PRINCETON UNIV. F’13  cos 521: ADVANCED ALGORITHM DESIGN

Lecture 2: Karger’s Min Cut Algorithm

Lecturer: Sanjeev Arora Scribe: Sanjeev

Today’s topic is simple but gorgeous: Karger’s min cut algorithm and its extension. It
is a simple randomized algorithm for finding the minimum cut in a graph: a subset of
vertices S in which the set of edges leaving S, denoted E(S,S) has minimum size among
all subsets. You may have seen an algorithm for this problem in your undergrad class that
uses maximum flow. Karger’s algorithm is elementary and and a great introduction to
randomized algorithms.

The algorithm is this: Pick a random edge, and merge its endpoints into a single “su-
pernode.” Repeat until the graph has only two supernodes, which is output as our guess for
min-cut. (As you continue, the supernodes may develop parallel edges; these are allowed.
Selfloops are ignored.)

Note that if you pick a random edge, it is more likely to come from parts of the graph
that contain more edges in the first place. Thus this algorithm looks like a great heuristic
to try on all kinds of real-life graphs, where one wants to cluster the nodes into “tightly-
knit” portions. For example, social networks may cluster into communities; graphs capturing
similarity of pixels may cluster to give different portions of the image (sky, grass, road etc.).
Thus instead of continuing Karger’s algorithm until you have two supernodes left, you could
stop it when there are k supernodes and try to understand whether these correspond to a
reasonable clustering.

Today we will first see that the above version of the algorithm yields the optimum min
cut with probability at least 2/n?. Thus we can repeat it say 20n? times, and output the
smallest cut seen in any iteration. The probability that the optimum cut is not seen in any
repetition is at most (1 — 2/n2)20"" < 0.01.

Unfortunately, this simple version has running time about n* which is not great.

So then we see a better version with a simple tweak that brings the running time down
to closer to n?. The idea is that roughly that repetition ensures fault tolerance. The real-life
advice of making two backups of your hard drive is related to this: the probability that both
fail is much smaller than one does. In case of Karger’s algorithm, the overall probability
of success is too low. But if run part of the way until the graph has n/ V2 supernodes,
the chance that the mincut hasn’t changed is at least 1/2. So you make two independent
runs that go down to n/v/2 supernodes, and recursively solve both of these. Thus the
expected number of instances that will yield the correct mincut is 2 x % = 1. (Unwrapping
the recursion, you see that each instance of size n/v/2 will generate two instances of size
n/2, and so on.) Simple induction shows that this 2-wise repetition is enough to bring the
probability of success above 1/logn.

As you might suspect, this is not the end of the story but improvements beyond this
get more hairy. If anybody is interested I can give more pointers.

Also this algorithm forms the basis of other algorithms for other tasks. Again, talk to
me for pointers.



