
Dynamic Learning Rate Adjustment Algorithm

Brian Bullins, Sergiy Popovych, Hansen Zhang

Abstract

Developing an investment portfolio for the stock market that will yield positive returns

is the primary goal of investors worldwide. A variety of models and algorithms have

been developed to decide upon a distribution which maximizes gains in the market, a

few examples being the Geometric Brownian Motion model and the universal portfolio.

One particular algorithm, known as online gradient descent, can be used for portfolio

management with reasonable success. Its performance depends heavily, however, on the

choice of the learning rate η, and it is difficult to know a priori which values will yield

the best results. In our project, we explored various means of adjusting η based on

different attributes of the stock market in an attempt to determine a more systematic

approach to dynamically learn profitable values of η. One especially promising algorithm

involved an implementation of multiplicative weights, where each expert is represented by

a gradient descent algorithm with a unique value for η. To determine the profitability of

our algorithms, we tested them on a variety of long-term daily-resolution stock data sets

from many different markets.

1. Introduction

An investor’s main objective in the stock

market is to determine how to place his

money among stocks so as to reap the great-

est reward while at the same time maintain a

low amount of risk. The field of finance the-

ory focuses heavily on developing investment

models that will allow for maximizing wealth

gains, and some online algorithms have been

fit to the problem of portfolio management

to further this objective. One such algo-

rithm is the multiplicative weights method

[1], whereby there is a set of experts among

which we must choose one randomly for each

round of our process, and each expert has a

weight which increases or decreases depend-

ing on what cost was incurred by the expert

in the previous rounds. The online gradient

descent algorithm [2] embodies a similar no-

tion of making a future prediction based on

the previous observation. Instead of main-

taining a set of experts, however, the online

gradient descent algorithm involves moving

in the direction of the gradient to hopefully

further minimize the objective function. It is

important to note that, in the case of port-

folio management, because we are trying to

maximize profit, our algorithm will need to

make movements in the positive direction of

the gradient, which may be known as gradi-

1



ent ascent since the goal in this version to

find a maximum. One algorithm may easily

be transformed into the other, however, by

simply inverting the signs, so from this point

on we shall use the term gradient descent,

with the hope that the reader understands

from context what is meant.

One of the critical components of the gra-

dient descent algorithm, as we will see, is the

choice of the learning rate parameter, η. In

the context of the stock market, we make a

choice at each round of a distribution of our

current wealth among the stocks available

and invest this money at the days opening

price, and our payoff is the proportion of the

amount of money in hand at the end of the

day, with respect to the amount had at the

beginning of the day. The distribution choice

for each new day is determined as a function

of the distribution of the previous day, along

with an update in the positive direction of

the gradient, times the η parameter. When

η is 0, the distribution is not updated at all,

so if the initial distribution is uniform, then

it remains uniform for the entire process. For

values of η greater than 0, it is generally the

case that smaller values of η result in plac-

ing a slightly increased proportion of wealth

in stocks that performed well on the previ-

ous day (and, by extension, removing wealth

from poorer performing stocks), while larger

values of η result in a much larger propor-

tion of wealth being places in just a few top

performing stocks of the previous day.

It was precisely this parameter η that

piqued our interest during the implemen-

tation of the gradient descent algorithm

in homework 4. Through trial and error,

we found that some values of η resulted

in disproportionately higher profitability.

Curious to determine the reasons behind

this occurrence, we tried to vary η based on

a variety of different properties of the stock

market, including volatility and general

market growth. Through these explorations

we managed to develop a modified version

of the multiplicative weights algorithm,

which treats each expert as its own gradient

descent algorithm, but with a different value

of η assigned to each expert. Our paper is

outlined as follows: in section 2 we discuss

some of the related work that influenced and

guided our project, as well as the approaches

we ultimately decided to take. Section 3

deals with the importance of choosing η, and

its influence on the ultimately profitability

of the gradient descent algorithm as applied

to real-life data. In section 4, we cover the

various heuristics we tried to apply to the

market to dynamically determine η. In sec-

tions 5 and 6, we discuss the algorithms we

created that yielded much more impressive

performances than any of the heuristics

attempted in the previous section. Sections

7 and 8 provide details about the data sets

which we tested our algorithms against, as

well as the wealth gains that came as a result.

2. Related Work

Elad et al. [3] presented an efficient al-

2



gorithm for regret minimization with exp-

concave loss functions, and improved upon

the state-of-the-art algorithm in that aspect.

Its implications in the Geometric Brownian

Motion model section analyzed the relation-

ship between variance and trading frequency

inspired us on some level. This paper also

assumed no transaction costs, which is an

assumption we have made as part of our

project. Kalai et al. [4] presented an efficient

randomized approximation of the Universal

algorithm. It has w.h.p. within (1− ε) times

the performance of the Universal algorithm

and runs in time polynomial in log(1/η),

1/ε, the number of days, and the number of

stocks. This is important for practical con-

cerns.

The multiplicative weights algorithm, as

described in the survey by Arora et al. [1],

works by assigning weights to a series of

experts which are updated at each time step

based on the cost function that is applied.

At the end of each round, an expert is

randomly chosen with probability that is

proportional to its weight. For the online

gradient descent algorithm [2], we move in

the direction of the gradient in the hopes

that our new choice from the decision set

K (after projecting onto K) results in a

smaller result from a given cost function.

Interestingly, in a notable ICML paper from

2003 [5], Zinkevich showed that that some

of the results that apply to general gradient

descent can be naturally extended to the

online case.

3. Importance of Eta

As part of homework 4, we were asked to

implement and run the online gradient de-

scent algorithm on a set of real S&P 500

stock data, consisting of 490 different stocks.

After programming the main components of

the algorithm, the only thing that is left to

the person running the algorithm is to make

a choice for the value of η. We discovered,

after trying many different values of η, that

the wealth gains for this stock data are much

greater for higher values of η than for lower

values.

Intrigued by this sensitivity to the choice

of η, we decided to observe what would hap-

pen if we chose different values of η for

smaller periods of time within the entire time

period of the data set. After adjusting the in-

dividual values of η to be profitable for each

month, we obtained a return on investment

of more than 2000x. In addition, we found

that these profitable values of η tended to

vary wildly from month to month.

Overall, it tended to be large values of η

that performed well for this original data set.

Wondering if this would hold true for addi-

tional data sets, we made use of online re-

sources and acquired 14 years of S&P 500

stock data. This data contains the open,

close, high, and low prices of 402 stocks of

the time period starting from January 3rd,

2000 and ending on December 31st, 2014,

much larger than the one used for the home-

work. We applied the same online gradient

3



descent algorithm from the homework on this

new data set, and this time a large η value

actually resulted in a loss of money. This

observation suggested that a large η will not

always yield profitable results.

Taken together, these results led us to

consider the possibility of finding a corre-

lation between the optimal η’s of adjacent

time periods that we might exploit through

the decisions we make over long periods of

time.

4. Heuristics Attempted

Our first approach to exploiting the algo-

rithm’s dependence on η involved generat-

ing a set of statistics about the state of the

stock market. The volatility of the market

can function as an indicator of the disper-

sion of prices, so we attempted to make use

of this knowledge in determining how to ad-

just η. First, we tried increasing η as the

market’s volatility increased, and vice versa,

with the rationale that if the volatility is in-

creasing, it might be advantageous to adopt

to the highly fluctuating market quickly. Af-

ter lackluster performance, we tried the in-

verse procedure: when the volatility is high,

decrease the value for η. We reasoned, in this

scenario, that the more volatile the market,

the more noise that exists making it more

difficult to predict the trajectory of the mar-

ket, leading the gradient descent algorithm

to be less reliable. Unfortunately, our results

were again underwhelming.

The next approach we took involved look-

ing at the general market trends as exhib-

ited by the stock prices. It is reasonable to

imagine that if the market is growing as a

whole, then there might be a few stocks that

are growing especially quickly, and a larger

value of η would allow for the algorithm to

take advantage of this possibility. Thus, we

tried increasing η as the market as a whole

grew, but only to result in another mediocre

performance. In order to be comprehensive

in our tests, we tried the opposite whereby

η decreases as the market begins to grow,

though not surprisingly this also ended up

as unprofitable.

We tried observing the distance between

the gradient prediction of the stock change

and the actual stock change, with the

idea that the greater this distance, the

smaller the value of η should be, as it would

indicate an abrupt shift in the market. We

also thought to try assigning an η to each

stock which can vary on its own. This

seemed reasonable, as then stocks behaving

predictably and unpredictably have their

own values of η that can be used to take

advantage of these differences. Neither of

these proposals, however, yielded much

profitability. Overall, the mediocre results

achieved through all of these trials led us to

conclude that it is difficult to find properties

of the stock market from which we can

determine reasonable values of η.

5. Using Multiplicative Weights

After our underwhelming results men-

4



tioned in the previous section, we decided

to try using the multiplicative weights al-

gorithm to determine profitable values of η.

Our model consists of a set of experts as part

of the multiplicative weights algorithm, with

each expert corresponding to a single gradi-

ent descent algorithm that has a unique as-

signment to its learning parameter η. Specif-

ically, there are 6 experts, which take on

these values of η: {0, 0.001, 0.1, 1, 10,

10000}. These values were chosen to cover

a reasonable range of possible η’s.

It is necessary for us to make some as-

sumptions about the stock market, namely

that there is an inherent structure or mo-

mentum to the data. Clearly, if prices can

become arbitrarily large or small in a single

day, we would have little hope of determin-

ing the flow of prices based on the previous

data. It follows from this assumption that

if an algorithm performs well for time pe-

riod ti, . . . , tj , we can reasonably expect it

to perform well in a subsequent time period

tj+1, . . . , tk.

Another important aspect of our algorithm

is that the lengths of the time periods are not

so short as to be influenced by the random-

ness of the stock data. At the same time,

if the periods are made too long, the model

might fail to capture changes in the stock

trends. Thus, the length of the time period

chosen needs to balance these competing in-

terests.

In order to take advantage of these as-

sumptions, our multiplicative weight algo-

rithm had two main parameters. One of

these was the length of the time period after

which we change the corresponding weights

of the experts. The second parameter deter-

mines the number of changes after which the

value of η is updated. To adopt to changes in

the market, we decided to reset the weights

after each new choice of η. If we did not

make this adjustment, only long-term prof-

itable values of η will be chosen, thus de-

creasing the chance of choosing an η which

has performed well in a recent period of time.

We update the weights in the following

way: we split the look-back period into

equal sized chunks, and observe how each

of the stocks performs over the course of

an entire chunk. After the period of each

chunk completes, we observe how all of

the stocks perform relative to the highest

performer. If a stock has a return that is at

least 0.9 times that of the best stock, then

its weight is doubled–otherwise, its weight

is divided by 2. This worked quite well as a

first attempt, but we still discovered a flaw

in the reasoning behind it. Because of how

we decided to update the weights based on

the look-back period, we realized that the

multiplicative manner of how the weights

should be updated was instead dominated

in an additive manner. This observation led

us to update the algorithm to account for

this issue.

6. Deterministic Version

After some initial success the multiplica-

5



tive weights-based algorithm detailed in

the previous section, we decide to develop

an updated version of our algorithm. In

our final, and most successful, version we

deterministically choose the η that gives the

best return over the previous N days, where

N in the length of the look-back period.

To make such a decision process possible,

a separate money distribution is kept for

each of the η’s in the pool. However, after

each new choice of η, all of the money

distributions are reset to the one of the

current η.

7. Data Sets

1. S&P 500

S&P 500, or the Standard & Poors, is an

American stock market index based on

the market capitalizations of 500 large

companies having common stock listed

on the NYSE or NASDAQ. For this

stock market index we used the data of

402 stocks across the span of 3773 days

(14 years).

2. ASX 200

The ASX 200 index is a stock mar-

ket index of Australian stocks listed on

the Australian Securities Exchange from

Standard & Poor’s. For this stock mar-

ket index we used the data of 91 stocks

across the span of 3800 days.

3. FTSE 100

The FTSE 100, informally the ”footsie”,

is a share index of the 100 companies

listed on the London Stock Exchange

with the highest market capitalization.

For this stock market index we used the

data of 68 stocks across the span of 3900

days.

4. DOW JONES 30

The DOW JONES 30, or the Dow Jones

Industrial Average, is a stock market in-

dex, and one of several indices created

by Wall Street Journal editor and Dow

Jones & Company co-founder Charles

Dow. It is an index that shows how 30

large publicly owned companies based

in the United States have traded during

a standard trading session in the stock

market. For this stock market index we

used the data of 29 stocks across the

span of 3773 days.

5. NIFTY

The NIFTY, or the CNX Nifty, also

called the Nifty 50, is National Stock

Exchange of India’s benchmark stock

market index for Indian equity market.

It is owned and managed by India Index

Services and Products (IISL), which is

a wholly owned subsidiary of the NSE

Strategic Investment Corporation Lim-

ited. For this stock market index we

used the data of 29 stocks across the

span of 3000 days.

6. NASDAQ 100

The NASDAQ 100 is a stock market in-

6



dex made up of 107 equity securities is-

sued by 100 of the largest non-financial

companies listed on the NASDAQ. For

this stock market index we used the data

of 75 stocks across the span of 3773 days.

7. SSE

The SSE is the stock exchange of

Shanghai. For this stock market index

we used the data of 470 stocks across

the span of 3800 days.

8. Results

Before applying our algorithm to the stock

data of multiple markets, we first thought

about what assignment of parameters of our

algorithm would make logical sense. Using

this as our guideline, we determined that it

would not be reasonable to update η more

often than once every 10 days. It also seems

that if η is updated less often than once ev-

ery 30 days, the model loses its flexibility to

adapt to the market. For the look-back pa-

rameter, if it is shorter than 60 days, then

we lose some information that would have

otherwise been useful to provide a sense of

the recent history of the stocks. At the same

time, looking back for a period of more than

a year tends to not pick up on the more re-

cent trends that influence the trajectory of

the prices. After some testing, our beliefs of

reasonable choices of the update and look-

back parameters were confirmed by the prof-

itable results of applying our algorithm to

the 14 years of S&P 500 stock data.

As can be seen from the figures below, our

deterministic algorithm performs quite well

on all of the data sets, with a truly remark-

able performance in the Shanghai stock mar-

ket. In figure 1, we see the performance of

our algorithm on all of the data sets exclud-

ing Shanghai, with an update parameter set

to 10, and a look-back parameter set to 100.

It is easy to observe the relatively strong per-

formance achieved by our algorithm on all

of the data sets found in figure 1, with the

Australia data set yielding the highest gains.

Figure 2 exhibits the results of the algorithm

behind applied to the same 5 data sets, but

with a different assignment of parameters. It

is worth noting the robustness of the algo-

rithm, as even after adjusting the parame-

ters, the returns on investment for all of our

data sets remain reasonably strong (with the

exception of Australia, which comes down

from an incredibly high 301.5x return to a

more reasonable, yet still impressive, 6.34x

return). In fact, the average of roughly 8x re-

turn over approximately 14 years would indi-

cate an average annual return of nearly 16%,

which is a rather strong annual return.

It is obvious from our decision to use an

additional figure that the performance of

our algorithm on the Shanghai data is very

different from the performance for the rest

of the data sets. As we can see in figure

3, for large enough values of η, our algo-

rithm results in more than a trillion times

return on investment, which is absolutely

phenomenal. Figure 4 shows a breakdown

7



Figure 1: All markets, log scale

of the gains of our algorithm at intervals of

200 days, and we are unsure of the reason

behind this astronomical performance. We

believe that if it were due to a bug in our

algorithm, then there would be similarly

aberrant results for the other data sets. It

is also possible that it is due to a bug in

the stock data, but we are unsure of the

best way to determine if the data itself is

corrupted. One reason to suspect that it is

not simply a bug in the data due to what

can be seen in figure 4. There we seen a

consistent exponentiation of the data from

day 1800 onwards, which is what one would

expect for general trends in the stock data.

For values of η less than 100, however, this

phenomenon is not observed.

9. Conclusion

In our project, we developed techniques

which help us to determine values of η, the

learning rate of the gradient descent algo-

rithm, on the fly, allowing the algorithm to

better adjust to the trends of the stock mar-

ket. As we have seen, the algorithm performs

Figure 2: All markets

Figure 3: Shanghai only, log scale

Figure 4: Shanghai only, log scale

8



well on a variety of stock data from differ-

ent markets, thus resulting in relatively high

wealth gains.

One possible direction of future work

would be to weigh more heavily the more

recent days of the look-back period than

those closer to the beginning of the period,

with the hope that more information can

be gleaned from the more recent data. We

would also hope to explore the Shanghai

stock data further to try to determine the

reason behind the exorbitant returns on in-

vestment.

References

[1] S. Arora, E. Hazan, and S. Kale. The

multiplicative weights update method: a

meta-algorithm and applications. Theory

of Computing, 8(1):121–164, 2012.

[2] Lecture notes on online gradient descent.

S. Arora.

[3] E. Hazan and S. Kale. On Stochastic and

Worst-case Models for Investing. Proc.

NIPS, 2009.

[4] A. Kalai and S. Vempala. Efficient Al-

gorithms for Universal Portfolios. J.

Machine Learning Research, 3:423-440,

2002.

[5] M. Zinkevich. Online Convex Program-

ming and Generalized Infinitesimal Gra-

dient Ascent. ICML, 2003.

9


