
COS 402: Artificial Intelligence

Written exercises W5 Fall 2014
MDP’s Due: Tuesday, December 2

Approximate point values are given in brackets. Be sure to show your work and justify all of your
answers. See the course home page for information on when and where to submit written exercises,
and grading criteria.

1. [10] Exercise 15.4 in R&N.

2. [15] Consider the following MDP:
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There are five states: A, B, C, D and G. The reward at every state is −1, except at G where the
reward is 0. There are two actions, a and b, and the effect of each action is deterministic as indicated
in the figure. For instance, executing a in state B leads to state A. Assume γ = 1 in this problem.

[Note: If you understand the algorithms, this problem can (and should) be solved without a lot
of tedious calculations, and without the use of a computer or even a calculator. You do not need to
show easy calculations in detail, but should nevertheless justify your reasoning.]

a. Show the sequence of utility estimates Ui that would result from executing value iteration on
this MDP. Also show the optimal policy that is computed using the final utility estimate.

b. Show the sequence of policies πi and corresponding utility functions Uπi that would result
from executing policy iteration on this MDP. Assume that you start with a policy that assigns
action a to every state. The utility functions Uπi should be computed exactly; note that these
utilities may be infinite for some states. Also, assume that all ties between the actions a and
b in the policy improvement step are always broken in favor of a.

c. Generalizing this example, suppose we are given a graph with a distinguished node (i.e., state)
G, and k edges emanating from every node corresponding to k (deterministic) actions. As
in this example, all of the edges emanating from G are self-loops, the node G is assigned
reward 0, and all other nodes are assigned reward −1. In terms of properties of the graph,
what is the optimal utility function U∗, and what is the optimal policy π∗? If value iteration is
applied to this graph (viewed as an MDP), exactly how many iterations will be needed until
the algorithm converges? How about for policy iteration?



3. [10] Sometimes MDP’s are formulated with a reward function R(s, a) that depends on the
action taken (so that reward R(s, a) is received when action a is executed from state s), or a reward
function R(s, a, s′) that also depends on the outcome state s′ (so that this reward is received when
state s′ is reached after executing action a from state s). For each of these formulations, show how
to appropriately modify each of the following:

• the Bellman equation (Eq. (17.5) in R&N);

• the formula for converting the optimal utility U∗ (denoted simply U in R&N) into an optimal
policy π∗ (Eq. (17.4) in R&N);

• the value iteration algorithm;

• the policy iteration algorithm.

4. [15] Let B(U) and ‖·‖∞ be as defined in class. (This is the same as BU and ‖·‖ defined
in Section 17.2 of R&N.) The purpose of this exercise is to prove that B is a contraction, i.e., that
‖B(U)−B(U ′)‖∞ ≤ γ‖U − U ′‖∞. As discussed in the book and lecture, this is the key step in
showing that value iteration converges to the right answer.

We will begin by proving some basic facts. Be sure to give genuine mathematical proofs for
each part of this problem. Also, your proofs should use elementary facts — in other words, do not
give proofs that rely on mathematical sledge-hammers like the Cauchy-Schwartz inequality.

a. Let u1, . . . , un and v1, . . . , vn be any sequences of real numbers. Prove that if ui ≤ vi for all
i then

max
i
ui ≤ max

i
vi.

b. Let x1, . . . , xn and y1, . . . , yn be any sequences of real numbers. Prove that(
max
i
xi

)
−
(
max
i
yi

)
≤ max

i
(xi − yi),

and also that
max
i

(xi − yi) ≤ max
i
|xi − yi|.

(Hint: both of these inequalities can be proved using part (a) for an appropriate choice of ui
and vi.)

Finally, use these facts to prove that∣∣∣∣(max
i
xi

)
−
(
max
i
yi

)∣∣∣∣ ≤ max
i
|xi − yi|.

c. Let x1, . . . , xn be any real numbers, and suppose that p1, . . . , pn are nonnegative real numbers
such that

∑
i pi = 1. Use the fact that |a+ b| ≤ |a|+ |b| for any real numbers a and b to prove

that ∣∣∣∣∣∑
i

pixi

∣∣∣∣∣ ≤ max
i
|xi|.

d. Now let s be any state, and let (B(U))(s) denote the value of B(U) at state s. By plugging
in the definition of B, and using the properties proved above, prove that∣∣(B(U))(s)− (B(U ′))(s)

∣∣ ≤ γ‖U − U ′‖∞.
Conclude that

‖B(U)−B(U ′)‖∞ ≤ γ‖U − U ′‖∞.
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5. [15] This exercise asks you to prove the policy improvement theorem which, as discussed
in class, is the basis for proving that policy iteration is an effective method for finding an optimal
policy. (As a side note, the theorem can also be used to prove the existence of an optimal policy π∗,
that is, a policy that is optimal for all states simultaneously.)

Let π be any policy, and let π′ be the result of applying the policy improvement step of policy
iteration. That is, for all states s,

π′(s) = argmax
a

∑
s′

P (s′|s, a) Uπ(s′),

where, as usual, the “argmax” returns any action a that realizes the maximum of the value on the
right.

We make the usual assumptions that the number of states and number of actions are both finite,
that γ < 1, etc.

Let us define the following functions Uk(s) defined over states s. The first of these U0 is
identical to Uπ so that U0(s) = Uπ(s) for all s. And for k ≥ 1, and for all s, we define

Uk(s) = R(s) + γ
∑
s′

P (s′|s, π′(s)) Uk−1(s′).

a. Prove by induction on k that Uk(s) ≥ Uπ(s) for all states s and for all k ≥ 0.

b. Prove that ‖Uk − Uπ
′‖∞ → 0 as k →∞.

c. Combine parts (a) and (b) to prove that Uπ
′
(s) ≥ Uπ(s) for all states s. This shows that

policy iteration can only produce policies that are at least as good as the preceding policy at
every state.

d. Prove that π is an optimal policy if and only if Uπ
′
(s) = Uπ(s) for all states s. This implies

that if π is not already optimal, then each policy improvement step will lead to a new policy
that is strictly better than the last one for at least one state.
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