
The Frenetic Project: 
Adventures in Functional Networking 

David Walker 
COS 326 

Princeton University 



Course Themes 
•  Functional vs. imperative programming 

–  a new way to think about the algorithms you write 

•  Modularity 
•  Abstraction 
•  Parallelism 
•  Equational reasoning 
 
Useful on a day-to-day basis and in research to transform 
the way people think about solving programming problems: 

2 



Cornell:  
–  Faculty: Nate Foster, Dexter Kozen, Gun Sirer 
–  Students & Post Docs:  Carolyn Anderson, Shrutarshi Basu, Mark Reitblatt, 

Robert Soule, Alec Story (graduated) 
 
Princeton:  
–  Faculty: Jen Rexford, Dave Walker 
–  Students & Post Docs:  Ryan Beckett, Jennifer Gossels, Rob Harrison 

(graduated), Xin Jin, Naga Katta, Chris Monsanto, Srinivas Narayana, Josh 
Reich, Cole Schlesinger 

UMass:  
–  Faculty: Arjun Guha 
 

http://frenetic-lang.org 
 



4 

Dave:   
  Hey Jen, what's networking? 

Jen:   
  Oooh, it's super-awesome.   
  No lambda calculus required! 
 

A Quick Story Circa 2009  
@ Princeton 

Nate:   
  Too bad about the lambda calculus. 
  But fill us in. 



What is Networking? 

end-hosts need  
to communicate 

5 



What is Networking? 

Ethernet switches  
connect them 

6 



What is Networking? 

which decide how packets  
should be forwarded 

Control Plane 

7 



What is Networking? 

and actually forward them  

Data Plane 

8 



9 

Nate:   
  Sounds simple enough.  Is that it? 

Jen:   
  There's a little more …  
  Still no lambda calculus though. 
 

A Quick Story Circa 2009 
@ Princeton 

Dave:   
  Darn. 



What is Networking? 
add servers ... 
connected by routers 

10 



What is Networking? 

different control planes 
11 

plug-and-play 

structured and 
optimized 

add servers ... 
connected by routers 



w/ similar data planes  

What is Networking? 

12 

add servers ... 
connected by routers 



What is Networking? 

we need gateway to 
bridge them 

13 



What is Networking? 

and load balancing  
for servers 

14 



What is Networking? 

there are other ISPs  

15 



What is Networking? 

requiring  
inter-domain routers 

16 



What is Networking? 

and a firewall to handle 
malicious traffic 

17 



What is Networking? 

and mobile endpoints 

18 



What is Networking? 

requiring wireless  
basestations  

19 



What is Networking? 

and more middleboxes for 
billing, lawful intercept, DPI 

20 



21 

Dave:   
  ???     Lambda calculus is easier. 

Jen:   
  :-)   Big mess, eh? 
 
  … but there is a new way to do things … 
 

A Quick Story Circa 2009 
@ Princeton 



This is a Control Plane Issue 
each color represents a 

different set of control-plane 
protocols and algorithms 

22 



The Data Planes are Similar 

23 



decouple control and data planes 
by providing open standard API 

Software Defined Networks 

24 



Centralize Control 

Controller Platform 

25 

Controller Application 

OpenFlow 



OpenFlow Data Plane Abstraction

Pattern Action Priority Counters 
srcip = 1.2.*, 
dstip = 3.4.5.* 

drop 1 76 

srcip = *.*.*.* 
dstip = 3.4.5.* 

fwd 2 2 13 

srcip = *.*.*.* 
dstip = *.*.*.* 

controller 3 22 

Operations: 
–  Install rule 
– Uninstall rule 
– Ask for counter values 

The Payoff: 
– Simplicity 
– Generality 



OpenFlow

27 

Events up:
•  Topology changes
•  Traffic statistics
•  Unprocessed arriving packets

Commands down:
•  Install rule
•  Uninstall rule
•  Query statistics
•  Send packets

Controller Platform 

Controller Application 

Data Plane 



The Payoff 

Simple, open interface: 
– Easy to learn:  Even I can do it! 

– Enables rapid innovation by academics and industry 

– Everything in the data center can be optimized 
•  The network no longer "gets in the way” 

– Commoditize the hardware  

28 



Huge Momentum in Industry 

Bought for $1.2 x 109  
(mostly cash) 

29 

Entire backbone  
 
 
               runs OpenFlow 



30 

Dave: 
  Cool.  Let's get this party started.     

Jen:   
  So … SDN is a big deal. 
 

A Quick Story Circa 2009 
@ Princeton 



The PL Perspective: 

31 

Controller Platform 

Controller Application 

A new piece of our critical infrastructure is now available  
for programming 

A new kind of 
heterogeneous 
distributed 
system 

multi-component 
applications: 
•  modularity 
•  composition 
•  abstraction 
•  information hiding 

simple, clean, 
narrow interface: 
•  a new assembly 

language 
•  … needing 

domain-specific 
abstractions resource constraints: 

•  optimization problems 

shared/used by  
multiple entities 
•  security 
 

24-7 availability: 
•  correct-by-construction 

abstractions 
•  defect detection 
•  verification 
•  testing 
•  fault tolerance 



32 

www.frenetic-lang.org 

A DSL for modular network configuration [ICFP 11, POPL 12, NSDI 13, POPL 14, NSDI 15]  
 



The Biggest Problem:  Modularity 

33 

Controller Platform 

LB Route Monitor FW 

We still need all the functionality of old networks: 
The only way to engineer it is through modular design. 



9 

Repeater 
Module 

Controller Application 

inport =1 → fwd 2 
inport =2 → fwd 1 

1 2 

Monitoring 
Module 

Query web traffic: 
inport = 1, dstport = 80 ? 

P installed 

Bottom Line:  It doesn’t work:  
•  repeater rules are too coarse-grained for desired monitoring 
•  installing new monitoring rules will clobber the repeater actions 

OpenFlow is Anti-Modular 



Anti-Modularity: A Closer Look 

def switch_join(switch): 
  repeater(switch) 
 
def repeater(switch): 
  pat1 = {in_port:1} 
  pat2 = {in_port:2} 
  install(switch,pat1,DEFAULT,None,[output(2)]) 
  install(switch,pat2,DEFAULT,None,[output(1)])   

def monitor(switch): 
  pat = {in_port:2,tp_src:80} 
  install(switch, pat, DEFAULT, None, []) 
  query_stats(switch, pat) 
 
def stats_in(switch, xid, pattern, packets, bytes): 
  print bytes 
  sleep(30) 
  query_stats(switch, pattern) 

Repeater 

Web  Monitor 

def switch_join(switch) 
  repeater_monitor(switch) 
 
def repeater_monitor(switch): 
  pat1 = {in_port:1} 
  pat2 = {in_port:2} 
  pat2web = {in_port:2, tp_src:80} 
  Install(switch, pat1, DEFAULT, None, [output(2)]) 
  install(switch, pat2web, HIGH, None, [output(1)]) 
  install(switch, pat2, DEFAULT, None, [output(1)]) 
  query_stats(switch, pat2web) 
 
def stats_in(switch, xid, pattern, packets, bytes): 
  print bytes 
  sleep(30) 
  query_stats(switch, pattern) 

Repeater/Monitor 

blue = from repeater 
red = from web monitor 
green = from neither 

10 



OpenFlow is Anti-Modular 

You can’t (easily and reliably) compose: 
– a billing service with a repeater 
– a firewall with a switch 
– a load balancer with a router 
– one broadcast service with another 
– policy for one data center client with another 

36 



Solution:  Functional Programming! 

37 
Controller Platform 

Route Monitor FW 

Stop thinking imperatively:   
•  Don’t program with update/delete commands for concrete rules 
And lift the level of abstraction:   
•  Use pure functions as data structures that describe network 

forwarding policy 
•  Provide primitives to build complex policies from simple ones 
•  Let a compiler and run-time do rule synthesis & installation 
 

Compiler & Run Time 
linguistic 
interface 

; + 

operators for policy 
composition 



Frenetic Architecture 

38 

Receive 
Event 

Process 
Event 

Network-wide  
Policy 

Generate 
Policy 

Compile 
Policy 

Messages 
to Switches Topology  

Change / 
Network Stat / 

Packet In 

controller 
platform + 
run time 

frenetic 
application 
program 



Rather than managing (un)installation of concrete rules, programmers 
specify what a network does using pure functions. 

 
 
 
 
 
 

implements f 

 
f : located_packet → located_packet set 
 
 

location = (switch, port) 

packet 

controller 

count? 
bytes? 

location = bucket b 

packet contents? 

Frenetic Policy Language 
[Phase 1] 



Rather than managing (un)installation of concrete rules, programmers 
specify what a network does using pure functions. 

 
 
 
 
 
 

 
f : located_packet → located_packet set 
 
 

network execution 

Frenetic Policy Language 
[Phase 1] 

f f f topo topo 



Firewalls: The Simplest Policies 

false drops all packets fun p -> { } 

true admits all packets fun p -> { p } 

Policy Explanation Function 

srcIP=10.0.0.1 admits packets with srcIP = 10.0.0.1 
drops others 

fun p ->  
  if p.srcIP = 10.0.0.1 then  
    { p } 
  else 
    {    } 

q1 /\ q2,  
q1 \/ q2, 
~q 

admits packets satisfying 
q1 /\ q2,  
q1 \/ q2,  
~q 

fun p -> (q1 p) U (q2 p) 
fun p -> (q1 p) Π (q2 p) 
fun p ->  
  match (q1 p) with 
    | { } -> { p } 
    |  _ -> { } 



Firewalls: The Simplest Policies 

Example:  Block all packets from source IP 10.0.0.1 and 10.0.0.2 
and except those for web servers 

Solution:  ~(srcIP=10.0.0.1 /\ srcIP=10.0.0.2) \/ tcp_src_port = 80 

web traffic sent here 



Firewalls: The Simplest Policies 

Example:  Allow traffic coming in to switches A, port 1 and  
switch B, port 2 to enter our network.  Block others. 

Solution:  (switch=A /\ inport=1) \/ (switch=B & inport=2) 



Moving Packets from Place to Place 

44 

A 
1 3 

2 

fwd 2 

Policy Explanation Function 

forward all packets out port 2 fun p -> { p[port:= 2] } 



Combining Policies 

45 

A 
1 3 

2 

port=1; fwd 2 

Policy Explanation 

Function 

only consider packets with port = 1 
then 
forward all such packets out port 2 

let filter_port x p = if p.port = x then { p } else { } in 
let fwd x p = p.port <- x in 
(filter_port 1) <> (fwd 2)   

where: 
a <> b = fun packet -> 
  let s = a packet in 
  Set.Union (Set.map b s) 



Multiple Flows 

46 

A 
1 3 

2 

(port=1; fwd 2) + 
(port=2; fwd 3) 

Policy Explanation 

Function 
(filter_port 1 <> fwd 2) + 
(filter_port 2 <> fwd 3)  

where: 
(+) a b = fun packet -> 
  Set.Union  
     {(a packet), 
      (b packet)} 

(if port = 1 then forward out port 2) and also 
(if port = 1 then forward out port 2) 



Composing Policies 

47 

A B 
1 1 3 3 

2 2 

(switch = A; policyA) + 
(switch = B; policyB) 

Policy Explanation 

(if switch=A then policyA) and also 
(if port = 1 then policyB) 

let policyA = 
  (port=1; fwd 2) + 
  (port=2; fwd 3) 

(if port = 1 then forward out port 2) and also 
(if port = 1 then forward out port 3) 

let policyB = 
   port=2; fwd 3 (if port = 1 then forward out port 3) 



More Composition:  
Routing & Monitoring 

48 

Route on 
dest prefix 

Monitor on 
source IP 

 router =   
     dstip = 1.2.* ; fwd 1 
  + dstip = 3.4.* ; fwd 2 

monitor = 
     srcip = 5.6.7.8 ; bucket b1 
  + srcip = 5.6.7.9 ; bucket b2 

 app =  monitor + router 



Goal:  Spread client traffic over server replicas 
Setup:  Advertise public IP address for the service 
 
First:  Split traffic on client IP & rewrite the server IP address 
Then:  Route to the replica 

Server Load Balancing 

clients 

1.2.3.4 

load balancer 

server replicas 

10.0.0.1 

10.0.0.2 

10.0.0.3 



Sequential Composition 

50 

Forward to 
Replica 

Select 
Replica 

forwarder = 
   dstip = 10.0.0.1; fwd 1  
+  
   dstip = 10.0.0.0; fwd 2 
 
 

selector = 
   srcip = 0* /\ dstip=1.2.3.4;  
      dstip <- 10.0.0.1 
+  
   srcip = 1* /\ dstip=1.2.3.4;  
      dstip <- 10.0.0.2 

 lb =  selector ; forwarder 



Summary So Far 

51 

predicates: 
q ::=  f = pattern 
  | true 
      | false 
      | q1 /\ q2  

 | q1 \/ q2  
 | ~q 

 
simple actions: 
a ::=  fwd n 

 | f <- v 
 | bucket b 

 
network policies: 
p ::=  a     (action) 
       | q     (filter) 

 | p1 + p2   (parallel comp.) 
 | p1 ; p2    (sequential comp.) 

 
 
 

abbreviations: 
       if q then p1 else p2  == (q; p1) + (~q; p2) 
 
       id     == true 

 drop == false  
 fwd p == port <- p 



Equational Theory 
A sign of a well-conceived language == a simple equational theory 

52 

P      (+ drop unit) 

P ; (Q ; R)    (; associative) 
 
P      (; id left unit) 
P      (; id right unit) 
 
drop     (; drop left zero) 
drop     (; drop right zero) 

 
(P ; Q) ; R 

 
id ; P 
P ; id 

  
drop ; P 
P ; drop 

== 
 

== 
== 
 

== 
== 

 
if q then (P ; R) else (Q ; R)   (if commutes ;) 
 

(if q then P else Q) ; R == 

Q + P     (+ commutative) P + Q == 

P + (Q + R)    (+ associative) (P + Q) + R == 

P + drop == 



A Simple Use Case 
(Modular Reasoning) 

53 

firewall = 
   if srcip = 1.1.1.1 then 

 drop 
   else 
       id 

router = ... 
 
 
 
 

app = firewall ; router 

app == firewall ; router 
== (if srcip = 1.1.1.1 then drop else id) ; router 
== if srcip = 1.1.1.1 then   (drop ; router) else    (id ; router) 
== if srcip = 1.1.1.1 then drop else (id ; router) 

== if srcip = 1.1.1.1 then drop else router 



But what if we want to reason about 
entire networks? 

A B 

H1 H2 

1 2 1 2 

polA = ... 
polB = ... 
pol = switch=A; polA + 
         switch=B; polB 

Are all SSH packets dropped at some point along their path? 
 

Do all non-SSH packets sent from H1 arrive at H2? 
 

Are the optimized policies equivalent to the unoptimized one? 
  

pol pol ? 



Encoding Topologies 

A B 

H1 H2 

1 2 1 2 

t = 
   (sw = A /\ pt = 2; sw <- B; pt <- 1) 
+  
   (sw = B /\ pt = 1; sw <- A; pt <- 2)  

net = pol; t; pol 

pol pol t 



Encoding Topologies 

H1 H2 

t = ... 

net = 
    ac; t; ac; t; ac; t; ac; t; ac 
 + ac; t; ac; t; ac; t; ac; t; ac; t; ac; ... 
 + ... 

A B 

net = (pol; t)*; pol 
Kleene iteration: 
p* = id + p + p;p + ... 



Encoding Networks 

A B 

H1 H2 

1 2 1 2 

pol  = ... 
t     = ... 
net = (pol; t)*; pol 

net is a function that moves packets: 
A1 ==> B2 
B2 ==> A1 

and also moves packets: 
A1 ==> A2 
A2 ==> A1 
B1 ==> B2 
B2 ==> B1 

edge = sw=A & pt=1  
         || sw=B & pt=2 
 
net = edge; (ac; t)*; ac; edge 



Summary So Far 

in; (policy; topology)*; policy; out 

a, b, c ::=  
  drop     // drop all packets   
| id      // accept all packets 
| f = v     // field f matches v 
| ~a      // negation 
| a & b     // conjunction 
| a || b     // disjunction 

  

p, q, r ::=  
  a      // filter according to a 
| f <- v     // update field f to v  
| p ; q     // do p then q 
| p + q     // do p and q in parallel 
| p*      // do p zero or more times 

  

Predicates 

Network Encoding 

Policies 



Summary So Far 

in; (policy; topology)*; policy; out 

a, b, c ::=  
  drop     // drop all packets   
| id      // accept all packets 
| f = v     // field f matches v 
| ~a      // negation 
| a & b     // conjunction 
| a || b     // disjunction 

  

p, q, r ::=  
  a      // filter according to a 
| f <- v     // update field f to v  
| p ; q     // do p then q 
| p + q     // do p and q in parallel 
| p*      // do p zero or more times 

  

Predicates 

Network Encoding 

Policies 

Boolean 
Algebra 

Kleene 
Algebra 

Boolean Algebra + Kleene Algebra 
= Kleene Algebra with Tests 



Equational Theory 

60 

net1  ≈  net2 

For programmers: 
–  a system for reasoning about programs as they are 

written 

For compiler writers: 
–  a means to prove their transformations correct 

For verifiers: 
–  sound and complete with a PSPACE decision 

procedure 



61 

Boolean Algebra: a & b  ≈  b & a a & ~a  ≈  drop ... 

Kleene Algebra: (a; b); c  ≈  a; (b; c) a; (b + c)  ≈  (a; b) + (a; c) 

... 
p*  ≈  id + p; p* 

Packet Algebra: f <- n; f = n  ≈  f <- n f = n; f <- n  ≈  f = n 

f <- n; f <- m  ≈  f <- m 

a || ~a  ≈  id 

if m ≠ n:   f = n; f = m  ≈  drop   

f <- n; g <- m  ≈  g <- m; f <- n  if f ≠ g:  f = n; g <- m  ≈  g <- m; f = n 

f = 0 + ... + f = n   ≈   id    (finite set of possible values in f)  

Equational Theory 



Using the Theory 

A B 

H2 

1 2 1 2 

62 

forward = (dst = H1; pt <- 1)  
             + (dst = H2; pt <- 2) 
 
ac = ~(typ = SSH); forward 
 
t = ... 
 
edge = ... 
 
net = edge; (ac; t)*; ac; edge 
 

Are all SSH packets dropped? 

~typ = SSH; sw=A; pt=1; net 
≈   
~typ = SSH; sw=A; pt=1; sw <- B; pt <- 2 

Do all non-SSH packets sent from H1 arrive at H2? 

typ = SSH; net  ≈  drop   

H1 



Using the Theory 

63 

A B 

H1 H2 

1 2 1 2 

forward = (dst = H1; pt <- 1)  
             + (dst = H2; pt <- 2) 
 
ac = ~(typ = SSH); forward 
 
t = ... 
 
edge = ... 
 
net = edge; (ac; t)*; ac; edge 
 

Are all SSH packets dropped? 

~typ = SSH; dst = H2; sw=A; pt=1; net 
≈   
~typ = SSH; dst = H2; sw=A; pt=1; sw <- B; pt <- 2 

Do all non-SSH packets destined for H2, 
sent from H1 arrive at H2? 

typ = SSH; net  ≈  drop   



Traffic Isolation 
A B 

H1 H2 1 2 1 2 

H4 

3 

H3 

3 

polA1 = sw = A; (   
    pt = 1; pt <- 2  +    

  pt = 2; pt <- 1  ) 
 
polB1 = sw = B; ( ... ) 
 
pol1 = polA1 + polB1 
 
net1 = (pol1; t)*  

polA2 = sw = B; (   
    pt = 3; pt <- 2  +    

  pt = 1; pt <- 3  )  
 
polB2 = sw = A; ( ... ) 
 
pol2 = polA2 + polB2 
 
net2 = (pol2; t)* 

Programmer 1 connects H1 and H2: Programmer 2 connects H3 and H4: 

net3 = ((pol1 + pol2); t)*     // traffic from H2 goes to H1 and H4! 



Traffic Isolation 
A B 

H1 H2 1 2 1 2 

H4 

3 

H3 

3 

A network slice is a light-weight abstraction designed for traffic isolation: 

{ in } policy { out } 

traffic outside the slice 
satisfying in enters the slice 

traffic inside the slice 
satisfying out exits the slice 

traffic inside the slice obeys the policy 

slices are just a little  
syntactic sugar 
on top of NetKAT 



Traffic Isolation 
A B 

H1 H2 1 2 1 2 

H4 

3 

H3 

3 

A network slice is a light-weight abstraction designed for traffic isolation: 

edge1 = sw = A /\ pt = 1 \/ sw = B /\ pt = 2 
 
slice1 = {edge1} pol1 {edge1} 
   

edge2 = sw = A /\ pt = 3 \/ sw = B /\ pt = 3 
 
slice2 = {edge2} pol2 {edge2} 
   

Theorem:  (slice1; t)* + (slice2;t)* ≈ ((slice1 + slice2); t)*     

packet copied and sent through  
slice1 and slice2 networks separately 

packet runs through network 
that combines slice1 and slice2  



Traffic Isolation 
A B 

H1 H2 1 2 1 2 

H4 

3 

H3 

3 

A network slice is a light-weight abstraction designed for traffic isolation: 

Theorem:  edge1; (slice1; t)* ≈ edge1; ((slice1 + slice2); t)*     

consider those packets at the 
edge1 of the slice 

can’t tell the difference between 
slice1 alone and slice1 + slice2  

edge1 = sw = A /\ pt = 1 \/ sw = B /\ pt = 2 
 
slice1 = {edge1} pol1 {edge1} 
   

edge2 = sw = A /\ pt = 3 \/ sw = B /\ pt = 3 
 
slice2 = {edge2} pol2 {edge2} 
   



NetKAT can be implemented with OpenFlow 

68 

forward =  
   (dst = H1; pt <- 1)  
+ (dst = H2; pt <- 2) 
 
ac =  
   ~(typ = SSH); forward 
 

Pattern Actions 
typ = SSH drop 
dst=H1 fwd 1 
dst=H2 fwd 2 

Pattern Actions 
typ = SSH drop 
dst=H1 fwd 1 
dst=H2 fwd 2 

Flow Table for Switch 1: 

Flow Table for Switch 2: 

compile 

Theorem:  Any NetKAT policy p that does not modify the switch field can be  
compiled in to an equivalent policy in “OpenFlow Normal Form.”     



Moving Forward 

Multiple implementations: 
–  In OCaml: 

•  Nate Foster, Arjun Guha, Mark Reitblatt, and 
others! 

•  https://github.com/frenetic-lang/frenetic 

See www.frenetic-lang.org 

69 



Concern
Assembly Languages Programming Languages

x86 NOX ML Frenetic

Resource 
Management

Move values to/
from register

Declare/use 
variables

Modularity
Unregulated 

calling 
conventions

Calling conventions 
managed 

automatically

Consistency Inconsistent 
memory model

Consistent (?) 
memory model

Portability Hardware 
dependent

Hardware 
independent



Concern
Assembly Languages Programming Languages

x86 NOX Java/ML Frenetic

Resource 
Management

Move values to/
from register

(Un)Install policy
rule-by-rule

Declare/use 
variables Declare network policy

Modularity
Unregulated 

calling 
conventions

Unregulated use 
of network flow 

space

Calling conventions 
managed 

automatically

Flow space managed 
automatically

Consistency Inconsistent 
memory model

Inconsistent
global policies

Consistent (?) 
memory model

Consistent global 
policies

Portability Hardware 
dependent

Hardware 
dependent

Hardware 
independent Hardware Independent



Summary 

72 


