires manual
labor outsourced through the use of Amazon Mechanical Turk to produce the true labels for
the training set [2].

Thus, it would be very beneficial if we could use the huge amount of readily available
unlabeled data to train our classifiers. Semi-supervised learning is the setting in which a
classifier is trained using a small amount of labeled data and a large amount of unlabeled
data. The basic idea is to initially train the classifier using the labeled data and then improve
the generalization ability (in terms of accuracy) of the classifier by somehow using the large
amount of unlabeled data.

Figure 1: Unlabeled data can be a form of regularization.

The first and most important question to ask is how can unlabeled data even be helpful?
Consider the situation in Figure 1 [7]. The hypothesis is that the initial classifier overfits
the training data. By using the large amount of unlabeled data, we get a classifier that will
have better generalization performance on unseen test data. Thus, we can view using the
unlabeled data as a form of regularization designed to avoid overfitting.
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2 Background

2.1 Support Vector Machines

In this project we explored using Support Vector Machines (SVMs) in the context of Semi-
supervised learning. In Support Vector Machines, the intuition is to try to create a separating
hyperplane between the positively and negatively labeled items. Since many choices could
exist for this hyperplane, in order to generalize well on test data, we find the hyperplane
with the largest margin, which is defined to be the distance from the hyperplane to an item
in the training set. We want to maximize the margin that so that the hyperplane is far
away as possible from the training data so that it is less likely that a new test item will be
misclassified by the hyperplane.

Suppose L = {(x1, y1), . . . (xm, ym)} is the training set and v be a hyperplane going
through the origin. Let δ be the margin and let w = v

δ
. The margin maximizing hyperplane

can be formulated as an optimization problem in the following manner:

min
1

2
||w||2

s.t. ∀i : yi(w · xi) ≥ 1.

In many cases, it is not possible to perfectly separate the positive and negative examples
by any hyperplane. Thus, we want to be able to move over some of the wrongly classified
examples but pay a price for this since we do not want it to happen very often. The
optimization problem is then changed to be:

min
1

2
||w||2 + C

m∑
i=1

ξi

s.t. ∀i : yi(w · xi) ≥ 1− ξi
ξi ≥ 0,

where ξi is the slack for each training item and C is some positive constant.
With z+ = max(0, z), this problem can be simplified to:

min
1

2
||w||2 + C

m∑
i=1

(1− yi(w · xi))+.

The yi(w ·xi) is the margin and the (1−yi(w ·xi))+ is known as the hinge loss. This loss
is convex (see Figure 2) and so the above problem is a convex optimization problem that
can be easily solved. The loss is 0 whenever a point is on the correct side of the hyperplane
i.e. whenever yi(w · xi) ≥ 1.

2.2 Quasi-Newton Optimization

We briefly discuss Quasi-Newton optimization as it is used in the related work. In class,
we discussed gradient descent as a method for doing non-convex optimization in which we
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Figure 2: For f(xi) = (w · xi), the hinge loss (1− yi(w · xi))+ is convex.

try to minimize a function value by moving in a direction related to the gradient. Another
method for non-convex optimization is Newton’s method. In the single-dimensional case,
a function attains its minimum when the derivative f ′(x) = 0. In Newton’s method, we
start with a guess of the minimum and we approximate the derivative of the function at
that point using a linear function and then solve for the root of that function explicitly. We
then iterate repeatedly for some number of steps. To approximate f ′(x), we approximate
f(x) using a second-order Taylor series which makes use of f ′′(x) and so this method has
higher requirements on the smoothness of f(x) but by using more information about f(x)
may converge faster.

We now try to make this intuition more exact. Let f : Rn → R be a twice-differentiable
function. We start with an initial point x0 and produce a sequence of points that converge
to the optimum x∗. Let the gradient of f at xk be ∇fk and the Hessian be Hk.

Let p = x− xk. The second order Taylor expansion around xk is

mk(p) = fk + pT∇fk +
1

2
pTHkp.

The gradient with respect to this function is then

∇mk(p) = ∇fk +Hkp.

Setting this equal to 0, we get that the minimum occurs at x−xk = pk = −H−1k ∇fk. We
thus use pk = −H−1k ∇fk as the search direction and for some α ∈ (0,∞), the next point is

xk+1 = xk + αpk.

Computing the inverse of the Hessian can be costly, and so Quasi-Newton methods involve
approximating the inverse somehow so as to speed up the process. There are many different
methods that fall under the Quasi-Newton class but we discuss one specific method called
BFGS (Broyden-Fletcher-Goldfarb-Shanno) algorithm.
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2.2.1 BFGS

In this method, we directly try to approximate the inverse of the Hessian H−1k . To find this
approximation, we define several desirable properties:

1. H−1k is symmetric

2. In the definition of the gradient using a linear approximation, the function’s gradient
approximation must equal the function’s gradient at two points xk and xk−1. For xk,
we have trivially that

∇mk(xk) = ∇fk +H−1k (xk − xk) = ∇fk.

For xk−1, we need

∇mk(xk−1) = ∇fk +H−1k (xk−1 − xk) = ∇fk−1
⇔(xk − xk−1) = H−1k (∇fk −∇fk−1)

Letting sk−1 = xk − xk−1 and yk−1 = ∇fk −∇fk−1, we get that we need

sk−1 = H−1k yk−1.

3. Subject to the above properties, we have H−1k to be as close as possible to Hk−1. We
define closeness in terms of the Frobenius norm.

The optimization problem with these properties in mind is the following:

min ||H −Hk−1||
s.t. H = HT

Hyk−1 = sk−1

This problem has the following unique solution:

Hk =
(
1− ρk−1sk−1yTk−1

)
Hk−1

(
1− ρk−1yk−1sTk−1

)
+ sk−1ρk−1s

T
k−1,

where ρk−1 =
(
yTk sk

)−1
.

3 Related Work

Formally, in the semi-supervised setting, we assume we have some extra unlabeled training
data U = {xm+1, . . . , xm+u}.
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3.1 Semi-Supervised SVMs

In [6], an optimization problem is formulated for finding the optimal labeling for test data
using the both labeled and unlabeled data. For unlabeled data, it is assumed that the true
label is the one predicted by the model based on what side of the hyperplane the unlabeled
point ends up being. Thus, the optimization problem becomes:

min
1

2
||w||2 + C1

m∑
i=1

(1− yi(w · xi))+ + C2

l∑
i=1

(1− sign(w · xi)(w · xi))+

= min
1

2
||w||2 + C1

m∑
i=1

(1− yi(w · xi))+ + C2

l∑
i=1

(1− |(w · xi)|)+,

where C1 and C2 positive constants.

Figure 3: For f(xi) = (w ·xi), the loss involved in the semi-supervised formulation (1−|(w ·
xi)|)+ is non-convex.

The difficulty here is that (1−|(w ·xi)|)+ has a non-convex shape (see Figure 3), making
the problem hard to solve. This loss prefers w · xi ≥ 1 or w · xi ≤ −1, or the unlabeled
instance to be away from the decision boundary.

Since the loss is non-convex, we would like to use some approximate technique to solve
the optimization problem. In order to use any gradient based approach, however, we need
a differentiable loss function and both the hinge loss and the hat loss are clearly not dif-
ferentiable. In [3], the authors replace each of these non-differentiable functions with their
differentiable counterparts. The hinge loss is replaced with the modified logistic loss and the
hat loss is replaced with an exponential loss (see Figure 4).

With the use of these differentiable counterparts, the optimization problem then becomes

min
1

2
||w||2 + C1

m∑
i=1

1

γ1
log(1 + exp(γ1(1− yi(w · xi)))) + C2

l∑
i=1

exp(−γ2(w · xi)2).
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Figure 4: The hinge loss L(y, t) = (1 − yt)+ is replaced with its differentiable counterpart,
the logistic loss L(y, t) = 1

γ
log(1 + exp(γ(1− yt))). The hat loss L(t) = (1−|t|)+ is replaced

with its differentiable counterpart, the exponential loss L(t) = exp(−γt2)

The authors then solve this optimization problem approximately by using the BFGS
algorithm.

4 Self-Training

In this project, we explore using self-training to learn from the unlabeled data. The idea
here is to “prime” the model with labeled data and then use the model’s own predictions as
labels for the unlabeled data to re-train a new model with the original labeled data and the
newly labeled data and then iteratively repeat this process. The problem with this method
is that it can suffer from “semantic drift” [1], where considering its own predictions as true
labels can cause the model to drift away from the correct model. The model would then
continue to mislabel data and use it again and continue to drift farther and farther away
from where it should be. Thus, we need to prevent using mislabeled data because it can
cause the model error’s to continually propagate.

To prevent this problem, we will only use the model’s predictions to label the data only
when we are highly confident about the predictions. If we only assume labels for items we
are highly confident about, it is less likely that we will attempt to learn from incorrect data.
The notion of confidence we will use for our SVM model is the distance from the hyperplane
used by the SVM. The larger the distance from the hyperplane, the more confident we can
be because this means the item is more deeper in the space of the class the SVM thinks the
item belongs to and thus likely it should be on the other side of the SVM.

One question we could have is how using highly confident predictions as labels for un-
labeled items could help improve our model? For example, in the SVM case, if we only
added labels for items that are far away from the hyperplane, then would not the optimal
hyperplane remain the same? We just have to ensure that we are not too conservative in
picking which points to infer the label for so that we are adding some new information to
improve the classifier.

We now describe how exactly our learning algorithm is implemented. We first train an
SVM on the labeled training data L. Let µ+, σ+ be the mean and standard deviation of
the distances to the hyperplane of the positively labeled items and µ−, σ− be mean and
standard deviation of the distances to the hyperplane of the negatively labeled items. We
then iteratively process the unlabeled training data over β rounds. In each round, we label
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each item x as y in the unlabeled training set based on our existing SVM and get the distance
d for the item from the hyperplane. From Chebyshev’s inequality, we know that for a class l

Pr(|X − µy| ≥ k · σy) ≤
1

k2

⇔Pr(|X − µy| < k · σy) ≥ 1− 1

k2
.

Thus, we have some threshold δ and only infer the label of an item given some distance d
if d lies within some k (calculated according to δ) standard deviations from the mean. More
concretely, we have that

Pr

(
|X − µy| <

√
1

1− δ
σy

)
≥ δ,

and so we skip the item if |d−µy| ≥
√

1
1−δσy because that is a low probability event; otherwise

we add the item (x, y) to our labeled training set and remove it from the unlabeled set. After
processing all these items, we train a new SVM on the labeled training set and repeat for β
rounds. Pseudocode for the algorithm is given in Algorithm 1.

Algorithm 1 Pseudocode for Self-Learning Algorithm
L is the initial labeled training set, U is the unlabeled set
M ← SVM trained on L
for t = 1 to β do

µ+, σ+ ← mean, standard deviation of distances to hyperplane of M of positively labeled items
µ−, σ− ← mean, standard deviation of distances to hyperplane of M negatively labeled items
for x ∈ U do

d← distance of x to hyperplane of M
y ← label of x according to hyperplane of M

if |d− µy | <
√

1
1−δσy then

L← L ∪ {(x, y)}
U ← U − {x}

end if
end for
M ← SVM trained on L

end for
Return M

5 Experimental

In order to evaluate the method discussed above, we test its effectiveness on the MNIST
dataset [5]. To simplify the analysis, since MNIST is a multi-class classification task, we
reduce it to a binary classification by only considering data involving only the digits 4 and
5. We use the sci-kit library in Python and the code used is attached.

Since MNIST is normally used for supervised learning, we create the labeled and unla-
beled sets manually. Considering only the digits 4 and 5, the labeled training set size is 9365
and the test size is 1874. We then split this original labeled training set into a small labeled
set and large unlabeled set, where the labels are ignored. The initial labeled training set has
100 digits and so 8365 digits are in the unlabeled set. We pick optimal values of δ and β
based on our experiments. If we use the entire training set to learn an SVM model, we can
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get an accuracy of 0.983 on the test set. This accuracy serves as an upper bound for our
semi-supervised learning algorithm because that accuracy is achieved using all the correct
labels for the items that we will use in our unlabeled set.

In the first experiment, we run our self-learning algorithm and show that it shows better
performance than the base classifier on the test set and thus is able to learn something
useful from the unlabeled data. We see that δ is picked such that the classifier is improved
from the base model, meaning that the items we decide to label from the unlabeled set at
each step are not too conservatively picked. Our final model trained by the self-learning
algorithm achieves an accuracy of 0.981, which is close to 2.4% better than the base model
trained purely by the labeled set. Additionally, this accuracy is close to the upper bound
from above where the whole set is used as a labeled set. We can see that we end up using
more than 75% of the unlabeled set by assigning labels based on our model.

Round Number Labeled Accuracy
Base Model NA 0.9573
Round 1 6023 0.9727
Round 2 108 0.9781
Round 3 66 0.9791
Round 4 61 0.9807
Round 5 49 0.9813
Final Model NA 0.9813

Figure 5: Performance of self-learning algorithm on test-set.

In the second experiment, we show how the choice of δ can affect the self-training algo-
rithm. We see that as we decrease the values of δ, the model’s performance increases and
then decreases. This occurs because with a low threshold, we only label the items that we
are confident about and so the labels are true but we do not label that many items and so
the model cannot improve as much. With a very high threshold, we label more items but
some of those labels are incorrect (because we were not that confident about them) and so
we end up learning the wrong pattern and hurt our model performance.

We compared the performance of our method to [3] but found that using their code
produced an accuracy less than simply training only on the small labeled set. We are
not sure if this bad performance is due to this specific dataset or because some necessary
condition for the theory was broken.

6 Conclusion

In this project, we consider semi-supervised learning in the context of SVMs. We first
introduce the basic SVM formulation and discuss Quasi-Newton Optimization, specifically
the BFGS algorithm, as it is relevant to understanding work in the area. Then, in the related
work, we discuss semi-supervised SVMs and current work that involves solving the semi-
supervised SVM optimization problem by using differentiable equivalents in the objective
function and then solving the problem approximately using the BFGS algorithm. We then
formalize our own technique of self-learning in which we use the model’s highly confident
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Figure 6: Experimental results displaying how varying threshold affects accuracy on test set.

predictions as assumed true labels in the unlabeled set, train a new model on this new labeled
data and repeat until convergence. We carry out experiments on a modified version of the
MNIST dataset to test the effectiveness of our self-learning method. Our results show that
using our self-learning algorithm we can get better performance using an unlabeled set in
addition to the initial labeled one.
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”””
Generate datase t o f 4 ’ s and 5 ’ s
”””

from sk l e a rn . da ta s e t s import l o a d d i g i t s
import p i ck l e , gzip , numpy

IMAGE SIZE = 784

DATA = ’ data ’
LABELS = ’ l a b e l s ’

CLASS POS = 4
CLASS NEG = 5

i f name == ” main ” :

# Load the datase t
t r a i n s e t , v a l i d s e t , t e s t s e t = p i c k l e . load ( open ( ” mnist . pkl ” , ” rb” ) )

X = t r a i n s e t [ 0 ]
Y = t r a i n s e t [ 1 ]
relvX = numpy . empty ( ( 0 , IMAGE SIZE ) , i n t )
relvY = numpy . empty ( ( 0 , 1 ) , i n t )
f o r i in range (0 , X. shape [ 0 ] ) :

i f Y[ i ] == CLASS POS :
relvX = numpy . append ( relvX , numpy . matrix (X[ i ] ) ,

a x i s =0)
relvY = numpy . append ( relvY , numpy . matrix ( [ [ 0 ] ] ) ,

a x i s =0)
e l i f Y[ i ] == CLASS NEG :

relvX = numpy . append ( relvX , numpy . matrix (X[ i ] ) , a x i s =0)
relvY = numpy . append ( relvY , numpy . matrix ( [ [ 1 ] ] ) , a x i s =0)

testX = t e s t s e t [ 0 ]
testY = t e s t s e t [ 1 ]
re lvTestX = numpy . empty ( ( 0 , IMAGE SIZE ) , i n t )
re lvTestY = numpy . empty ( ( 0 , 1 ) , i n t )
f o r i in range (0 , testX . shape [ 0 ] ) :

i f testY [ i ] == CLASS POS :
relvTestX = numpy . append ( relvTestX , numpy . matrix ( testX [ i ] ) ,

a x i s =0)
relvTestY = numpy . append ( relvTestY , numpy . matrix ( [ [ 0 ] ] ) ,

a x i s =0)
e l i f testY [ i ] == CLASS NEG :
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re lvTestX = numpy . append ( relvTestX , numpy . matrix ( testX [ i ] ) ,
a x i s =0)

relvTestY = numpy . append ( relvTestY , numpy . matrix ( [ [ 1 ] ] ) ,
a x i s =0)

t r a i n = { DATA : relvX , LABELS : relvY}
# Save t r a i n i n g s e t as p i c k l e f i l e
p i c k l e . dump( t ra in , open ( ” t r a i n . p” , ”wb” ) )

t e s t = { DATA : relvTestX , LABELS : re lvTestY}
# Save t e s t s e t as p i c k l e f i l e
p i c k l e . dump( te s t , open ( ” t e s t . p” , ”wb” ) )
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”””
Se l f−l e a r n i n g a lgor i thm
”””
from sk l e a rn import svm
import numpy
import p i c k l e
import math

IMAGE SIZE = 3072

DATA = ’ data ’
LABELS = ’ l a b e l s ’

TRAINING SIZE = 100
TEST SIZE = 1874
UNLABELED SIZE = 7000

THRESHOLD = 0.80
ROUNDS = 5

de f l oad data ( ) :
t r a i n = p i c k l e . load ( open ( ” t r a i n . p” , ” rb” ) )
t e s t = p i c k l e . load ( open ( ” t e s t . p” , ” rb” ) )

X = t r a i n [ DATA ] [ 0 : TRAINING SIZE : ]
Y = t r a i n [ LABELS ] [ 0 : TRAINING SIZE : ]
unlabeledX = t r a i n [ DATA ] [ TRAINING SIZE + 1 : TRAINING SIZE

+ UNLABELED SIZE ]

testX = t e s t [ DATA ] [ 0 : TEST SIZE ]
testY = t e s t [ LABELS ] [ 0 : TEST SIZE : ]

r e turn [X,Y, testX , testY , unlabeledX ]

de f t r a i n ( base svm , rounds , X, Y, unlabeledX , testX , testY ) :

f o r i in range (0 , rounds ) :
p o s d i s t a n c e s = numpy . r a v e l ( base svm . d e c i s i o n f u n c t i o n (

X[ numpy . r a v e l (Y[ : , 0 ] == 0 ) ] ) )
pos mean = (sum( p o s d i s t a n c e s )/ l en ( p o s d i s t a n c e s ) )
pos s td dev = numpy . std ( p o s d i s t a n c e s )

n e g d i s t a n c e s = numpy . r a v e l ( base svm . d e c i s i o n f u n c t i o n (
X[ numpy . r a v e l (Y[ : , 0 ] == 1 ) ] ) )

neg mean = (sum( n e g d i s t a n c e s )/ l en ( n e g d i s t a n c e s ) )
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neg s td dev = numpy . std ( n e g d i s t a n c e s )

skipped = 0
to remove = [ ]

k = math . s q r t ( 1 . 0 / ( 1 . 0 − THRESHOLD ) )

j = 0
f o r x in unlabeledX :

pred = base svm . p r e d i c t ( x ) [ 0 ]
d i s t = base svm . d e c i s i o n f u n c t i o n ( x ) [ 0 ] [ 0 ]

va lue = 0 .0
i f ( pred == 0 ) :

va lue = ( abs ( d i s t − pos mean )/ pos s td dev )
e l i f ( pred == 1 ) :

va lue = ( abs ( d i s t − neg mean )/ neg s td dev )

i f ( va lue < k ) :
X = numpy . append (X, numpy . matrix ( x ) , a x i s =0)
Y = numpy . append (Y, numpy . matrix ( [ [ pred ] ] ) , a x i s =0)
to remove . append ( j )

e l s e :
sk ipped = skipped + 1

j = j + 1

pr in t ” l a b e l e d ” , l en ( to remove )

new svm = svm .SVC( )
new svm . f i t (X, Y)

acc = new svm . s co r e ( testX , testY )
p r i n t ” accuracy ” , acc

base svm = new svm
unlabeledX = numpy . d e l e t e ( unlabeledX , to remove , 0)

p r i n t ” f i n a l t r a i n g s e t s i z e ” , X. shape [ 0 ]
r e turn base svm

i f name == ” main ” :
array = load data ( )
X,Y, testX , testY , unlabeledX = load data ( )
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l in svm = svm .SVC( )
l in svm . f i t (X, Y)
base acc = l in svm . s co r e ( testX , testY )

f i na l svm = t r a i n ( l in svm , ROUNDS , X, Y, unlabeledX , testX , testY )
acc = f ina l svm . s co r e ( testX , testY )

p r i n t ” th r e sho ld ” , THRESHOLD
pr in t ” base accuracy ” , base acc
p r i n t ” f i n a l accuracy ” , acc
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