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Economic and game-theoretic reasoning —specifically, how agents respond to economic
incentives as well as to each other’s actions– has become increasingly important in algo-
rithm design. Examples: (a) Protocols for networking have to allow for sharing of network
resources among users, companies etc., who may be mutually cooperating or competing.
(b) Algorithm design at Google, Facebook, Netflix etc.—what ads to show, which things
to recommend to users, etc.—not only has to be done using objective functions related
to economics, but also with an eye to how users and customers change their behavior in
response to the algorithms and to each other.

Algorithm design mindful of economic incentives and strategic behavior is studied in a
new field called Algorithmic Game Theory. (See the book by Nisan et al., or many excellent
lecture notes on the web.)

Last lecture we encountered zero sum games, a simple setting. Today we consider more
general games.

1 Nonzero sum games and Nash equilibria

Recall that a 2-player game is zero sum if the amount won by one player is the same as
the amount lost by the other. Today we relax this. Thus if player 1 has n possible actions
and player 2 has m, then specifying the game requires two a n×m matrices A,B such that
when they play actions i, j respectively then the first player wins Aij and the second wins
Bij . (For zero sum games, Aij = −Bij .)

A Nash equilibrium is defined similarly to the equilibrium we discussed for zero sum
games: a pair of strategies, one for each player, such that each is the optimal response to
the other. In other words, if they both announce their strategies, neither has an incentive
to deviate from his/her announced strategy. The equilibrium is pure if the strategy consists
of deterministically playing a single action.

Example 1 (Prisoners’ Dilemma) This is a classic example that people in myriad dis-
ciplines have discussed for over six decades. Two people suspected of having committed a
crime have been picked up by the police. In line with usual practice, they have been placed
in separate cells and offered the standard deal: help with the investigation, and you’ll be
treated with leniency. How should each prisoner respond: Cooperate (i.e., stick to the story
he and his accomplice decided upon in advance), or Defect (rat on his accomplice and get
a reduced term)?

Let’s describe their incentives as a 2 × 2 matrix, where the first entry describes payoff
for the player whose actions determine the row. If they both cooperate, the police can’t
prove much and they get off with fairly light sentences after which they can enjoy their loot
(payoff of 3). If one defects and the other cooperates, then the defector goes scot free and
has a high payoff of 4 whereas the other one has a payoff of 0 (long prison term, plus anger
at his accomplice).
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Cooperate Defect

Cooperate 3, 3 0, 4

Defect 4, 0 1, 1

The only pure Nash equilibrium is (Defect, Defect), with both receiving payoff 1. In
every other scenario, the player who’s cooperating can improve his payoff by switching to
Defect. This is much worse for both of them than if they play (Cooperate, Cooperate),
which is also the social optimum —where the sum of their payoffs is highest at 6—is to
cooperate. Thus in particular the social optimum solution is not a Nash equilibrium. ((OK,
we are talking about criminals here so maybe social optimum is (Defect, Defect) after all.
But read on.)

One can imagine other games with similar payoff structure. For instance, two companies
in a small town deciding whether to be polluters or to go green. Going green requires
investment of money and effort. If one does it and the other doesn’t, then the one who is
doing it has incentive to also become a polluter. Or, consider two people sharing an office.
Being organized and neat takes effort, and if both do it, then the office is neat and both are
fairly happy. If one is a slob and the other is neat, then the neat person has an incentive
to become a slob (saves a lot of effort, and the end result is not much worse).

Such games are actually ubiquitous if you think about it, and it is a miracle that humans
(and animals) cooperate as much as they do. Social scientists have long pondered how to
cope with this paradox. For instance, how can one change the game definition (e.g. a wise
governing body changes the payoff structure via fines or incentives) so that cooperating
with each other —the socially optimal solution—becomes a Nash equilibrium? The game
can also be studied via the repeated game interpretation, whereby people realize that they
participate in repeated games through their lives, and playing nice may well be a Nash
equilibrium in that setting. As you can imagine, many books have been written. 2

Example 2 (Chicken) This dangerous game was supposedly popular among bored teenagers
in American towns in the 1950s (as per some classic movies). Two kids would drive their
cars at high speed towards each other on a collision course. The one who swerved away first
to avoid a collision was the “chicken.”How should we assign payoffs in this game? Each
player has two possible actions, Chicken or Dare. If both play Dare, they wreck their cars
and risk injury or death. Lets call this a payoff of 0 to each. If both go Chicken, they both
live and have not lost face, so let’s call it a payoff of 5 for each. But if one goes Chicken and
the other goes Dare, then the one who went Dare looks like the tough one (and presumably
attracts more dates), whereas the Chicken is better of being alive than dead but lives in
shame. So we get the payoff table:

Chicken Dare

Chicken 5, 5 1, 6

Dare 6, 1 0, 0

This has two pure Nash equilibria: (Dare, Chicken) and (Dare, Chicken). We may
think of this as representing two types of behavior: the reckless type may play Dare and
the careful type may play Chicken.
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Note that the socially optimal solution —both players play chicken, which maximises
their total payoff—is not a Nash equilibrium.

Many games do not have any pure Nash equilibrium. Nash’s great insight during his
grad school years in Princeton was to consider what happens if we allow players to play a
mixed strategy, which is a probability distribution over actions. An equilibrium now is a
pair of mixed strategies x, y such that each strategy is the optimum response (in terms of
maximising expected payoff) to the other.

Theorem 1 (Nash 1950)
For every pair of payoff matrices A,B there is an odd number (hence nonzero) of mixed
equilibria.

Unfortunately, Nash’s proof doesn’t yield an efficient algorithm for computing an equi-
librium: when the number of possible actions is n, computation may require exp(n) time.
Recent work has shown that this may be inherent: computing Nash equilibria is PPAD-
complete (Chen and Deng’06).

The Chicken game has a mixed equilibrium: play each of Chicken and Dare with prob-
ability 1/2. This has expected payoff 1

4(5 + 1 + 6 + 0) = 3 for each, and a simple calculation
shows that neither can improve his payoff against the other by changing to a different
strategy.

2 Multiplayer games and Bandwidth Sharing

One can define multiplayer games and equilibria analogously to single player games. One
can also define games where each player’s set of moves comes from a continuous set like the
interval [0, 1]. Now we do this in a simple setting: multiple users sharing a single link of
fixed bandwidth, say 1 unit. They have different utilities for internet speed, and different
budgets. Hence the owner of the link can try to allocate bandwidth using a game-theoretic
view, which we study using a game introduced by Frank Kelly.

Figure 1: Sharing a fixed bandwidth link among many users

1. There are n users. If user i gets x units of bandwidth by paying w dollars, his/her
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utility is Ui(x)−w, where the utility function Ui is nonnegative, increasing, concave1

and differentiable. If a unit of bandwidth is priced at p, this utility describes the
amount of bandwidth desired by a utility-maximizing user: the ith user demands xi
that maximises Ui(xi)− pxi. This maximum can be computed by calculus.

2. The game is as follows: user i offers to pay a sum of wi. The link owner allocates
wi/

∑
j wj portion of the bandwidth to user i. Thus the entire bandwidth is used up

and the effective price for the entire bandwidth is
∑

j wj .

What n-tuple of strategies w1, w2, . . . , wn is a Nash equilibrium? Note that this n-tuple
implies a per unit price p of

∑
j wj , and for each i his received amount is optimal at this

price if xi = wi/
∑

j wj is the solution to maxUi(xi) − w, which requires (by chain rule of
differentiation):

U ′i(xi)(
1

p
− wi

p2
) = 1

⇒ U ′i(xi)(1− xi) = p.

This implicitly defines xi in terms of p. Furthermore, the left hand side is easily checked to
be a decreasing function of xi. (Specifically, its derivative is (1−xi)Ui”(xi)−U ′(xi), whose
first term is negative by concavity and the second because U ′i(xi) ≥ 0 by our assumption
that Ui is an increasing function.) Thus

∑
i xi is a decreasing function of p. When p = +∞,

the xi’s that maximise utility are all 0, whereas for p = 0 the xi’s are all 1, which violates
the constraint

∑
i xi = 1. By the mean value theorem, there must exceed a choice of p

between 0 and +∞ where
∑

i xi = 1, and the corresponding values of wi’s then constitute
a Nash equilibrium.

Is this equilibrium socially optimal? Let p∗ be the socially optimal price. At this price
the ith user desires a bandwidth xi that maximises Ui(xi) − p∗xi, which is the unique xi
that satisfies U ′i(xi) = p∗. Furthermore these xi’s must sum to 1.

By contrast, the Nash equilibrium price pN corresponds to solving U ′i(xi)(1− xi) = pN .
If the number of users is large (and the utility functions not “too different”so that the xi’s
are not too different) then each xi is small and 1−xi ≈ 1. Thus the Nash equilibrium price
is close to but not the same as the socially optimal choice.

Price of Anarchy

One of the notions highlighted by algorithmic game theory is price of anarchy, which is the
ratio between the cost of the Nash equilibrium and the social optimum. The idea behind
this name is that Nash equilibrium is what would be achieved in a free market, whereas
social optimum is what could be achieved by a planner who knows everybody’s utilities.
One identifies a family of games, such as bandwidth sharing, and looks at the maximum of
this ratio over all choices of the players’ utilities. The price of anarchy for the bandwidth
sharing game happens to be 4/3. Please see the chapter on inefficiency of equilibria in the
AGT book.

1Concavity implies that the going from 0 units to 1 brings more happiness than going from 1 to 2, which
in turn brings more happiness than going from 2 to 3. For twice differentiable functions, concavity means
the second derivative is negative.
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3 Correlated equilibria

In HW 3 you were asked to simulate two strategies that repeatedly play Rock-Paper-Scissors
while minimizing regret. The Payoffs were as follows:

Rock Paper Scissor

Rock 0,0 0, 1 1, 0

Paper 1, 0 0, 0 0, 1

Scissor 0, 1 1, 0 0, 0

Possibly you originally guessed that they would converge to playing Rock, Paper, Scissor
randomly. However, this is not regret minimizing since it leads to payoff 0 every third
round in the expectation. What you probably saw in your simulation was that the players
converged to a correlated strategy that guarantees one of them a payoff every other round.
Thus they learnt to game the system together and maximise their profits.

This is a subcase of a more general phenomenon, whereby playing low-regret strategies
in general leads to a different type of equilibrium, called correlated equilibrium.

Example 3 In the game of Chicken, the following is a correlated equilibrium: each of the
three pairs of moves other than (Dare, Dare) with probability 1/3. This is a correlated
strategy: there is a global random string (or higher agency) that tells the players what to
do. Neither player knows what the other has chosen.

Suppose we think of the game being played between two cars approaching a traffic
intersection from two directions. Then the correlated equilibrium of the previous paragraph
has a nice interpretation: a traffic light! Actually, it is what a traffic light would look like if
there were no traffic police to enforce the laws. The traffic light would be programmed to
repeatedly pick one of three states with equal probability: (Red, Red), (Green, Red), and
(Red, Green). (By contrast, real-life lights cycle between (Red, Green), and (Green, Red);
where we are ignoring Yellow for now.) If a motorist arriving at the intersection sees Green,
he knows that the other motorist sees Red and so can go through without hesitation. If
he sees Red on the other hand, he only knows that there is equal chance that the other
motorist sees Red or Green. So acting rationally he will come to a stop since otherwise he
has probability 1/2 of getting into an accident. Note that this means that when the light
is (Red, Red) then the traffic would be sitting at a halt in both directions.

The previous example illustrates the notion of correlated equilibrium, and we won’t
define it more precisely. The main point is that it can be arrived at using a simple algorithm,
namely, multiplicative weights. Unfortunately, correlated equilibria are also not guaranteed
to maximise social welfare.
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