
Theorem 1 Suppose algorithm A finds a hypothesis hA ∈ H that is consistent with all N
training examples (i.e., has training error zero). Then with probability at least 1− δ

err(hA) ≤ ln |H|+ ln(1/δ)

N
.

Proof: Let

ε =
ln |H|+ ln(1/δ)

N
,

and let us say that a hypothesis h is ε-bad if err(h) > ε. The goal is to show that hA is not
ε-bad (with probability at least 1− δ). That is, we want to show that

Pr [hA not ε-bad] ≥ 1− δ
or equivalently

Pr [hA is ε-bad] ≤ δ.

We know that hA is consistent with the training data. Thus,

Pr [hA is ε-bad] = Pr [hA is consistent and ε-bad]

≤ Pr [∃h ∈ H : h is consistent and ε-bad]

= Pr [∃h ∈ B : h is consistent]

= Pr
[
h1 consistent ∨ · · · ∨ h|B| consistent

]
≤ Pr [h1 consistent] + · · ·+ Pr

[
h|B| consistent

]
.

Here, B is the set of all ε-bad hypotheses, which we list explicitly as h1, . . . , h|B|. That is,

B = {h ∈ H : h is ε-bad}
= {h1, . . . , h|B|}.

Let h be any hypothesis in B. Then

Pr [h consistent] = Pr [h(x1) = f(x1) ∧ · · · ∧ h(xN) = f(xN)]

= Pr [h(x1) = f(x1)] · · · · · Pr [h(xN) = f(xN)]

≤ (1− ε)N .
So, continuing the derivation above,

Pr [hA is ε-bad] ≤ |B| · (1− ε)N

≤ |H| · (1− ε)N

≤ |H| · e−εN

= δ.


