A 1 g O I‘ 1 th m S ROBERT SEDGEWICK | KEVIN WAYNE

4.1 UNDIRECTED GRAPHS 4.1 UNDIRECTED GRAPHS

» introduction » introduction
» graph API
» depth-first search

Algorithms

» breadth-first search

Algorithms

» connected components

ROBERT SEDGEWICK | KEVIN WAYNE ROBERT SEDGEWICK | KEVIN WAYNE
http://algs4.cs.princeton.edu } Challenges http://algs4.cs.princeton.edu
Undirected graphs Protein-protein interaction network
Graph. Set of vertices connected pairwise by edges. y P .
. n.¢:.'_.’9—‘ ¥ :’ ®o‘e
Why study graph algorithms? PN ::-:-@s.::. 2 /. B A,
« Thousands of practical applications. S, AN 7 PISERER S 7 e
a ° a o ¥ °® R 9% PO .O ve*
« Hundreds of graph algorithms known. A T R T 3 oY ee o2 |
o - 2l o ..C.-..o, . ..v . "p".. 25 e =
. q oS3y - . - o . ! o . - "
« Interesting and broadly useful abstraction. L EtSLra ity -”:.;-_- : B2
. . . * ..:. < "' :. ".- :.».. e L P e % ; ...5 - B -
« Challenging branch of computer science and discrete math. “ ..'. sl :._; :;.i?g-,._;g’é':» 3 u::}.';"":.r.:v‘.;- T, e
SRR R e
b e iy 2 >, P R :o —
R B r 3 S e :
> . - ‘ oo o® <® so0®
. ™~ :-. - s ® o .}0.‘-’3::‘: o & ‘L\&.f.’.?:: = .-. :‘: e
o= = .. o. 0‘.. '—_4(3 b, 5 L "’-‘4»0. . - - .'.) g
e - ...‘:-.. $,..-:?::_‘7}:'.).¢3: LY i&.‘a ‘: = <
b - = =" '.;;‘ ‘-;:'..,..:.: ‘%‘(‘V’. a‘ \.:..‘ ;‘ .v e > ...
.: = o g ‘0 o, 2 "."“.?:"h::&t ‘"- ’.0... e o = - :
o * .o.. f";$’ ! .;0. "oQ‘\,’ -..,zo.. -, o ; o
o % % i ‘.. *Toe s ° ,.0 Jon .. o o ..-. ’ o
™ o ce ° e % S P S ".'. . J ° ns
: s o .‘ - ...’.{‘_"" C4 l.. :. : ... AN -
“ . - o @ 2oL 0 \° - .
- ™ o, o2 LA A\ e ¢ -
i o a y ¥ L 0: L oot s » =l =) 5 -
o L ... s

Reference: Jeong et al, Nature Review | Genetics

Framingham heart study

Figure 1. Largest Connected Subcomponent of the Social Network in the Framingham Heart Study in the Year 2000.
Each circle (node) represents one person in the data set. There are 2200 persons in this subcomponent of the social
network. Circles with red borders denote women, and circles with blue borders denote men. The size of each circle
is proportional to the person’s body-mass index. The interior color of the circles indicates the person’s obesity status:
yellow denotes an obese person (body-mass index, =30) and green denotes a nonobese person. The colors of the
ties between the nodes indicate the relationship between them: purple denotes a friendship or marital tie and orange
denotes a familial tie.

“The Spread of Obesity in a Large Social Network over 32 Years” by Christakis and Fowler in New England Journal of Medicine, 2007

Map of science clickstreams

The evolution of FCC lobbying coalitions

Minerology
. Py
Acoustics

Manufacturing Q Nigiori
Production A . Material science

research Engineering

.

Applied
e

L)
Organic @346

chemistry
Social C @
Child Education,

Psychology 2
-e .
Socialland personality @ ~*Pharmaceutical

Ppsychology S research

o

Chemical
Engineering
.

@
Archeology’

[
oo
A®

http:/ /www.plosone.org/article/info:doi/10.1371/journal.pone.0004803

Consolidated Companies

- PricrityOne
. Fitch Affordable
Grest Plsins Comm Fich Affordable T »

D3

Focal Nerlight m
P) er
Iz Pan Suppoers & Con
= URC £ Commbrications. “
e R b Commibnication: A Brdgedom Telcentrs Communicatons |
Wt Ao Communications
Montana PSC Iopary Consulting
o
PaE sy
Eschelon
. &
ctaorks
L]
om
Corhplet
|
NCTA
o
Ohe:
Spring TMabile
Speine el || TolkAerica | UCE
c' A Broadvien
Grangé/Communication!
o Qi
DaeCant
L\
W Soathern NG Wice!

o

st Wrel

elluiar P £
. Corr Wireless Comatnicationsy Celluiar South

o A ICom RS o .c\ wersent n
Lfiar One NTca NECA
o’ INE Colorado Cellular Bahofi&Rone @) o
e . * ERTA Nehalem Telecommiunications
com % All American Telephone . |

Conference Partn:

FBN Indiana Monios Telephone Oregondabo Usies
o

SN Humbokdt Telephone
Canby Telephane
. A Helix Telephone
s Ploneer .
.

“The Evolution of FCC Lobbying Coalitions” by Pierre de Vries in JoSS Visualization Symposium 2010

10 million Facebook friends

facebook

"Visuali

ing Friendships" by Paul Butler

The Internet as mapped by the Opte Project Graph applications

communication telephone, computer fiber optic cable
circuit gate, register, processor wire
mechanical joint rod, beam, spring
financial stock, currency transactions
transportation intersection street
internet class C network connection
game board position legal move
social relationship person friendship
neural network neuron synapse
protein network protein protein-protein interaction

molecule atom bond

http://en.wikipedia.org/wiki/Internet

Graph terminology Some graph-processing problems

Path. Sequence of vertices connected by edges. ,_
problem description

Cycle. Path whose first and last vertices are the same.

s-t path Is there a path between s and t ?
Two vertices are connected if there is a path between them. shortest s—t path What is the shortest path between s and t ?
vertex cycle Is there a cycle in the graph ?
do
cycle of eree
length’5 \ l Euler cycle Is there a cycle that uses each edge exactly once ?
path of Hamilton cycle Is there a cycle that uses each vertex exactly once ?
« length 4
connectivity Is there a path between every pair of vertices ?
vertex of
degree 3 N biconnectivity Is there a vertex whose removal disconnects the graph ?
planarity Can the graph be drawn in the plane with no crossing edges ?
connected graph isomorphism Do two adjacency lists represent the same graph ?

components

Challenge. Which graph problems are easy? difficult? intractable?

4.1 UNDIRECTED GRAPHS

» graph API

Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

Graph representation

Vertex representation.
e This lecture: use integers between 0 and V- 1.
« Applications: convert between names and integers with symbol table.

symbol table

3 arallel
sel]; loop Pe Fres

Anomalies. ‘Q‘l'c
__

Graph representation

Graph drawing. Provides intuition about the structure of the graph.

two drawings of the same graph

Caveat. Intuition can be misleading.

Graph API

public class Graph

Graph(int V)

create an empty graph with V vertices

Graph(In in)

create a graph from input stream

void addEdge(int v, int w) add an edge v-w

Iterable<Integer> adj(int v) vertices adjacent to v

int VO number of vertices

int EQ number of edges

// degree of vertex v in graph G
public static int degree(Graph G, int v)
{
int degree = 0;
for (int w : G.adj(v))
degree++;
return degree;

Graph API: sample client Graph representation: set of edges

Graph input format. Maintain a list of the edges (linked list or array).

tinyG. txt % java Test tinyG.txt
V13 s 0-6
13« 0-2
g g (0) 0-1 0
01 DR (o) 0-5 0 1
9 12 1-0 0 2
0 © (3)0) 2-0 O @& © 0 5
5 4 3oc
02 0 LN\ 0 6
11 O (112 3-4 o e 3 4
9 10 : / 3 5
06 i}
. 12-11 . 4 5
9 11 12-9 4 6
>3 7 8
Ow® 9 10
In in = new In(args[0]); read graph from H 9 11
Graph G = new Graph(in); input stream e e ° @ 9 12
11 12
for (1nt.v =0; v < (.].V(); V++) print out each
for (int w : G.adj(v)) T edge (twice)
StdOut.printin(v + "-" + w);
17
Undirected graphs: quiz 1 Graph representation: adjacency matrix
Which is order of growth of running time to iterate over all vertices Maintain a two-dimensional V-by-V boolean array;
adjacent to v using the set-of-edges representation? for each edge v—w in graph: adj[v]l[w] = adj[w][v] = true.
A. 1
two entries
B degree(v) 0 for each edge
C V 0 2 4 5 6 7 10 11 12
. 0 1 1 0
- ORORG JEVEN:
0 0 0 0
N1 0 0
E. Idon't know. 1 0
0

1%
© N O U A W N O

L
%

&

=
OO0 0O 00O RrR R OOR RO
=== === === ==
O 0o o0oo0ooooo oo
O 00 o0 o0 o0 oRr R oo
O OO0 0 o0 O R R

i
N

O O O © O O /O

O O O O o

o O O O K o

O O O O OB O O O O O O O|x

P P BP OO OOOOOO O O|v

O O Ok O O O O O o o o o

H O O O O O O O oo o o

O R OBRFB OO O OO OO OoO oo

20

Undirected graphs: quiz 2

Which is order of growth of running time to iterate over all vertices
adjacent to v using the adjacency-matrix representation?

A. 1

B degree(v)

C %

D. E

E. [Idon't know.

Undirected graphs: quiz 3

Which is order of growth of running time to iterate over all vertices
adjacent to v using the adjacency-lists representation?

A. 1

B degree(v)
C. 1%

D E

E. I don't know.

21

28]

Graph representation: adjacency lists

Maintain vertex-indexed array of lists.

]

Bag objects
0

adj[]

)
()

/
el
E
=]

> rgp}/l'c,«’cnmriains
of the same edge
Ow® 10

I

()
&

AR AN AN

=ef]e

]} |[E] 2]

22

Graph representations

In practice. Use adjacency-lists representation.
« Algorithms based on iterating over vertices adjacent to v.
» Real-world graphs tend to be sparse.

\ huge number of vertices,
small average vertex degree

sparse (E=200) dense (E=1000)

Two graphs (V = 50)

24

Graph representations

In practice. Use adjacency-lists representation.

« Algorithms based on iterating over vertices adjacent to v.

« Real-world graphs tend to be sparse.

. edge between iterate over vertices
representation space add edge :
v and w? adjacent to v?
E 1 E E

list of edges
adjacency matrix V2
adjacency lists E+V

Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

\ huge number of vertices,
small average vertex degree

1 * 1 \%
1 degree(v) degree(v)

* disallows parallel edges

4.1 UNDIRECTED GRAPHS

» depth-first search

25

Adjacency-list graph representation: Java implementation

public class Graph

{
private final int V;
private Bag<Integer>[] adj;
public Graph(int V)
{
this.V = V;
adj = (Bag<Integer>[]) new Bag[V];
for (int v = 0; v < V; v++)
adj[v] = new Bag<Integer>(Q);
3
public void addEdge(int v, int w)
{
adj[v].add(w);
adj[w].add(v);
}
pubTlic Iterable<Integer> adj(int v)
{ return adj[v]; }
3

Maze exploration

adjacency lists
(using Bag data type)

create empty graph
with V vertices

add edge v-w
(parallel edges and
self-loops allowed)

iterator for vertices adjacent to v

26

Maze graph.
» Vertex = intersection.
» Edge = passage.

O/ L O

///f |
intersection passage

Goal. Explore every intersection in the maze.

28

Maze exploration: National Building Museum Trémaux maze exploration

Algorithm.
« Unroll a ball of string behind you.
« Mark each newly discovered intersection and passage.
« Retrace steps when no unmarked options.

= =) 2
& A &

http://www.smithsonianmag.com/travel/winding-history-maze-180951998/?no-ist
29

Trémaux maze exploration Maze exploration: easy
Algorithm.
« Unroll a ball of string behind you.
« Mark each newly discovered intersection and passage.]] |
» Retrace steps when no unmarked options. 1= H E—L
First use? Theseus entered Labyrinth to kill the monstrous Minotaur; i B]
Ariadne instructed Theseus to use a ball of string to find his way back out. | | | | —
Il‘70_‘ -
L [I_J—‘
|
S [
FT | | []
o

The Cretan Labyrinth (with Minotaur) Claude Shannon (with electromechanical mouse)
http://commons.wikimedia.org/wiki/File:Minotaurus.gif http:/ /www.corp.att.com/attlabs/reputation/timeline/16shannon.html

31

30

22

Maze exploration: medium

I

Depth-first search

Goal. Systematically traverse a graph.

Idea. Mimic maze exploration. «— function-call stack acts as ball of string

DFS (to visit a vertex v)

Mark vertex v.
Recursively visit all unmarked
vertices w adjacent to v.

Typical applications.
« Find all vertices connected to a given source vertex.
» Find a path between two vertices.

Design challenge. How to implement?

Maze exploration: challenge for the bored

r
i
d
nn
=
_LL
[
=

'_I

e e il

I

T, 'W“FE

S
3
b

i

L

33

Depth-first search demo

To visit a vertex v: @
e Mark vertex v.

» Recursively visit all unmarked vertices adjacent to v.

tinyG. txt
0 O— v
E
13 <«
5
3
1
O @ T (— 12
4
4
2
(s —4) (—12)
10
6
8
11
> 3

graph G

VVONOUWVWRPROUIOWO MO

34

36

Depth-first search demo Design pattern for graph processing

To visit a vertex v: Design pattern. Decouple graph data type from graph processing.
* Mark vertex v. « Create a Graph object.
e Recursively visit all unmarked vertices adjacent to v. « Pass the Graph to a graph-processing routine.

» Query the graph-processing routine for information.

<

marked[] edgeTo[]

0 T - .
] T 0 pubTic class Paths
i —IT— (5) Paths(Graph G, int s) find paths in G from source s
4 T 6 boolean hasPathTo(int v) is there a path from s to v?
5 T 4
6 T 0 Iterable<Integer> pathTo(int v) path from s to v; null if no such path
O SR
8 F -
9 F -
10 F = Paths paths = new Paths(G, s);
11 F = for (int v = 0; v < G.VQ; v++)
12 F - if (paths.hasPathTo(v))))
i print all vertices
vertices reachable from 0 S IFTEIIED)E connected to s
37 38
Depth-first search: data structures Depth-first search: Java implementation
To visit a vertex v: public class DepthFirstPaths
e Mark vertex v. { marked[v] = true
. i ; «—F |if d
« Recursively visit all unmarked vertices adjacent to v. private boolean[] marked; It v connected o s
private int[] edgeTo; <«———F+—— edgeTo[v] = previous
private int s; vertex on path from s to v
public DepthFirstPaths(Graph G, int s)
Data structures. { ey
<«———F—— initialize data structures
» Boolean array marked[] to mark vertices. e _ _
dfs(G, s); «——+F— find vertices connected to s
 Integer array edgeTo[] to keep track of paths. }
(edgeTo[w] == v) means that edge v-w taken to discover vertex w _ _ _
. I K f . private void dfs(Graph G, int v) <«——+— recursive DFS does the work
o Function-call stack for recursion. {

marked[v] = true;
for (int w : G.adj(v))
if (!marked[w])
{
edgeTo[w] = v;
dfs(G, w);

40

Depth-first search: properties Depth-first search: properties

Proposition. DFS marks all vertices connected to s in time proportional to Proposition. After DFS, can check if vertex vis connected to s in constant
the sum of their degrees (plus time to initialize the marked[] array). time and can find v—s path (if one exists) in time proportional to its length.
Pf. [correctness] source set of marked Pf. edgeTo[] is parent-link representation of a tree rooted at vertex s.

vertices

e If w marked, then w connected to s (why?)
» If w connected to s, then w marked.

(if w unmarked, then consider last edge
public boolean hasPathTo(int v)

on a path from s to w that goes from a { return marked[v]; }

no such edge

set of - o
marked vertex to an unmarked one). unmarked e public Iterable<Integer> pathTo(int v) edgeTo[]
vertices g { 0
1]2
: : if (!hasPathTo(v)) return null; 210
Pf. [rur1nlng t|n1e] Stack<Integer> path = new Stack<Integer>(Q); 3 || 2
Each vertex connected to s is visited once. for (int x = v; x !=s; x = edgeTo[x]) 43
path.push(x); 513
path.push(s);
return path;
}

41

Depth-first search application: preparing for a date

PREPRRING RRADATE | [/~ ¥ 7 V"V (A~~~

Problem. Implement flood fill (Photoshop magic wand). T oot e e D e R NTHE RESEARGH COMPRRING
MIGHT T PREPPRE. RR7 0) A) SNAKEBITE DAY (ORN SNAKE. Mfk SNAKEVFNO"BkSSCI;ﬂTERED
1) MEDICAL EMERGENCY 8) LIGHTNING STRIKE ¥) GARTER SNAKE. 2 AND INCONSISTENT. TLL MAKE
2) DANCING “11<gﬁanumown \\‘C3£§ZEEEfLr”jF A SPREADSHEET T ORGANIZE IT:
2)Fo0D TOO EXPENSIVE
0. 3
o o) o]

(¢}

MAANAN S AAN
OO
IMHERETOPKK BY (D, THE INAND

YOUUP. YOURE TAIPAN HAS THE DEADUEST
NOT DRESSED? VENOM OF ANY SNAKE!

Solution. Build a grid graph (implicitly). : : S : : (\@ K}
« Vertex: pixel. e T éi 07
- Edge: between two adjacent gray pixels. N T
» Blob: all pixels connected to given pixel. e o 0 0 0 0 o
’;;t;;)/;kcd.com/761/ "J

. T REALY NEED To STop
Extra concern. Function-call stack depth. USING DEPTH-FIRST SEARCHES.

43

Breadth-first search demo

Repeat until queue is empty: @
« Remove vertex v from queue.

« Add to queue all unmarked vertices adjacent to vand mark them.

4.1 UNDIRECTED GRAPHS

tinyCG. txt
; o
O

Vs g .
8«
05
2 4
23
: 12
Algorithms , 01
» breadth-first search 34
;) ;:
ROBERT SEDGEWICK | KEVIN WAYNE
http://algs4.cs.princeton.edu
graph G
46
Breadth-first search demo Breadth-first search
Repeat until queue is empty: Repeat until queue is empty:
« Remove vertex v from queue. « Remove vertex v from queue.
« Add to queue all unmarked vertices adjacent to vand mark them. » Add to queue all unmarked vertices adjacent to v and mark them.
\:
BFS (from source vertex s) Iy
@ > 2 v edgeTo[] distTo[]
0 Put s onto a FIFO queue, and mark s as visited.

Repeat until the queue is empty:
- remove the least recently added vertex v

i

- add each of v's marked neighbors to the queue,

@ v and mark them.
& o

Ui N W N — O
O NN O O |
_ N N == =

4

done

47 48

Breadth-first search: Java implementation

public class BreadthFirstPaths
{
private boolean[] marked;
private int[] edgeTo;
private int[] distTo;

private void bfs(Graph G, int s) {
Queue<Integer> q = new Queue<Integer>(Q);
g.enqueue(s);
marked[s] = true;
distTo[s] = 0;

while (!q.isEmpty()) {
int v = q.dequeue();
for (int w : G.adj(v)) {
if (!'marked[w]) {
g.enqueue(w) ;

marked[w] = true; «

edgeTo[w] V;
distTo[w] = distTo[v] + 1;

|

Breadth-first search application: routing

initialize FIFO queue of
vertices to explore

found new vertex w
via edge v-w

Fewest number of hops in a communication network.

SATELLITE CIRCUIT
[

TP
PLURIBUS 1MP

(NOTE THIS MAP DOES NOT SHOW ARPA'S EXPERIMENTAL
SATELLITE CONNECTIONS)

NAMES SHOWN ARE iMP NAMCS, NOT (NECESSARILY) HOST NAMES

oo

ARPANET, July 1977

49

51

Breadth-first search properties

Q. In which order does BFS examine vertices?
A. Increasing distance (nhumber of edges) from s.

AN

queue always consists of > 0 vertices of distance k from s,
followed by >0 vertices of distance k+1

Proposition. In any connected graph G, BFS computes shortest paths
from s to all other vertices in time proportional to £+ V.

graph G dist =0 dist=1 dist = 2

50

Breadth-first search application: Kevin Bacon numbers

ano The Oracle of Bacon
Lalr He HG ol + @) € rmowww oracteobacen org /co-Bis moviel nks\game = CArstname - Kevis s faco © B Q:

[The Curtis |_ote of Music COS 126 FO8 ACM Amards Wang 518 McCuschy | Memepage Stocks COS126 FO7 TPM RSS (1742)% Kschaten »

THE ORACLE

OF BACON

Buzz Mauro

Sweet Dreams (2005) |

Tatana Ramirez

Interior de un silencio, El (2005) |

Uma Thurman
ted ir

Andres Suarez Be Cool (2005) 1
Carlita's Secret (2004) Scot; ;\dsit
Paula Lemes (1) The lnformant; (2009) >
FrostNixon (2008) | Matt vl‘);mon
Kevin Bacon
Xewn Bace 10 Surz vau it i) (Wore cpmom 5>
Q

\
Lookup

http:/ /oracleofbacon.org SixDegrees iPhone App

52

Kevin Bacon graph

 Include one vertex for each performer and one for each movie.
« Connect a movie to all performers that appear in that movie.
« Compute shortest path from s = Kevin Bacon.

Patrick Dial M Grace
Allen for Murder Kelly

Glenn The Stepford -
Close Wives High

Noon
Portrait Lloyd
of a Lady - The Eagle Bridges
Nicole Has Landed
Murder on the
Orient Express

Caligola

John
Gielgud

Kidman

Donald
Sutherland Kathleen Joe Versus
Quinlan he Volcanof

An American John Animal
Haunting Belushi House performer
Apollo 13| vertex
Dobtcheff The
Woodsman Kevin
il Hanks
Wild Paxton
Things The River
Jude Wild
The Da
Paul The
Meryl
Streep Serretta
Winslet N N Yves
Zaza

movie
vertex

Eternal Sunshine
of the Spotless
Mind

4.1 UNDIRECTED GRAPHS

Algorithms

» connected components

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

Breadth-first search application: Erdés numbers

(G L2
\&D &
éiﬁz&

v T

hand-drawing of part of the Erdés graph by Ron Graham

53

Connectivity queries

Def. Vertices v and w are connected if there is a path between them.

Goal. Preprocess graph to answer queries of the form is v connected to w?

in constant time.

public class

CC

boolean

int

int

CC(Graph @

find connected components in G

connected(int v, int w) are v and w connected?

count() number of connected components

component identifier for v

id(int v
() (between 0 and count() - 1)

Union-Find? Not quite.

Depth-first search.

Yes. [next few slides]

54

56

Connected components

The relation "is connected to" is an equivalence relation:
» Reflexive: vis connected to v.
« Symmetric: if vis connected to w, then w is connected to v.
« Transitive: if v connected to w and w connected to x, then v connected to x.

Def. A connected component is a maximal set of connected vertices.

v id[]

0 0

0 020 D
3 0

OROCRCIEFN P
6 0

O ONEEN AN o
o2 O >
10 2

3 connected components 11 2

12 2

Remark. Given connected components, can answer queries in constant time.

57

Connected components

Goal. Partition vertices into connected components.

Connected components

Initialize all vertices v as unmarked.

For each unmarked vertex v, run DFS to identify all tinyG. txt

vertices discovered as part of the same component. V13 5
13 <

5
3

0

4

01
9 12

6 4

(0) 5 4
@%0 ;
Qeeoe 11 12
9 10

06
S ol a4
(5) 112 i

59

Connected components

Def. A connected component is a maximal set of connected vertices.

113t 111y

._.‘:a

) @ S

63 connected components

Connected components demo

To visit a vertex v: @
e Mark vertex v.

» Recursively visit all unmarked vertices adjacent to v.

graph G

v marked[] id[]
0 F -
1 F —
2 F -
3 F -
4 F -
5 F -
6 F —
7 F -
8 F -
9 F -
10 F =
11 F —
12 F -

58

60

Connected components demo

To visit a vertex v:
e Mark vertex v.
« Recursively visit all unmarked vertices adjacent to v.

\ marked[] id[]
0 T 0
1 T 0
2 T 0
3 T 0
4 T 0
5 T 0
6 T 0
7 T 1
8 T 1
9 T 2
10 T 2
11 T 2
12 T 2
done
61
Finding connected components with DFS (continued)

public int count() _

{ return Count; } < number of components

public iint id(int v) <«——+—— id of component containing v

{ return id[v]; }

public boolean connected(int v, int w) L and w connected iff same id

{ return id[v] == id[w]l; }

private void dfs(Graph G, int v)
{
marked[v] = true;
id[v] = count; «—
for (int w : G.adj(v))
if (!marked[w])
dfs(G, w);

all vertices discovered in
same call of dfs have same id

63

Finding connected components with DFS

public class CC

{
private boolean[] marked;
private int[] id; <«——+—— id[v] = id of component containing v
private int count; <«———F—— number of components
public CC(Graph G)
{
marked = new boolean[G.V()];
id = new int[G.VQ];
for (int v =0; v < G.VO; v++)
{

if (!'marked[v])

{ B run DFS from one vertex in
dfs(G, v); - each component
count++;

}

}
}

public int count()
public int id(int v)
public boolean connected(int v, int w)
private void dfs(Graph G, int v)

<«——F—— see nextslide

Connected components application: study spread of STDs

> P o
g~ W1 .Sfx?(‘/ : " \:\:%':‘_'%_' b
3 %, 2
T34 }}j NS
> B
-~ 7 o A2,
"/’ ,*—7" oy

\.
\ 3
5 oty & Male
—— Female

Relationship graph at "Jefferson High"

Peter Bearman, James Moody, and Katherine Stovel. Chains of affection: The structure of adolescent
romantic and sexual networks. American Journal of Sociology, 110(1): 44-99, 2004.

62

64

Connected components application: particle detection

Particle detection. Given grayscale image of particles, identify "blobs."
« Vertex: pixel.
o Edge: between two adjacent pixels with grayscale value = 70.

« Blob: connected component of 20-30 pixels. ek — o
ack =

whit = 255 4.1 UNDIRECTED GRAPHS

N N Algorithms
L[]

ROBERT SEDGEWICK | KEVIN WAYNE
http://algs4.cs.princeton.edu > Chal/enges
Particle tracking. Track moving particles over time.
65
Graph-processing challenge 1 Graph-processing challenge 2
Problem. Is a graph bipartite? Problem. Find a cycle in a graph (if one exists).
(0 0-1 (0
0-2
0-5
@) (2) 19 o ORORO
How difficult? e e b How difficult?
2-3 3)
A. Any programmer could do it. e i:: A. Any programmer could do it. e
v B. Typical diligent algorithms student could do it. 4o v B. Typical diligent algorithms student could do it. 0-5-4-6-0
C. Hire an expert. \ C. Hire an expert. \
simple DFS-based solution - simple DFS-based solution
D. Intractable. (see textbook) } D. Intractable. (see textbook)
E. No one knows.) E. No one knows.

A DNNREOOOO
|
v WwWwwo i N

67

A BDANNRLROOOO

SO U AW WO VT R

Graph-processing challenge 3 Graph-processing challenge 4

Problem. Is there a (general) cycle that uses every edge exactly once? Problem. Is there a cycle that contains every vertex exactly once?

How difficult? How difficult?

A. Any programmer could do it. A. Any programmer could do it.

v B. Typical diligent algorithms student could do it.
'\ 0-1-2-3-4-2-0-6-4-5-0

B. Typical diligent algorithms student could do it.

A DA WNNRE OOOO
I
OOV A DM WNO UVINPRE

GRS ERRING RO, N

C. Hire an expert. Hire an expert.

yes if and only if graph is connected

C
D. Intractable. and every vertex has even degree V' D. Intractable. —__
E

(Leonhard Euler 1786) Hamilton cycle

E. No one knows. No one knows. (classical NP-complete problem)

moreover, if graph is Eulerian,
can find a Euler cycle via DFS

69

Graph-processing challenge 5 Graph-processing challenge 6

A D WWNROOOO
OO uviui AOONO LN R

Problem. Are two graphs identical except for vertex names? Problem. Can you draw a graph in the plane with no crossing edges?

try it yourself at http://planarity.net

How difficult?

(3—*»)
A. Any programmer could do it. e,

Typical diligent algorithms student could do it. B. Typical diligent algorithms student could do it.

How difficult?

A. Any programmer could do it.

A DA WWOOOO
[
S uviui A OYUT N R

Hire an expert. e Hire an expert. 0

Intractable. a

No one knows. e eﬂ
N\ \/ =

graph isomorphism is
longstanding open problem

linear-time DFS-based planarity algorithm e e e
discovered by Tarjan in 1970s

(too complicated for most practitioners)

m o N W

C
D. Intractable. \
E

No one knows.

VU WNRROOO
1
[30 N TR Y. SV RN

0<4, 1«3, 2<2, 3<6, 4<5, 5<0, 6<1

71

A DA wWWOOOO
SO vl O UT N

Graph traversal summary

BFS and DFS enables efficient solution of many (but not all) graph problems.

v v E+V

s-t path
shortest s-t path v E+V
cycle v v E+V
Euler cycle v E+V
Hamilton cycle 91.657V
bipartiteness (odd cycle) v (%4 E+V
connected components v v E+V
biconnected components v E+V
planarity v E+V

graph isomorphism 9cvViogV

