AlgOI‘ltth ROBERT SEDGEWICK | KEVIN WAYNE Summary of the performance of symbol-table implementations

Order of growth of the frequency of operations.

typical case
: . ordered operations
implementation

5 ! I q opelat ons (0] es
(] RIES searc insert elete

. red-black BST log N log N log N v compareTo()
» R-way tries
. equals()
» fernary search tries hash table 1t 1t 17 hashCode ()

» character-based operations

1 under uniform hashing assumption

Algorithms

OURTH EDITION

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

Q. Can we do better?
A. Yes, if we can avoid examining the entire key, as with string sorting.

String symbol table basic API String symbol table implementations cost summary

String symbol table. Symbol table specialized to string keys.

character accesses (typical case)

. . |mplementat|on search search insert space moby txt actors.txt
public class StringST<Value> hit miss (references)

StringSTQ) create an empty symbol table red-black BST L+clg?2N clg?2N clg?N
void ut(String key, Value val) ut key-value pair into the symbol table i
P g ey pieraer g _ hashing L L L 4N 10 16N 0.76 406
(linear probing)
Value get(String key) return value paired with given key
void delete(String key) delete key and corresponding value FETETTEHES file size words distinct

= N = number of strings
= length of string
« R = radix actors.txt 82 MB 11.4M 900 K

moby.txt 1.2 MB 210 K 32K

Goal. Faster than hashing, more flexible than BSTs. Challenge. Efficient performance for string keys.

5.2 TRIES

Tries

» R-way tries

Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

Tries

Tries. [from retrieval, but pronounced "try"]
« Store characters in nodes (not keys).
« Each node has R children, one for each possible character.
(for now, we do not draw null links)

link to trie for all keys
that start with s

link to trie for all keys
that start with she

key value

by 4 5
sea 6
value for she in node

sells 1 corresponding to last
qhe 0 character in key
shells 3
shore 7

the 5

Search in a trie

Follow links corresponding to each character in the key.
« Search hit: node where search ends has a non-null value.

get("shells")

return value in node
corresponding to
3 «—— last character in key
(return 3)

Search in a trie

Follow links corresponding to each character in the key.
« Search hit: node where search ends has a non-null value.

get("she")

()
S

Ok
\ search may terminated
at an intermediate node

(return 0)

Search in a trie

Follow links corresponding to each character in the key.

o Search miss: reach null link or node where search ends has null value.

get("shelter")

()
O—(=—E

no link to t
(return null)

Search in a trie

Follow links corresponding to each character in the key.

e Search miss: reach null link or node where search ends has null value.

get("shell")

O—(——E

no value associated
node corresponding to
last character in key
(return null)

Insertion into a trie

Follow links corresponding to each character in the key.
« Encounter a null link: create new node.
» Encounter the last character of the key: set value in that node.

put("shore", 7)

Trie construction demo Trie construction demo

trie trie

s) 3
Trie representation: Java implementation R-way trie: Java implementation
Node. A value, plus references to R nodes.
public class TrieST<Value>
)) {
private static class Node private static final int R = 256; «<—— extended ASCII
{ . . . use Object instead of Value since private Node root = new Node();
private ObJeCt value ’ : no generic array creation in Java
private Node[] next = new Node[R]; private static class Node
} { /* see previous slide */ }
pubTlic void put(String key, Value val)
{ root = put(root, key, val, 0); }
Cﬁgﬁgﬁ;ﬁ;?ﬂ;ﬁ” ”ﬂiﬁ;gﬁiﬁ?r private Node put(Node x, String key, Value val, int d)
explicitly stored {

if (x == null) x = new Node();

if (d == key.length()) { x.val = val; return x; }
char c = key.charAt(d);

x.next[c] = put(x.next[c], key, val, d+1);

\ each node has return Xx;

an array of links
and a value }

R-way trie: Java implementation (continued)

public boolean contains(String key)
{ return get(key) != null; }

public Value get(String key)

{

Node x = get(root, key, 0);

if (x == null) return null;
: return (Value) x.val; cast needed
private Node get(Node x, String key, int d)
{

if (X == null) return null;

if (d == key.length()) return x;
char c = key.charAt(d);
return get(x.next[c], key, d+1);

Deletion in an R-way trie

To delete a key-value pair:
« Find the node corresponding to key and set value to null.

delete("shells")

D

<«—— set value to null

Trie performance

Search hit. Need to examine all L characters for equality.

Search miss.
« Could have mismatch on first character.
» Typical case: examine only a few characters (sublinear).

Space. R null links at each leaf.
(but sublinear space possible if many strings share long common prefixes)

Deletion in an R-way trie

To delete a key-value pair:

e If node has null value and all null links, remove that node (and recur).

delete("shells")

null value and links
(delete node)

(D

20

String symbol table implementations cost summary

character accesses (typical case) dedup
implementation search search insert space moby.txt | actors.txt
hit miss (references)
5.2 TRIES
red-black BST L+clg?N clg?N clg?N
_hashing L L L 4N 1o 16N 0.76 40.6
(linear probing) .
» ternary search tries
R-way trie L logx N L (R+1) N 1.12 out of
memory .
Algorithms
R-way trie.

» Method of choice for small R.
o Works well for medium R.
Too much memory for large R.

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

Challenge. Use less memory, e.g., 65,536-way trie for Unicode!

21

Ternary search tries Ternary search tries

Store characters and values in nodes (not keys).
« Each node has 3 children: smaller (left), equal (middle), larger (right).

Store characters and values in nodes (not keys).
« Each node has 3 children: smaller (left), equal (middle), larger (right).

link to TST for all keys ik o TST for all keys

that start with that start with s
a letter before s \

Fast Algorithms for Sorting and Searching Strings

Jon L. Bentley*

Abstract

We present theoretical algorithms for sorting and
searching multikey data, and derive from them practical C
implementations for applications in which keys are charac-
ter strings. The sorting algorithm blends Quicksort and
radix sort; it is competitive with the best known C sort
codes. The searching algorithm blends tries and binary
search trees; it is faster than hashing and other commonly
used search methods. The basic ideas behind the algo-

Robert Sedgewick#

that is competitive with the most efficient string sorting
programs known. The second program is a symbol table
implementation that is faster than hashing, which is com-
monly regarded as the fastest symbol table implementa-
tion. The symbol table implementation is much more
space-efficient than multiway trees, and supports more
advanced searches.

In many application programs, sorts use a Quicksort
implementation based on an abstract compare operation,

28]

each node has

three links \

TST representation of a trie

24

Search hitin a TST Search miss in a TST

get("sea") get("shelter")

0 ®
®

0 ®
30,

/ o

return value in node
corresponding to

last character in key Q

™~

no link to t

(return null)
25

Ternary search trie construction demo Ternary search trie construction demo

ternary search trie ternary search trie

O

27

Trie quiz 1

Which value is associated with the string key "CAC" ?

A. 3

B. 4

C. 5

D. null

E. [Idon't know.

w
>0
IS
(a2)

26-way trie vs. TST

26-way trie. 26 null links in each leaf.

T ol b T
oo ® DOGE @ PEO & © © 0 CEHE @ © O©
PEEOOOREOOEROROEOEGODEOEDEVOEEDEDOE

26-way trie (1035 null links, not shown)

TST. 3 null links in each leaf.

®
® o O
e O 8 0 g P=c
A (L B o0 = @ o @ @ g
SRR SRR T AR R AR ® X
OR 1 PG COAMOINOKO ORI
IGO0 @) O @ ®) SN
@ " @ o @
00

TST (155 null links)

now
for
tip
i1k
dim
tag
jot
sob
nob
sky
hut
ace
bet
men
egg
few
jay
ow]
joy
rap
gig
wee
was
cab
wad
caw
cue
fee
tap
ago
tar
jam
dug
and

Search in a TST

Follow links corresponding to each character in the key.
« If less, take left link; if greater, take right link.
« If equal, take the middle link and move to the next key character.

Search hit. Node where search ends has a non-null value.
Search miss. Reach a null link or node where search ends has null value.

get("sea") match: take middle link,

move to next char

mismatch: take left or right link,
do not move to next char

14

return value
associated with
last key character

30

TST representation in Java

A TST node is five fields:

o A value. private class Node
{
» A character c. private Value val;
« A reference to a left TST. EITVEES ERIF .
private Node left, mid, right;
« A reference to a middle TST. }

A reference to a right TST.

standard array of links (R = 26) ternary search tree (TST)

link for keys
\/ that start with s ——___ [
LTI LT TN T T T T T T T T T T T IN I TTT] eoo

\ link for keys —

that start with su

Trie node representations

31 22

TST: Java implementation String symbol table implementation cost summary

public class TST<Value>
{ character accesses (typical case)
private Node root;
privite class Node - " implementation SEalE) SEale insert space moby.txt actors.txt
{ /* see previous slide */ } hit miss (references)
public Value get(String key)
{ J J red-black BST L+clg?2N clg?N clg?N
Node x = get(root, key, 0);
if (x == null) return null; _hashing L L L 4N 10 16N 076 40.6
return x.val; (linear probing)
1
R-way trie L log &N L (R+1) N 1.12 out of
private Node get(Node x, String key, int d) ieriony
{
if (x == null) return null: TST L+InN In N L+InN 0.72 387
char ¢ = key.charAt(d);
if (c < x.0) return get(x.left, key, d);
else if (c > x.0) return get(x.right, key, d);
else if (d < key.length() - 1) return get(x.mid, key, d+1); Remark. Can build balanced TSTs via rotations to achieve L +log N
else return Xx;
} worst-case guarantees.
public void put(String Key, Value val)
{ /* similar, see book or booksite */ } Bottom line. TST is as fast as hashing (for string keys), space efficient.
1
33
TST with R? branching at root String symbol table implementation cost summary

Hybrid of R-way trie and TST.
e Do R2-way branching 3t root. character accesses (typical case)
« Each of R2 root nodes points to a TST. search search space
|mplementat|on hit e insert (references) tht actors.txt

2 2 2
array of 262 roots red-black BST L+clg?N clg?2N clg?N
sl L L L 4N to 16N 0.76 40.6
(linear probing)

aa ab ac zy zz tof

. out o,
\ \ R-way trie L logr N L (R+1) N 1.12 memory

TST L+InN InN L+InN 4N 0.72 38.7

mEn
TST TST TST TST TST
TST with R2 L+InN InN L+InN 4N+ R? 0.51 32.7

Q. What about one- and two-letter words? Bottom line. Faster than hashing for our benchmark client.

35

TST vs. hashing

Hashing.
« Need to examine entire key.
« Search hits and misses cost about the same.
« Performance relies on hash function.
« Does not support ordered symbol table operations.

TSTs.
» Works only for string (or digital) keys.
« Only examines just enough key characters.
« Search miss may involve only a few characters.
» Supports ordered symbol table operations (plus extras!).

Bottom line. TSTs are:
» Faster than hashing (especially for search misses).

» More flexible than red-black BSTs. [stay tuned]

37

String symbol table API

Character-based operations. The string symbol table APl supports several
useful character-based operations.

key value
by 4
sea 6
sells 1
she 0
shells 3
shore 7
the 5

Prefix match. Keys with prefix sh: she, shells, and shore.
Wildcard match. Keys that match .he: she and the.
Longest prefix. Key that is the longest prefix of shellsort: shells.

39

Algorithms

5.2 TRIES

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

String symbol table API

» character-based operations

public class StringST<Value>

void

Value

void

Iterable<String>

Iterable<String>

Iterable<String>

String

Remark. Can also add other ordered ST methods, e.g., floor() and rank().

StringSTQ

put(String key, Value val)

get(String key)

delete(String key)

keys(Q)
keysWithPrefix(String s)
keysThatMatch(String s)

TongestPrefix0f(String s)

create a symbol table with string keys

put key-value pair into the symbol table

value paired with key

delete key and corresponding value

all keys

keys having s as a prefix

keys that match s (where . is a wildcard)

longest key that is a prefix of's

40

Warmup: ordered iteration

To iterate through all keys in sorted order:
» Do inorder traversal of trie; add keys encountered to a queue.
« Maintain sequence of characters on path from root to node.

keys ()

key q
b
by by
S
se
sea sea 5
sel
sell
sells sells
sh
she she
shell
shells shells
sho
shor
shore shore
t
th
the the

Prefix matches

Find all keys in a symbol table starting with a given prefix.
Ex. Autocomplete in a cell phone, search bar, text editor, or shell.

« User types characters one at a time.
« System reports all matching strings.

GOK)gle why is my comp|

why is my computer so slow

why is my computer slow

why is my computer so slow all of a sudden
why is my computer so loud

why is my computer running so slowly

why is my computer screen so big

why is my computer freezing

why is my computer beeping

why is my computer slowing down

why is my computer so slow lately

NDEODON0G

Google Search | | I'm Feeling Lucky

41

43

Ordered iteration: Java implementation

To iterate through all keys in sorted order:
« Do inorder traversal of trie; add keys encountered to a queue.
« Maintain sequence of characters on path from root to node.

public Iterable<String> keys()

{

Queue<String> queue = new Queue<String>(Q);

collect(root, "", queue);

return queue; sequence of characters
} / on path from root to x
private void collect(Node x, String prefix, Queue<String> queue)
{

if (x == null) return;

if (x.val != null) queue.enqueue(prefix);

for (char ¢ = 0; c < R; c++)

collect(x.next[c], prefix + c, queue);

¥ \ or use StringBuilder

Prefix matches in an R-way trie

Find all keys in a symbol table starting with a given prefix.

keyswWithPrefix("sh");

find subtrie for all /

keys beginning with "'sh"

collect keys
in that subtrie

public Iterable<String> keysWithPrefix(String prefix) key queue
{ sh
Queue<String> queue = new Queue<String>(Q); SE:? she
Node x = get(root, prefix, 0); shell
collect(x, prefix, queue); Shey@ SEULE
return queue; root of subtrie for all strings shor
beginning with given prefix shore

42

44

Longest prefix

Find longest key in symbol table that is a prefix of query string.

Ex. To send packet toward destination IP address, router chooses IP

address in routing table that is longest prefix match.

"128"
"128.
"128.
"128.
"128.
"128.
"128.
"128.
"128.

112"
112.
112.
112.
112
112.
222"
222.

represented as 32-bit
<«——— binary number for IPv4
(instead of string)

055"

055.15"

136" TongestPrefix0f("128.112.136.11") =
155 11" TongestPrefix0f("128.112.100.16") =
’) TongestPrefix0f("128.166.123.45") =
155.13"

136"

Note. Not the same as floor: floor("128.112.100.16") = "128.112

Longest prefix in an R-way trie: Java implementation

"128.112.136"
"128.112"
"128"

.055.15"

Find longest key in symbol table that is a prefix of query string.

 Search for query string.

» Keep track of longest key encountered.

public String longestPrefix0f(String query)

{
int length = search(root, query, 0, 0);
return query.substring(0, Tength);
}
private int search(Node x, String query, int d, int length)
{
if (x == null) return length;
if (x.val != null) length = d;
if (d == query.length()) return length;
char c = query.charAt(d);
return search(x.next[c], query, d+1, length);
}

45

47

Longest prefix in an R-way trie

Find longest key in symbol table that is a prefix of query string.
« Search for query string.
» Keep track of longest key encountered.

"she" . "She]]" "shellsort"
O
() S (s)
)) 0
search ends
© Qo b s
\ © value is nu 0
search ends at ,/(la Sl;(}]ibg”‘l’loz ?)ealh)
end of string o y

value is not null
return she
search ends at
9 3 null link
return shells
(last key on path)

Possibilities for TongestPrefix0f()

T9 texting (predictive texting)

Goal. Type text messages on a phone keypad.

Multi-tap input. Enter a letter by repeatedly pressing a key.
EX. good: 4 666 666 3

"a much faster and more fun way to enter text"

- /
T9 text input.

» Find all words that correspond to given sequence of numbers.
4663: good, home, gone, hoof. «—— textonyms

« Press * to select next option. h O W

o Press 0 to see all completion options. satmasmn Satpmues jutwames

~—— ——

« System adapts to user's tendencies. 1 2abc | 3def
/4ghi.L 5 ikl /6mnoﬁ
7pqr 8tuv \9wxyz*

www.t9.com

46

48

T9 TEXTING

Q. How to implement T9 texting on a mobile phone?

SONY },er/,.En SIEMENS

NEC sAavwo &,

Suffix tree

Suffix tree.
« Patricia trie of suffixes of a string.
« Linear-time construction: well beyond scope of this course.

suffix tree for BANANAS A
BANANAS A NA S \(D
N

A S S NAS
NAS S
Applications.
« Linear-time: longest repeated substring, longest common substring,
longest palindromic substring, substring search, tandem repeats,
« Computational biology databases (BLAST, FASTA).

49

51

Patricia trie

Patricia trie. [Practical Algorithm to Retrieve Information Coded in Alphanumeric]
« Remove one-way branching.
» Each node represents a sequence of characters.

put("shells", 1);

« Implementation: one step beyond this course. iicenentish, 2

e
Q
Applications. ® (®1 (fish)2
« Database search. 0)
o P2P network search. ® internal
« IP routing tables: find longest prefix match. 0 branching
e Compressed quad-tree for N-body simulation. a

Efficiently storing and querying XML documents. (), 6

e external
one-way
branching
OF

Also known as: crit-bit tree, radix tree.

50

String symbol tables summary

A success story in algorithm design and analysis.

Red-black BST.
» Performance guarantee: log N key compares.
» Supports ordered symbol table API.

Hash tables.
« Performance guarantee: constant number of probes.
» Requires good hash function for key type.

Tries. R-way, TST.

« Performance guarantee: log N characters accessed.
« Supports character-based operations.

52

