
K-median Algorithms: Theory in Practice

David Dohan, Stefani Karp, Brian Matejek

Submitted: January 16, 2015

1 Introduction

1.1 Background and Notation

The k-median problem has received significant attention for decades, primarily in computer science and
operations research. The problem is generally formalized as follows:

Given a metric space X, a set of clients C ∈ X, and a set of facilities F ∈ X
such that |X| = |F ∪C| = n, open k facilities in F so as to minimize the sum of

distances from each client to its nearest open facility.

We define the distance metric as dij for i ∈ {1, . . . , n}, j ∈ {1, . . . , n}, such that dij is the distance
between points i and j in the metric space X. Kariv and Hakim [1] proved that finding such k medians
in a network is an NP-hard problem by reducing the dominating set problem to it. A simple brute-
force algorithm would examine every possible size-k subset in F , compute the closest facility in this set
for every client, and return the best set overall. This brute-force algorithm would run in O

((
nf

k

)
nck
)

time, where |F | = nf , |C| = nc. Thus, academic research into this problem has focused primarily on
producing good approximation algorithms. For a given algorithm, the approximation ratio is defined
as the provably worst possible ratio between the cost of the algorithm’s output and the optimal cost.
However, for most problem instances, we do not know the actual optimal cost, and we thus compute
the approximation ratio as the total cost returned by the algorithm divided by the optimal value of the
relaxed linear program discussed in section 1.2. Jain et al. [2] proved that the k-median problem is
1 + 2

e ≈ “1.736”-hard to approximate in a metric space. We note that, throughout this paper, all of our
distance metrics satisfy the properties of a metric space.

1.2 Relation to Other NP-Hard Problems

The k-median problem has many similarities to the facility location problem (FLP). In this problem, we
are given a metric space X with clients C, facilities F , costs dij of client j using facility i, and costs fi
associated with opening facility i. There are two variants of the facility location problem: uncapacitated
and capacitated. In the uncapacitated facility location problem (UFLP), any number of clients can use
any given facility. In the capacitated facility location problem (CFLP), we define a set of variables V (i)
such that the number of clients that use facility i must be less than or equal to V (i). For the rest of this
paper, we concern ourselves only with the uncapacitated facility location problem. In 1966, Balinski
[3] defined the following integer program for the UFLP. Here, yi indicates if facility i is open and xij
indicates if client j is connected to facility i.

1

minimize
∑

i∈F,j∈C
dijxij +

∑
i∈F

fiyi

subject to ∀j ∈ C :
∑
i∈F

xij ≥ 1

∀i ∈ F, j ∈ C : xij ≤ yi
∀i ∈ F, j ∈ C : xij ∈ {0, 1}
∀i ∈ F : yi ∈ {0, 1}

This integer program can be relaxed by changing the integer constraints xij ∈ {0, 1} and yi ∈ {0, 1}
into xij ≥ 0 and yi ≥ 0 respectively. Another variant of the UFLP restricts the number of open facilities
to k (UKFLP). We can construct the integer (and resulting linear relaxation) program by adding the
constraint that the sum of the yi values must be less than or equal to k. We can easily connect the
the UKFLP to an uncapacitated k-median problem by setting fi = 0, ∀i ∈ F . The resulting integer
program is defined below:

minimize
∑

i∈F,j∈C
dijxij

subject to ∀j ∈ C :
∑
i∈F

xij = 1

∀i ∈ F, j ∈ C : xij ≤ yi∑
i∈F

yi ≤ k

∀i ∈ F, j ∈ C : xij ∈ {0, 1}
∀i ∈ F : yi ∈ {0, 1}

This integer program can be relaxed by changing the integer constraints xij ∈ {0, 1} and yi ∈ {0, 1}
into xij ≥ 0 and yi ≥ 0 respectively. For the purposes of this paper, we shall refer to the uncapacitated
k-median problem as simply the k-median problem. If X = F = C, a k-median algorithm simply
clusters the points in the metric space.

1.3 Existing Theoretical Research

There is a large body of existing research on k-median approximation algorithms. A forward greedy
algorithm iteratively open facilities by choosing the next unopened facility so as to minimize the cost
function defined above. Chrobak et al. [4] proved that a reverse greedy algorithm (one that starts with
all facilities open and closes facilities that least increase the cost function) produces an approximation
ratio between Ω (log n/ log log n) and O (log n). Another frequently used algorithm, partitioning around
medoids (PAM), iteratively computes the cost of swapping medoids and chooses the swap that lowers
the total cost the most (if any such swap still exists).1 This is a local search algorithm. With respect
to performance guarantees, in 2003 Arya et al. [5] proved that this local search with single swaps has a
worst-case approximation ratio of 5. In the general case, in which at most p facilities can be swapped
at once, the approximation ratio is 3 + 2/p.

Charikar et al. [6] provided the first constant-factor approximation algorithm for the k-median prob-
lem, achieving a ratio of 6 2

3 . This relied on a rounding scheme to the LP relaxation of the integer program
presented in the previous section. Several other papers since have used linear programming techniques.

1In the Operations Research literature, the term “medoid” is often used instead of “median.” However, its meaning is
equivalent.

2

We briefly consider some of the papers here. Jain and Vazirani [7] obtained a 3-approximation primal-
dual algorithm for the UFLP. This provided a 6-approximation algorithm for the k-median problem
by expressing the UFL problem as a Lagrange relaxation of the k-median problem and using the 3-
approximation UFL algorithm as a subroutine. Building on his existing paper, Jain et al. [8] improved
this ratio to 2 for the UFLP problem and therefore 4 for the k-median problem. In 2012, Charikar and Li
[9] developed a new LP relaxation-based algorithm that achieves an approximation ratio of 3.25(1 + δ).
Although worse than the 3 + 2/p local search approximation mentioned above, the running time was
reduced from O

(
n8
)

to O
(
k3n2/δ2

)
. In 2013, Li and Svensson [10] developed an approximation algo-

rithm that achieves an approximation guarantee of 1 +
√

3 + ε, finally improving the 3 + ε ratio of Arya
et al.

1.4 Existing Experimental Research

Various empirical studies of the k-median problem have been performed in both computer science and
operations research. However, to our knowledge (and that of Charikar and Li as well), the Charikar 2012
LP algorithm has never before been implemented or studied empirically; this is the primary motivation
of our paper. Below, we briefly discuss the most relevant prior empirical studies.

In 2011, Nagarajan and Williamson [11] performed an empirical study of various k-median approxi-
mation algorithms, including Arya et al.’s local search algorithm, Charikar’s 1999 LP rounding algorithm,
and Jain et al.’s 4-approximation algorithm. However, this experimental study was prior to the devel-
opment of Charikar’s 2012 LP algorithm, which is the main motivation of our paper. Furthermore,
Nagarajan and Williamson only analyzed local search with single swaps (which guarantees an approxi-
mation ratio of 3 + 2/p = 5) due to the high running times of the multi-swap version. Regarding data,
they tested their algorithms on the 40 datasets of the OR-Library and three other datasets of sizes 100,
150, and 316 nodes. In all of these datasets, F = C. Nagarajan and Williamson concluded that local
search and Charikar’s 1999 LP rounding algorithm performed better than the Jain-Vazirani algorithm,
and further that Charikar’s algorithm generally performed better than local search. However, for most
of the datasets used, the LP solutions were typically integral or very close to integral. From the results
presented, it is not clear how these algorithms perform on datasets for which the LP does not return
integral solutions.

In 2013, Bhattacharya et al. [12] empirically analyzed the robust k-median problem, which attempts
to minimize the worst case connection cost over all clients (instead of the total cost). Although their
paper focused specifically on the robust k-median problem (as opposed to the original k-median problem),
its methods for generating random metric spaces of facilities and clients for testing can be extended to any
variant of the k-median problem. These methods are discussed further in 4.2. Regarding LP analyses, in
2014, Awasthi et al. [13] performed a theoretical and empirical study of the integrality of LP relaxations
for the k-means and k-median problems. They found that the LP solution is integral more frequently for
the k-median problem than for the k-means problem. In fact, for cluster separation at least some constant
c and any k, the k-median LP solution will be integral if n is large enough (though “large enough” is not
precisely defined in terms of the problem’s parameters). These conclusions motivate studying a large
number of k-median problem instances with LP relaxation-based approximation algorithms.

Our research builds on Nagarajan and Williamson’s analyses through an empirical study of vari-
ous k-median algorithms using randomly-generated datasets as described in [12], which provide a much
more comprehensive picture of the algorithms’ performance. Furthermore, we focus much of our anal-
ysis on Charikar’s 2012 algorithm, neither previously implemented nor studied empirically. Given that
Charikar’s 2012 algorithm has an approximation ratio of at most 3.25 (ideally below 3 with proper
parameter adjustment), this algorithm is competitive with Arya et al.’s local search, which had pro-
vided the best-known approximation guarantee until Li-Svensson in 2013. Determining how Charikar’s
algorithm performs in practice is therefore of significant interest.

3

2 Implemented Algorithms

In this section, we will explore the algorithms which we implemented in more detail. In general, let C
be the set of cities, F the set of possible facility locations, nf = |F |, and nc = |C|. We let cost(S) be
the sum of costs from each city to the nearest facility in S.

2.1 Greedy Algorithms

2.1.1 Forward Greedy

A forward greedy algorithm for the k-median problem maintains a set of St of medians at step t and sets
St+1 = S ∪ f to minimize cost(St+1) until |S| = k. This is a straightforward algorithm that performs
quickly in practice, but it is at least an n-approximation algorithm for the problem [4].

Algorithm 1 Forward Greedy Algorithm

S ← {}
while |S| < k do

f ← arg mini(cost(S ∪ {i}))
S ← S ∪ {f}

end while
return S

2.1.2 Reverse Greedy

The reverse greedy algorithm begins by placing a facility on every location, repeatedly removing the
facility from the set of medians that will increase the cost the least until k facilities remain. [4] proved
that the reverse greedy algorithm has an approximation ratio between Ω (log n/ log log n) and O (log n).

Algorithm 2 Reverse Greedy Algorithm

S ← F
while |S| > k do

f ← arg mini(cost(S − {i}))
S ← S − {f}

end while
return S

2.2 Local Search

In its simplest form, given some set of medians S, local search arrives at a solution for a k-median by
repeatedly swapping a median from S for an element from F − S that minimizes the new cost. In the
more general case, local search features an adjustable parameter p that allows swapping sets of up to p
medians at a time.

The initialization phase is generally done via an application of the forward greedy algorithm to the
problem. In this case, the algorithm is fully deterministic.

Local search as presented in [5] is below, where B(S) is the set of possible sets reachable from S by
making p swaps.

4

Algorithm 3 Local Search

S ← ForwardGreedy(C,F, k)
while ∃S′ ∈ B(S) s.t. cost(S′) < cost(S) do

S ← S′

end while
return S

[5] proved that local search with p swaps is a 3 + 2/p approximation algorithm, which gives an
approximation ratio of 5 in the simple single swap case. Each swap in the algorithm runs in nO(p) time.
They also prove that as long as only swaps that provide a gain of at least some constant amount are
accepted, the number of steps will be polynomial as well. There are many implementation tricks and
data structures to speed up local search in practice, such as caching which cities are associated with
each facility, but we do not explore these techniques in detail.

It is interesting to note that local search with single swaps is a long standing technique in the
statistical and operations research (OR) communities, where it is referred to as Partitioning around
Medoids (PAM) [14].

2.3 Jain Vazirani

Jain and Vazirani [7] developed a 3-approximation algorithm for the uncapacitated facility location
(UFL) problem using the primal-dual schema. Furthermore, they showed that the UFL problem is
a Langrangian relaxation of the k-median problem. Therefore, Jain and Vazirani were able to use
their primal-dual approach as a subroutine in a 6-approximation algorithm for the k-median problem.
Furthermore, their k-median algorithm has a very fast running time: O(m logm(L+ log(n))), where n
and m are the numbers of vertices and edges in the bipartite graph of cities and facilities.

The intuition for the algorithm is as follows: Each city has a contributing and a connected state.
As time t increases from 0, each city is willing to consider connecting to a facility within radius t of its
location. Consider a facility at distance r ≤ t from a contributing city c. If f is open, then c connects
to f and switches to the connected state for all future time. If f is not open, then c contributes t − r
toward opening it. A facility opens when the sum of contributions are greater than the facility opening
cost. When a city connects, all its existing contributions remain, but do not increase any more. This is
the first phase of the algorithm.

The second phase focuses on choosing a subset of the temporarily open cities to return as open. In
[8], Jain et al. simplified the algorithm to remove the need for a cleanup phase. In the second phase, any
edge i, j between city i and facility j is considered a “special” edge if dist(i, j) is less than the time when
i connected to a facility. The algorithm forms a graph T from these edges, finds T 2, which has an edge
i, j if there is a path of length 1 or 2 between i and j in T , and finds H as the subgraph of T 2 induced on
the set of temporarily open facilities (i.e., only keep vertices corresponding to temporarily open facilities
from phase 1). This means that for any city c, all temporarily opened facilities that received positive
contributions from c will form a clique in H. Finally, select a maximal independent subset from H and
return it. This means that in the final set of open facilities, each city will have contributed a positive
amount to at most 1 of them. While finding the maximal independent subset is an NP-hard problem in
general, greedily adding facilities that don’t conflict with the current independent set in the order they
were opened turns out to produce a maximal independent set in this case [15].

Jain and Vazirani use binary search on facility opening costs to arrive at a solution to the k-median
problem. If every facility is assigned an opening cost of 0, the above two phases will open nf facilities.
If the facility opening cost is arbitrarily high, one facility will open. The algorithm performs a binary
search between these two opening costs to find the cost that opens k facilities. If no such cost exists,
the algorithm takes two facility subsets of size k1, k2, such that k1 < k < k2. The algorithm provides a
rounding scheme to find k facilities to open given these two subsets. The rounding scheme increases the
cost by at most a factor of 2. For the purpose of this analysis, we did not implement the rounding phase;

5

instead, we compared performance only on instances for which an integral solution was successfully
found via binary search.

2.4 Charikar 2012 Rounding

Charikar and Li developed a dependent LP-rounding approach in [9] that achieved a guaranteed 3.25(1+
δ) approximation in O

(
k3n2/δ2

)
running time, where n = |F ∪ C|. The algorithm relies on Young’s

approximation for the k-median LP [16], which yields a (1 + δ)k approximation. In our implementation,
we do not use Young’s approximation algorithm so the running time is slightly slower but the guaranteed
bound does not depend on δ.

2.4.1 Preliminary Steps and Notation

First, the algorithm initializes the linear program stated in section 1.3 and generates the fractional
solution. In the following explanation we refer to yi as the fractional component of facility i that is open
in the LP solution and xij as the “amount” of connection open between facility i and client j. For each
client j in C define Fj as the set of facilities where xij > 0. These are the facilities that j is connected to
in the fractional solution. The connection cost of j in the fractional solution is thus

∑
i∈Fj

yidij . This is

the cost for a client j in the LP relaxation. Define dav(j) as this cost for each client j. Also, define the
function B(j, r) that denotes the set of facilities that have a distance strictly smaller than r to j. All
facilities i where yi = 0 are removed from F , since they are not at all fractionally open. The rounding
scheme proceeds in four steps:

2.4.2 Filtering Phase

The algorithm reduces the number of considered clients by selecting a subset C ′ ⊆ C that has two
properties: (1) the clients in C ′ are far away from each other and (2) a client in C\C ′ is close to some
client in C ′. More specifically, for all clients j, j′ in C ′, dij > 4 max {dav(j), dav(j′)} and for every j in
C\C ′ there is a client j′ in C ′ such that djj′ ≤ 4dav(j).

2.4.3 Bundling Phase

The bundling phase attempts to group possible facility locations to clients in C ′. Since these clients are
far apart from each other, each bundle has a large probability of generating an open facility in the final
solution. Call the bundle for client j, Uj and define Rj to be half the distance to the next closest client
in C ′. For each client j define F ′j = Fj ∩ B(j, 1.5Rj).

2 Every facility that appears in at least one F ′j is
placed into a bundle. Facilities that appear in multiple F ′j are assigned to the client that is closest.

2.4.4 Matching Phase

The matching phase groups two bundles Uj and Uj′ so that they can be sampled from a joint distribution.
Matched bundles should be close together so a greedy algorithm is used where clients j and j′ are matched
in increasing order of distance. Each client in j is only matched once. If there are an odd number of
clients in C ′, the client furthest from all others is not matched.

2.4.5 Sampling Phase

Define the function vol(F ′) =
∑

i∈F ′ yi. The sampling phase concludes as discussed in algorithm 4
below.

After the sampling phase, return the k open facilities. Since this algorithm only returns k facilities in
expectation, we run the sampling phase until k facilities are open. Alternatively, one could implement
a complicated tree structure that samples the distributions dependently.

2The choice of 1.5 allows for an easier mathematical analysis. This choice will be studied empircally in section 5.2.

6

Algorithm 4 Sampling Phase

for each pair (j, j′) ∈M do
random double = rand();
if random double < 1− vol(Uj′) then

open Uj

else if random double < 2− vol(Uj)− vol(Uj′) then
open Uj′

else
open both Uj and Uj′

end if
end for
if ∃j ∈ C ′ and not matched in M then

open Jj with probability vol(Uj)
end if
for each facility i not in any bundle Uj do

open i with probability yi
end for

2.4.6 Practical Improvements and Variants

Multiple Iteration Sampling
The only randomized portion of this algorithm occurs in the sampling phase. Consider the case where

the linear program does not return the integer solution. There are multiple possible rounding schemes
that can transform the fractional solution into an integer solution. These rounding schemes may have
different costs. Rather than accept the first, in this paper we propose an algorithm to run the round-
ing schemes a thousand times and return the set of facilities that produces the lowest cost. Although
sampling multiple times does not improve the guaranteed approximation ratio, in practice it produces
results at least as good as the traditional Charikar algorithm. We analyze this variant of the algorithm
in section 5.1. For the duration of this paper, we refer to the traditional Charikar and Li algorithm
documented above as “Charikar 2012” and the multiple iterative sampling algorithm as “Charikar Multi
Sample”.

Changing Parameters
In section 2.4.3, the constant of 1.5 was introduced. The constant of 1.5 provides an approximation
ratio of 3.25. In the paper, it is briefly mentioned that the analysis is simpler if a constant of 1.0 is used.
However, the guaranteed approximation ratio reduces to a factor of 4. In a discussion with Professor
Charikar, he suggested that a value of ∞ would produce the best approximation ratio, perhaps beating
the (at the time) decade long 3 + ε barrier. If that constant were equal to ∞, the bundles would be
comprised entirely of the facilities where xij > 0. In section 5.2, we explore the results of varying this
constant; specifically, we study the values 1, 1.5, 10, 100 and ∞.

3 Implementation Details

We chose to implement the algorithms in the Julia language. Julia is a high level language designed
for high-performance scientific computing. It shares many syntactic characteristics with Python and
Matlab (in addition to many other languages) while remaining performant. Our primary reason for
using Julia is the following: while it is faster to develop than the C family, it is also significantly faster
with respect to runtime than a language such as Python or Matlab (i.e., Julia is often within a small
factor of C or Fortran). While we did not focus primarily on performance (such as by implementing
complicated data structures to help in local search), this speed was helpful in allowing our algorithms
to run within reasonale time spans. Julia also provides a powerful interface to LP solvers (we used the

7

COIN-OR solver), which was necessary for the rounding scheme algorithm.
In order to test our algorithms on our large number of datasets (see 4), we distributed computation

across the Ionic cluster in Princeton University’s Computer Science department. We ran on the order
of 50,000 experiments using each of the algorithms.

Each algorithm implementation expects a parameter k and an nf × nc cost matrix representing
pairwise distances between facilities and cities. The algorithm returns a list of IDs corresponding to a
set of facilities to open.

4 Datasets

4.1 OR-Library

The OR-Library was originally described in [17]. It is a collection of test datasets for various Operations
Research problems, including p-median. Among the OR-Library, there are 40 uncapacitated p-median
data files with known optimal values. In theses instances, X = F = C and the number of clients and
facilities range from 100 to 800. Each instance is presented as an edge list representing an undirected
graph. We convert it to an n × n cost matrix by applying an all-pairs shortest path algorithm to this
graph.

4.2 Randomly Generated Distributions

We generated random data sets based on the methods described in [12]. The data generated produces
clients and facilities in R2 and the distance function is the Euclidean distance. The facilities are randomly
chosen based on a uniform distribution between 0 ≤ x ≤ 100 and 0 ≤ y ≤ 100. The clients are
generated in groups. The number of clients in a group is either constant or chosen from a normal
distribution or exponential distribution. The clients themselves are either distributed based on a uniform
or gaussian distribution. In the following sections, we use the notation gauss(constant) to indicate that
a constant number of clients belonged to a group, with locations determined by a gaussian distributions.
Note that the optimal k median solution might group clients into the originally generated groups since
the distributions overlap in R2. Using this client/facility generation method, we created over 13,000
instances. For each instance, we ran the algorithms above for k = 7, 100, 200, 300 and 400.

5 Charikar Analysis

We begin the analysis with a proof about the Charikar 2012 rounding scheme that will be used later.
Denote OPTLP as the optimal value of the linear program relaxation, OPTIP as the optimal value of
the integer program (and thus the true minimum of the k-median problem), and CHAR as the value
returned by the Charikar 2012 algorithm.

Theorem 1. OPTLP = OPTIP if and only if OPTLP = CHAR.

Proof. Linear programs either return 0, 1, or an infinite number of solutions (that is all linear programs
are either infeasible, unbounded, or unique). The integer solution to the integer program is a feasible
solution to the linear program. Thus, the optimal value of the integer program is considered when
determining the optimal value of the linear program. If the linear program and the integer program
have the same optimal value, the linear program has returned the integer solution to the integer program
since the solution is unique. The Charikar 2012 algorithm starts by removing all facilities from F that
have yi = 0. If the LP returns an integer solution, all but k of these facilities will have yi = 0. Thus, the
Charikar algorithm will proceed through the rest of the steps with only k facilities. No other facilities
are removed after this first step and the algorithm returns k facilities. Thus these k facilities will be
returned and OPTLP = CHAR.

8

Type Worst C2012 Ratio Worst CMS Ratio Largest Percent Increase CMS v. C2012
gauss constant 23.1% 1.52% 22.0%
gauss expo 22.4% 1.20% 22.4%
gauss normal 17.8% 0.97% 17.7%
uniform constant 36.2% 1.34% 35.7%
uniform expo 35.7% 1.90% 34.7%
uniform normal 33.5% 1.47% 33.4%

Table 1: Performance of the Charikar 2012 algorithm versus the Charikar Multi Sample algorithm

In the reverse direction, the Charikar 2012 algorithm returns a feasible solution to the integer pro-
gram. Thus OPTIP ≤ CHAR and CHAR = OPTLP so OPTIP ≤ OPTLP . However, the LP was
defined such that OPTLP ≤ OPTIP so OPTLP = OPTIP .

Corollary 2. The Charikar 2012 algorithm will return the optimal linear program solution if and only
if the Charikar Multi Sample algorithm returns the optimal linear program solution.

Proof. In the forward direction, if the Charikar 2012 algorithm returns the optimal linear program
solution then only k facilities make it to the final phase and thus these k facilities will be returned
regardless of the number of iterations. Thus, the Charikar Multi Sample algorithm will return the
optimal solution. In the reverse direction, if the Charikar Multi Sample algorithm returns the optimal
linear program solution, then the LP returned the optimal integer program solution and thus Charikar
2012 returned the optimal linear program solution.

Note it is possible that the Charikar Multi Sample algorithm can return OPTIP if Charikar 2012
does not if OPTIP 6= OPTLP . With this theorem, we can determine the number of times that OPTLP =
OPTIP which will provide information on how well the local and greedy searches perform with respect
to the optimal integer program solution.

5.1 Charikar Multi Sample versus Charikar 2012

As discussed in section 2.4.6, we produced a variant of the Charikar 2012 algorithm that randomly
samples multiple times to produce a better approximation to the k-median problem. Although the
guaranteed approximation will not decrease, in practice we can improve on the cost by sampling many
times and returning the best set of k facilities. We can imagine a random variable Y representing
the cost of the Charikar 2012 rounding scheme. This variable has some mean µ and variance σ2. By
randomly sampling multiple times and choosing the best result we increase the probability of selecting
the optimal rounding scheme. Table 1 display the percent increase from the LP solution. Specifically,
if LPOPT is the fractional LP solution and C is the objective function value returned by the algorithm,
then the value in the table is C−LPOPT

LPOPT
∗ 100%. The final column shows over all instances the largest

percent increase achieved by the Charikar Multi Sample variant over the Charikar 2012 algorithm. This
value is calculated by C2012−CMS

CMS ∗ 100%.

5.2 Empirical Study of Constants in Charikar 2012

As discussed in section 2.4.6, the value of 1.5 was chosen in the bundling phase to make the mathematical
analysis easier. During our discussions with Charikar, he suggested that the approximation ratio might
be improved if the algorithm were to use a value of ∞ (so that each bundle Uj would actually just
include the facilities i where xij > 0). The analysis is actually much simpler if a value of 1 is used,
although the guaranteed approximation ratio falls to 4. Obviously an empirical analysis on the values
of 1.5 versus ∞ cannot prove anything about the guaranteed approximation ratio. However, we believe
it is still interesting to see how the Charikar algorithm performs while varying this constant. In Figure

9

Figure 1: This graph shows the worst ratio achieved on an instance with varying values of Rmax, where
Rmax is the constant presented earlier.

1, we explore the worst ratio achieved for each of the six datasets for values of R = 1, 1.5, 10, 100,∞.
Interestingly, the value of ∞ does better on gaussian inputs than on uniform inputs.

6 General Analysis

The following tables display the percent deviation from the LP solution. Specifically, if LPOPT is the
fractional LP solution and C is the objective function value returned by the algorithm, then the value
in the table is C−LPOPT

LPOPT
× 100%.

When the number of facilities increases from 10 to 110, PAM with multiple swaps generally fails to
converge in the allowed time. Therefore, PAM with multiple swaps is analyzed in tables 5, 6, and 7
below. If we are interested solely in the feasibility of these approximation algorithms, we quickly see
that PAM with multiple swaps does not scale well with the number of facilities. In fact, the Charikar
2012 algorithm has a worse approximation guarantee than PAM with p = 8 swaps. However, such a
PAM algorithm would run in O

(
n8
)

time, which is infeasible for all but small n.
We throw out all instances for which any algorithm fails to converge in the time allowed. We note that

this eliminates most instances with 310 and 410 facilities and favors instances with fewer facilities (i.e.,
PAM with single swaps generally fails to terminate in the allotted time when the dataset includes more
than 210 facilities). Tables 2, 3, 4 show the average, median, and largest percent deviations respectively
for k = 7. (For other values of k, see the Appendix). We believe the three statistics shown (average
ratio, median ratio, and worst ratio) are of significant interest. First off, the papers originally presenting
these algorithms only produce worst case guarantees for the k-median problem. However, some of the
papers can only produce a loose upper bound because of complexities in the analysis (e.g. Charikar 2012
[9]). By tracking the worst ratio over several thousand diverse randomly generated problem instances,
we can examine the likelihood that the guaranteed bound is reached. An algorithm with a 3 + ε bound
that is frequently tight is worse in practice than the 6 approximation that is almost never reached. The
average and median ratios are also of interest because they reflect how well the algorithms will do on
typical instances. Further, since the median is robust to outliers, it does not allow the few worst case
problem instances to skew the results.

As can be seen in Table 2, Charikar 2012 performs better on average than PAM with single swaps
for gauss constant and gauss expo. For gauss normal, Charikar 2012 and PAM perform approximately
the same, and for uniform constant, uniform expo, and uniform normal, Charikar 2012 performs slightly
worse than PAM. However, Charikar Multi Sample performs significantly better than any of the other
algorithms on average, achieving a percent deviation very close to 0. The greedy algorithms and the
Jain-Vazirani algorithm generally perform worse on average than Charikar 2012 and PAM. Table 3 shows
that the median percent deviations for Charikar 2012, Charikar Multi Sample, and PAM with single

10

Type Charikar 2012 Charikar Multi Forward Greedy JV Reverse Greedy PAM
gauss constant 0.13 0.01 3.12 2.91 1.89 0.24
gauss expo 0.08 0.0 3.98 2.64 1.26 0.16
gauss normal 0.28 0.01 3.99 3.21 1.95 0.26
uniform constant 0.94 0.03 4.53 4.1 3.87 0.66
uniform expo 0.93 0.03 4.17 4.18 3.76 0.58
uniform normal 0.78 0.02 4.78 4.22 3.83 0.66

Table 2: Average Performance for k = 7

Type Charikar 2012 Charikar Multi Forward Greedy JV Reverse Greedy PAM
gauss constant 0.0 0.0 0.0 1.78 0.0 0.0
gauss expo 0.0 0.0 0.54 1.42 0.0 0.0
gauss normal 0.0 0.0 0.29 2.16 0.0 0.0
uniform constant 0.0 0.0 3.23 3.73 4.17 0.0
uniform expo 0.0 0.0 3.24 3.69 4.0 0.0
uniform normal 0.0 0.0 3.44 3.91 4.13 0.0

Table 3: Median Performance for k = 7

swaps are all 0. Reverse greedy has a median value of 0 for the gaussian distributions, and forward greedy
also performs better on the gaussian distributions. The Jain-Vazirani algortihm has a high median in
general.

Worst-case analyses in Table 4 indicate that forward greedy performs very poorly in the worst case,
but Charikar with multiple iterations performs very well in the worst case (a percent deviation of no more
than 1.5). The other algorithms’ worst-case values are generally between forward greedy and Charikar
with multiple iterations. The results of the worst case provide insight into optimal input structures for
the various algorithms. We note how, for all algorithms, in general the uniform distributions caused
more problems than the gaussian distributions.

These results give us fundamental insight into the structure of inputs that succeed in these approxi-
mation algorithms. Recall from section 4.2 that a certain number of group centers are generated in each
instance. Clients generated around these group centers either follow a uniform or gaussian distribution.
If the clients follow a gaussian distribution, they will generally be more concetrated around the group
centers. The facilites are uniformally distributed across the plane of possible locations. Since the clients
are more clustered, a single facility that is closer to the group center can better service the clients in
that cluster. When the clusters are uniformally distributed, three facilities might fall in the range of this
client cluster but none has a clear advantage over the others. Figure 2 further illustrates this point. If
there are multiple groups such as these across the metric space, with some of the distributions overlap-
ping, it becomes easy to see why the algorithms perform better on the gaussian distributions. We can
look back at the algorithms themselves to further justify the improvements. Recall section 2.4.2 where
the filtering phase of the Charikar 2012 algorithm is explained. Clusters of clients that are close together
are grouped to form client centers in C ′. In a gaussian distribution, these client centers are much more
apparent.

In the forward greedy algorithm, facilities closest to the gaussian centers will open first. In a uniform
distribution, the algorithm cannot exploit the structure and must choose between several similar cost
facilities. In the gaussian distributions, a facility that is close to a cluster center with a small standard
deviation will open quickly, serving all of those clients. Such structure is not as exploitable in uniform
distributions.

In the reverse greedy algorithm, every facilitiy is initially opened. The facilities are closed in increas-
ing order of cost penalty. In a uniform client distribution, more facilities will have similar penalties for

11

Type Charikar 2012 Charikar Multi Forward Greedy JV Reverse Greedy PAM
gauss constant 18.1 0.52 29.45 17.3 14.3 6.77
gauss expo 13.0 0.66 30.35 23.76 11.03 5.25
gauss normal 49.53 0.97 43.41 21.13 14.9 6.86
uniform constant 35.4 1.29 57.85 22.51 19.81 15.64
uniform expo 29.53 1.9 80.5 18.01 14.1 7.7
uniform normal 41.53 1.47 82.68 21.64 17.5 19.52

Table 4: Worst Case Performance for k = 7

Figure 2: The black circles represent possible facility locations and the clear circle clients. The clients
are distributed by a uniform distribution on the left and a gaussian distribution on the right.

closing. In a gaussian distributions, the facilities closer to the cluster centers will remain open longer
until it becomes time to reduce the number of open facilities beyond the number of client groups. How-
ever, by this point the algorithm can remove facilities servicing a group of clients close to another group
of clients. Thus, the overall structure can be better exploited.

Tables 6, 5, 7 show how PAM with single swaps and PAM with 2-way swaps perform in comparison
with Charikar Multi. We used the time in which Charikar Multi terminated as the time limit for
both PAM algorithms (i.e., when the time limit was exceeded, we simply terminated the local search
and returned the best value found thus far). This allowed the three algorithms to be compared more
accurately in practice. When these restrictions are placed on PAM, we find that PAM and PAM
Multiswap perform worse on average than Charikar Multi, although PAM performs better in the worst
case. Interestingly, when we limit the amount of time that both PAM and PAM Multiswap can run,
PAM ofter performs better when p = 1. This leads us to believe that it is better to run PAM alone
when time is the major constraint.

We included the tables for k = 100, 200, 300, and 400 in the appendix. Most noteworthy is that all of
the algorithms tend to do better for larger values of k. This is generally expected since there are fewer
decisions that need to be made (i.e. fewer facilities that need to be closed). For exceptionally large k
with respect to nf , the Charikar algorithm always returns the optimal solution.

Type CharikarMulti PAM PAM Multiswap
gauss constant 0.1 0.42 2.54
gauss expo 0.1 0.44 3.61
gauss normal 0.19 0.46 3.64
uniform constant 0.99 1.05 5.78
uniform expo 0.93 0.97 4.84
uniform normal 0.81 1.07 5.91

Table 5: Average Performance for k = 7

12

Type CharikarMulti PAM PAM Multiswap
gauss constant 0.0 0.0 0.0
gauss expo 0.0 0.0 0.0
gauss normal 0.0 0.0 0.0
uniform constant 0.0 0.48 4.16
uniform expo 0.0 0.34 3.98
uniform normal 0.0 0.5 4.27

Table 6: Median Performance for k = 7

Type CharikarMulti PAM PAM Multiswap
gauss constant 16.4 8.31 29.45
gauss expo 21.69 11.81 30.77
gauss normal 24.96 9.96 43.41
uniform constant 40.67 17.04 68.78
uniform expo 43.79 20.52 80.5
uniform normal 33.43 19.52 140.21

Table 7: Worst Case Performance for k = 7

6.1 OR-Library

PAM Charikar CharikarMulti Forward Greedy Reverse Greedy
Average 0.2415 2.4074 0.0816 1.5742 4.1480
Median 0.1011 0.0000 0.0000 1.6173 4.2005
Worst Case 1.0558 15.1897 0.9325 3.8840 7.3854

We also ran the algorithms on instances from the OR-Library. Per problem results are located in the
Appendix. Charikar Multi performed better than PAM on every instance except for 6 out of the 37
problems, where it still achieves a smaller than 1% increase over optimal.

7 Timing Analysis

Figure 3: Average running times for the various implemented algorithms

13

Figure 4: Median running times for the various implemented algorithms

Figure 5: Worst case running times for the various implemented algorithms

Figures 3, 4, and 5 show that the forward greedy algorithm runs significantly faster on average than the
others. However, the total cost of the solution it returns (as seen in Table 2) is significantly higher than
that of Charikar 2012 and PAM.

After forward greedy, Charikar 2012 is the fastest on average. However, on the uniform datasets,
this gain in speed comes at a slight loss in optimality of the returned solution. We note that the values
for PAM are only for small datasets which it completed in a reasonable time. Charikar Multi Sample is
slower than PAM in the average case on these datasets; however, it is not significantly slower.

In practice, the runtime of Charikar’s rounding scheme is dominated by the time required to solve
the LP. Once the LP is solved, running the rounding steps 1000 times takes only a few seconds in every
instance. This characteristic makes the multiple rounding approach especially desirable since it can
be done for a very low cost. The paper cites the fast algorithm for the LP presented in [16], but the
algorithm does not appear to work in practice, as the number of loop iterations is prohibitively long if
we wish to achieve only a small ε over the optimal LP value.

8 Conclusions and Future Work

In conclusion, the forward greedy algorithm runs significantly faster than the other algorithms; however,
its objective function value is much higher on average than that of Charikar and PAM. Thus, we
recommend using the forward greedy algorithm to provide a very fast approximation when the optimality
of the solution is not a high priority.

14

In general, though, running the Charikar 2012 algorithm multiple times (i.e., solving the LP once,
with multiple iterations of rounding) seems to be the best approach. The algorithm scales very well in
practice, and the values returned are very close to optimal. Although we cannot prove a definitive upper
bound on the approximation ratio when changing parameters in the Charikar algorithm, preliminary
results show that a better bound is achievable.

Regarding future work, given that the Charikar algorithm performs so well in practice, we would like
to see how this algorithm performs in comparison with the Li-Svensson algorithm [10], which finally broke
the 3-approximation ratio in 2013. The Li-Svensson algorithm, however, is very complex with numerous
implementation challenges; thus, in practice, the Charikar algorithm (even with its complexities) is more
feasible for users to implement.

9 Acknowledgements

We would like to thank Professor Moses Charikar of Princeton University for all of his help regarding
the 2012 LP rounding algorithm and Shi Li of Toyota Technological Institute at Chicago for his email
correspondence.
We would also like to thank Professor Sanjeev Arora for all of his time and guidance throughout the
process.

15

References

[1] Oded Kariv and S Louis Hakimi. An algorithmic approach to network location problems. ii: The
p-medians. SIAM Journal on Applied Mathematics, 37(3):539–560, 1979.

[2] Kamal Jain, Mohammad Mahdian, and Amin Saberi. A new greedy approach for facility location
problems. In Proceedings of the thiry-fourth annual ACM symposium on Theory of computing, pages
731–740. ACM, 2002.

[3] M.L. Balinski. On finding integer solutions to linear programs.

[4] Marek Chrobak, Claire Kenyon, and Neal E. Young. The reverse greedy algorithm for the metric
k-median problem. In Proceedings of the 11th Annual International Conference on Computing and
Combinatorics, COCOON’05, pages 654–660, Berlin, Heidelberg, 2005. Springer-Verlag.

[5] Vijay Arya, Naveen Garg, Rohit Khandekar, Adam Meyerson, Kamesh Munagala, and Vinayaka
Pandit. Local search heuristics for k-median and facility location problems. SIAM Journal on
Computing, 33(3):544–562, 2004.

[6] Moses Charikar, Sudipto Guha, Éva Tardos, and David B. Shmoys. A constant-factor approximation
algorithm for the k-median problem (extended abstract). In Proceedings of the Thirty-first Annual
ACM Symposium on Theory of Computing, STOC ’99, pages 1–10, New York, NY, USA, 1999.
ACM.

[7] Kamal Jain and Vijay V. Vazirani. Approximation algorithms for metric facility location and k-
median problems using the primal-dual schema and lagrangian relaxation. J. ACM, 48(2):274–296,
March 2001.

[8] Kamal Jain, Mohammad Mahdian, Evangelos Markakis, Amin Saberi, and Vijay V. Vazirani.
Greedy facility location algorithms analyzed using dual fitting with factor-revealing lp. J. ACM,
50(6):795–824, November 2003.

[9] Moses Charikar and Shi Li. A dependent lp-rounding approach for the k-median problem. In
Automata, Languages, and Programming, pages 194–205. Springer, 2012.

[10] Shi Li and Ola Svensson. Approximating k-median via pseudo-approximation. In Proceedings of
the Forty-fifth Annual ACM Symposium on Theory of Computing, STOC ’13, pages 901–910, New
York, NY, USA, 2013. ACM.

[11] Chandrashekhar Nagarajan and David P Williamson. An experimental evaluation of incremental
and hierarchical k-median algorithms. In Experimental Algorithms, pages 169–180. Springer, 2011.

[12] Sayan Bhattacharya, Parinya Chalermsook, Kurt Mehlhorn, and Adrian Neumann. New approx-
imability results for the robust k-median problem. arXiv preprint arXiv:1309.4602, 2013.

[13] Pranjal Awasthi, Afonso S Bandeira, Moses Charikar, Ravishankar Krishnaswamy, Soledad Villar,
and Rachel Ward. Relax, no need to round: integrality of clustering formulations. arXiv preprint
arXiv:1408.4045, 2014.

[14] Leonard Kaufman and Peter J. Rousseeuw. Partitioning Around Medoids (Program PAM), pages
68–125. John Wiley & Sons, Inc., 2008.

[15] Lecture 5: Primal-dual algorithms and facility location. https://www.cs.cmu.edu/~anupamg/

adv-approx/lecture5.pdf. Accessed: 2015-01-12.

[16] Neal E Young. K-medians, facility location, and the chernoff-wald bound. arXiv preprint
cs/0205047, 2002.

[17] John E Beasley. Or-library: distributing test problems by electronic mail. Journal of the operational
research society, pages 1069–1072, 1990.

16

https://www.cs.cmu.edu/~anupamg/adv-approx/lecture5.pdf
https://www.cs.cmu.edu/~anupamg/adv-approx/lecture5.pdf

Appendix

See Github link https://github.com/bmatejek525/521final for Julia implementations.

Further tables below.
(Note, a value of N/A occurs when the algorithm cannot complete in the time allotted.)

17

Instance # Opt Value Pam Charikar Charikar Multi Forward Greedy Reverse Greedy JV
1 5819.0000 0.0000 0.0000 0.0000 1.2373 0.1375 1.3576
2 4093.0000 0.2932 6.2057 0.0000 0.6108 1.1972 6.9387
3 4250.0000 0.0000 9.4824 0.0000 3.5059 3.8353 7.4824
4 3034.0000 0.3955 0.0000 0.0000 1.7798 4.5814 9.0310
5 1355.0000 0.0000 0.0000 0.0000 1.7712 2.8782 5.7565
6 7824.0000 0.0000 0.6646 0.0000 2.5946 2.2367 4.6907
7 5631.0000 0.2486 0.0000 0.0000 0.2664 2.6105 5.2921
8 4445.0000 0.2700 0.0000 0.0000 0.6074 3.5321 5.7368
9 2734.0000 0.6950 0.0000 0.0000 3.8040 6.8764 4.1697
10 1255.0000 0.6375 0.0000 0.0000 2.3108 5.0996 6.6135
11 7696.0000 0.0000 15.1897 0.0000 0.3248 3.4433 5.8342
12 6634.0000 0.0000 0.8592 0.0603 0.2563 5.4417 4.6277
13 4374.0000 0.0000 0.0000 0.0000 2.1719 5.4412 6.1043
14 2968.0000 0.1011 1.7857 0.0000 1.6173 4.4474 6.0310
15 1729.0000 0.5205 0.0000 0.0000 1.9086 5.4367 NA
16 8162.0000 0.0000 0.8454 0.0000 0.8576 1.5192 5.8197
17 6999.0000 0.0000 6.7152 0.0286 0.2858 4.3149 NA
18 4809.0000 0.0416 0.2911 0.0000 1.4764 4.2005 7.5276
19 2845.0000 0.4921 0.0000 0.0000 2.0035 6.3620 9.0685
20 1789.0000 0.8385 0.0000 0.0000 3.5774 6.1487 5.9810
21 9138.0000 0.0000 0.0000 0.0000 0.0000 3.7645 5.8875
22 8579.0000 1.0491 14.6054 0.9325 1.0607 1.9116 11.5748
23 4619.0000 0.0000 0.0000 0.0000 1.4722 4.1567 7.7506
24 2961.0000 0.2026 0.0000 0.0000 1.8913 6.6869 5.9102
25 1828.0000 0.6565 0.0000 0.0000 3.8840 6.7834 444.1466
26 9917.0000 0.0000 1.5428 0.0202 1.7747 2.3192 NA
27 8307.0000 0.0000 8.0173 0.6982 0.7343 2.3474 3.9364
28 4498.0000 0.3335 0.0000 0.0000 1.8008 5.5358 4.8466
29 3033.0000 0.1319 0.0000 0.0000 2.3739 7.3854 NA
30 1989.0000 1.0558 0.0000 0.0000 2.7652 6.6365 NA
31 10086.0000 0.0000 11.5308 0.0000 0.0000 2.6472 3.5296
32 9297.0000 0.0430 2.1405 0.3550 0.3657 2.6675 6.8732
33 4700.0000 0.4468 0.0000 0.0000 2.1277 4.5532 NA
34 3013.0000 0.3651 0.3983 0.0000 3.2858 5.6422 NA
35 10400.0000 0.0000 2.5000 0.0096 0.0577 3.4519 NA
36 9934.0000 0.0000 6.2211 0.9160 0.2013 2.1240 5.2949
37 5057.0000 0.1186 0.0791 0.0000 1.4831 5.1216 5.7939

Table 8: Algorithm performances on specific OR-Lib instances as a percentage increase over the optimal
value (first column)

Type Charikar Charikar Multi F. Greedy JV R. Greedy PAM PAM Multi
gauss constant 0.0039 0.0002 0.1988 2.2167 0.0015 0.0007 N/A
gauss expo 0.0008 0.0000 0.0999 1.4488 0.0001 0.0002 N/A
gauss normal 0.0042 0.0001 0.1797 1.6822 0.0005 0.0002 N/A
uniform constant 0.0487 0.0021 1.6038 2.4441 0.0278 0.0150 N/A
uniform expo 0.0387 0.0020 1.3466 2.4828 0.0240 0.0122 N/A
uniform normal 0.0383 0.0016 1.5176 2.5010 0.0203 0.0105 N/A

Table 9: Average for k = 100

18

Type Charikar Charikar Multi F. Greedy JV R. Greedy PAM PAM Multi
gauss constant 0.0000 0.0000 0.0000 2.0783 0.0000 0.0000 N/A
gauss expo 0.0000 0.0000 0.0000 1.2668 0.0000 0.0000 N/A
gauss normal 0.0000 0.0000 0.0000 1.5163 0.0000 0.0000 N/A
uniform constant 0.0000 0.0000 1.0489 2.5898 0.0000 0.0000 N/A
uniform expo 0.0000 0.0000 0.0087 2.5640 0.0000 0.0000 N/A
uniform normal 0.0000 0.0000 0.5887 2.5582 0.0000 0.0000 N/A

Table 10: Median for k = 100

Type Charikar Charikar Multi F. Greedy JV R. Greedy PAM PAM Multi
gauss constant 1.2833 0.0744 4.2600 5.8823 0.2132 0.0991 N/A
gauss expo 0.5179 0.0207 2.9500 6.1905 0.0271 0.0833 N/A
gauss normal 2.1163 0.0419 4.5890 6.5022 0.0784 0.0600 N/A
uniform constant 2.6670 0.1295 7.1931 7.0728 0.3823 0.3803 N/A
uniform expo 3.0713 0.1680 8.4991 7.8906 0.4326 0.3390 N/A
uniform normal 3.1713 0.1509 7.4081 6.9296 0.3807 0.3190 N/A

Table 11: Worst case for k = 100

Type Charikar Charikar Multi F. Greedy JV R. Greedy PAM PAM Multi
gauss constant 0.0000 0.0000 0.0033 0.3966 0.0000 0.0000 N/A
gauss expo 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 N/A
gauss normal 0.0000 0.0000 0.0000 N/A 0.0000 0.0000 N/A
uniform constant 0.0008 0.0000 0.1264 0.7617 0.0000 0.0000 N/A
uniform expo 0.0012 0.0001 0.1138 1.2554 0.0000 0.0000 N/A
uniform normal 0.0003 0.0000 0.1003 0.8804 0.0000 0.0000 N/A

Table 12: Average for k = 200

Type Charikar Charikar Multi F. Greedy JV R. Greedy PAM PAM Multi
gauss constant 0.0000 0.0000 0.0000 0.2486 0.0000 0.0000 N/A
gauss expo 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 N/A
gauss normal 0.0000 0.0000 0.0000 N/A 0.0000 0.0000 N/A
uniform constant 0.0000 0.0000 0.0000 0.5697 0.0000 0.0000 N/A
uniform expo 0.0000 0.0000 0.0000 1.1451 0.0000 0.0000 N/A
uniform normal 0.0000 0.0000 0.0000 0.6042 0.0000 0.0000

Table 13: Median for k = 200

Type Charikar Charikar Multi F. Greedy JV R. Greedy PAM PAM Multi
gauss constant 0.0000 0.0000 0.8734 2.8229 0.0000 0.0000 N/A
gauss expo 0.0000 0.0000 0.0477 0.0000 0.0000 0.0000 N/A
gauss normal 0.0000 0.0000 0.0235 N/A 0.0000 0.0000 N/A
uniform constant 0.6170 0.0109 1.8969 3.1352 0.0000 0.0000 N/A
uniform expo 0.3748 0.0398 2.1153 3.9932 0.0000 0.0000 N/A
uniform normal 0.2204 0.0065 2.0389 3.4834 0.0000 0.0000 N/A

Table 14: Worst case for k = 200

19

Type Charikar Charikar Multi F. Greedy JV R. Greedy PAM PAM Multi
gauss constant 0.0000 0.0000 0.0000 N/A N/A N/A N/A
gauss expo 0.0000 0.0000 0.0000 N/A N/A N/A N/A
gauss normal 0.0000 0.0000 0.0000 N/A N/A N/A N/A
uniform constant 0.0000 0.0000 0.0000 N/A N/A N/A N/A
uniform expo 0.0000 0.0000 0.0030 0.3637 N/A N/A N/A
uniform normal 0.0000 0.0000 0.0007 0.8213 N/A N/A N/A

Table 15: Average for k = 300

Type Charikar Charikar Multi F. Greedy JV R. Greedy PAM PAM Multi
gauss constant 0.0000 0.0000 0.0000 N/A N/A N/A N/A
gauss expo 0.0000 0.0000 0.0000 N/A N/A N/A N/A
gauss normal 0.0000 0.0000 0.0000 N/A N/A N/A N/A
uniform constant 0.0000 0.0000 0.0000 N/A N/A N/A N/A
uniform expo 0.0000 0.0000 0.0000 0.3315 N/A N/A N/A
uniform normal 0.0000 0.0000 0.0000 0.6219 N/A N/A N/A

Table 16: Median for k = 300

Type Charikar Charikar Multi F. Greedy JV R. Greedy PAM PAM Multi
gauss constant 0.0000 0.0000 0.0000 N/A N/A N/A N/A
gauss expo 0.0000 0.0000 0.0000 N/A N/A N/A N/A
gauss normal 0.0000 0.0000 0.0000 N/A N/A N/A N/A
uniform constant 0.0000 0.0000 0.0000 N/A N/A N/A N/A
uniform expo 0.0000 0.0000 0.2742 0.8516 N/A N/A N/A
uniform normal 0.0000 0.0000 0.3489 1.4005 N/A N/A N/A

Table 17: Worst case for k = 300

Type Charikar Charikar Multi F. Greedy JV R. Greedy PAM PAM Multi
gauss constant 0.0000 0.0000 0.0000 N/A N/A N/A N/A
gauss expo 0.0000 0.0000 0.0000 N/A N/A N/A N/A
gauss normal 0.0000 0.0000 0.0000 N/A N/A N/A N/A
uniform constant 0.0000 0.0000 0.0000 N/A N/A N/A N/A
uniform expo 0.0000 0.0000 0.0000 N/A N/A N/A N/A
uniform normal 0.0000 0.0000 0.0000 N/A N/A N/A N/A

Table 18: Average for k = 400

Type Charikar Charikar Multi F. Greedy JV R. Greedy PAM PAM Multi
gauss constant 0.0000 0.0000 0.0000 N/A N/A N/A N/A
gauss expo 0.0000 0.0000 0.0000 N/A N/A N/A N/A
gauss normal 0.0000 0.0000 0.0000 N/A N/A N/A N/A
uniform constant 0.0000 0.0000 0.0000 N/A N/A N/A N/A
uniform expo 0.0000 0.0000 0.0000 N/A N/A N/A N/A
uniform normal 0.0000 0.0000 0.0000 N/A N/A N/A N/A

Table 19: Median for k = 400

20

Type Charikar Charikar Multi F. Greedy JV R. Greedy PAM PAM Multi
gauss constant 0.0000 0.0000 0.0000 N/A N/A N/A N/A
gauss expo 0.0000 0.0000 0.0000 N/A N/A N/A N/A
gauss normal 0.0000 0.0000 0.0000 N/A N/A N/A N/A
uniform constant 0.0000 0.0000 0.0000 N/A N/A N/A N/A
uniform expo 0.0000 0.0000 0.0000 N/A N/A N/A N/A
uniform normal 0.0000 0.0000 0.0000 N/A N/A N/A N/A

Table 20: Worst case for k = 400

21

	Introduction
	Background and Notation
	Relation to Other NP-Hard Problems
	Existing Theoretical Research
	Existing Experimental Research

	Implemented Algorithms
	Greedy Algorithms
	Forward Greedy
	Reverse Greedy

	Local Search
	Jain Vazirani
	Charikar 2012 Rounding
	Preliminary Steps and Notation
	Filtering Phase
	Bundling Phase
	Matching Phase
	Sampling Phase
	Practical Improvements and Variants

	Implementation Details
	Datasets
	OR-Library
	Randomly Generated Distributions

	Charikar Analysis
	Charikar Multi Sample versus Charikar 2012
	Empirical Study of Constants in Charikar 2012

	General Analysis
	OR-Library

	Timing Analysis
	Conclusions and Future Work
	Acknowledgements

