A 1 g O I‘ 1 th m S ROBERT SEDGEWICK | KEVIN WAYNE

Two classic sorting algorithms: mergesort and quicksort

Critical components in the world’s computational infrastructure.
 Full scientific understanding of their properties has enabled us
to develop them into practical system sorts.
« Quicksort honored as one of top 10 algorithms of 20th century

2.3 QUICKSORT in science and engineering.

> quic/(sorf Mergesort. [last lecture]

b selecti n
b :/;;;::e keys F—g’ ‘Q% @ P @ JS (—i

» system sorts

Algorithms

OURTH EDITION

Quicksort. [this lecture]

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

INI

& ;5 4 oo

IS
i1

S,
<

Quicksort t-shirt

|
3 H
,{:ubli: static void quicksort(char{] items, int left, int right) I A ' 2 ° 3 Q U I C KS o RT

inti, i

charx, y;
i = left; j = right;

= h-ms[(loﬁ“’-:-;righﬂ /2); i > q U i C/(SOI’ 1

do

{
while ((itemsfi] < x) && (i < right)) i++; {
i while ((x < items(j]) && (j > left)) j--; ’
Wi<=j) o
-] fil ¥4 .
y = itemsli); i
2 | Algorithms
items[j] = y;
ity
}

} while (i <= j);

E((!nh < i quic!:son[items, left, j);

if (i < right) quicksort(items, i, right); . . . :
} ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

Quicksort

Basic plan.
« Shuffle the array.
« Partition so that, for some j
— entry a[j] is in place
- no larger entry to the left of j
— no smaller entry to the right of j
« Sort each subarray recursively.

imput Q U I C K S O R T E X A
shufle K AT E L E P UTIMNAQ
partitioning item

parttion. E C A I E K L P U T M Q R X 0 S
~ el

N =
0
—

not greater not less
sortleft A C E E I

sort right
resut A C E E I K

-
= =
o O
0 T
o 0

Tony Hoare

« Invented quicksort to translate Russian into English.
[but couldn't explain his algorithm or implement it!]

« Learned Algol 60 (and recursion).

« Implemented quicksort.

Tony Hoare
1980 Turing Award

“ There are two ways of constructing a software design: One way is
to make it so simple that there are obviously no deficiencies, and
the other way is to make it so complicated that there are no obvious

deficiencies. The first method is far more difficult. ”

“I call it my billion-dollar mistake. It was the invention of the null
reference in 1965... This has led to innumerable errors,
vulnerabilities, and system crashes, which have probably caused

a billion dollars of pain and damage in the last forty years. ”

Tony Hoare

« Invented quicksort to translate Russian into English.
[but couldn't explain his algorithm or implement it!]

« Learned Algol 60 (and recursion).

« Implemented quicksort.

Tony Hoare
1980 Turing Award

ALGORITHM 64

QUICKSORT

C. A. R. Hosre

Tlliott Brothers Ltd., Borehamwood, Hertfordshire, Eng.

procedure quicksort (A,M,N); value M,N;
array A; integer M,N;

comment Quicksort is a very fasi and convenient method of

sorting an array in the random-access store of a computer. The

entire contents of the store may be sorted, since no extra space is

required. The average number of comparisons made is 2(M—N) In

(N—M), and the average number of exchanges is one sixth this

amount. Suitable refinements of this method will be desirable for

its impl ation on any actual ter

begin integer 1,J;

if M < N then begin partition (A,M,N,LI);

quicksort (A,M,J);
quicksort (A, T, N)

end
end quicksort

Communications of the ACM (July 1961)

Bob Sedgewick

» Refined and popularized quicksort.
« Analyzed many versions of quicksort.

Bob Sedgewick

Programming S. L. Graham, R. L. Rivest
Techniques Editors
Implementing
Acta Inf tica 7, 327—355 (1977
Quicksort Programs vy Sprmgerverog 177

Robert Sedgewick
Brown University

The Analysis of Quicksort Programs*

This paper is a practical study of how to implement

the Quicksort sorting algorithm and its best variants on Robert Sedgewick

real computers, including how to apply various code
imizati hni A detailed i i

the most p to
Quicksort is given, along with a discussion of how to
il itin 1 Analytic results

describing the performance of the programs are
summarized. A variety of special situations are
considered from a practical standpoint to illustrate
Quicksort’s wide applicability as an internal sorting
method which requires negligible extra storage.

Key Words and Phrases: Quicksort, analysis of
algorithms, code optimization, sorting

CR Categories: 4.0, 4.6, 5.25, 5.31, 5.5

Received January 19, 1976

Summary. The Quicksort sorting algorithm and its best variants are presented
and analyzed. Results are derived which make it possible to obtain exact formulas de-
scribing the total expected running time of particular implementations on real com-
puters of Quicksort and an improvement called the median-of-three modification.
Detailed analysis of the effect of an implementation technique called loop unwrapping
is presented. The paper isintended not only to present results of direct practical utility,
but also to illustrate the intriguing mathematics which arises in the complete analysis
of this important algorithm.

Quicksort partitioning demo

Repeat until i and j pointers cross.

« Scan i from left to right so long as (a[i] < a[lo]).

« Scan j from right to left so long as (a[j] > a[lo]).

« Exchange a[i] with a[j].

The music of quicksort partitioning (by Brad Lyon)

These
are
the

values

to
sort

New New (Small) Increasing Decreasing
Next Step Do Auto
We swapped the elements We swapped the elements
(if we're not done) and (if we're not done) and
prepare to start moving now the upper index will
‘up' again wait while the bottom one

starts moving 'up' again

https://googledrive.com/host/0B2GQktu-wcTicjRaRjVINmMRFN1U/index.html

Quicksort partitioning demo

Repeat until i and j pointers cross.
« Scan i from left to right so long as (a[i] < a[lo]).
« Scan j from right to left so long as (a[j] > a[lo]).
» Exchange a[i] with a[j].

When pointers cross.
« Exchange a[1o] with a[j].

partitioned!

Quicksort: Java code for partitioning

private static int partition(Comparable[] a, int 1o, int hi)
{

int i = lo, j = hi+l;

while (true)

{
Whi-!e (-! ess(a|;++1'] » allol)) find item on left to swap
if (i == hi) break;
while (less(a[lo], a[--j1)) find item on right to swap
if (j == To) break;
if (i >= j) break; check if pointers cross
exch(a, i, j); swap
1
exch(a, 1o, j); swap with partitioning item
return j; return index of item now known to be in place

before |v during VI =V ‘ =v after =V ‘V‘ =V

f f 1 f t t
To hi i 3 To j

Quicksort quiz 1 Quicksort: Java implementation

Q. How many compares (in the worst case) to partition an array of length N?

public class Quick
A. ~UN {
private static int partition(Comparable[] a, int To, int hi)
B. ~»BN { /* see previous slide */ }
C. ~N public static void sort(Comparable[] a)
{
. shuffle needed for
D. ~NIgN z;ilz?;dogl.st:\lu?:l:iﬁ)i N performance guarantee
, U, a.) (stay tuned)
E. Idon't know. ¥
private static void sort(Comparable[] a, int 1o, int hi)
{
if (hi <= 1o0) return;
int j = partition(a, lo, hi);
sort(a, lo, j-1);
sort(a, j+1, hi);
}
}
13 14
Quicksort trace Quicksort animation

50 random items

lo j hi 0 1 2 3 4 5 6 7 8 91011 12 13 14 15
initial values Q UICKSORTEIXA AMPTLE
random shuffle K R ATELEPUTIMMAOQTCX 0 S
0 5 15 E CA I E KL PUTMOQRX 0 S
0 3 4 E C A E I
0o 2 2 A C E
0 0 1 A C
C
I
N /////’6 6 15 L PUTMOQR X 0 S
1o partition 7 9 15 M O P T Q R X U S
for sul{armys 7 7 8 M 0
ofsize] T~ 0
10 13 15 S Q R T U X
10 12 12 R Q S
10 11 11 Q R
Q
14 14 15 u X
X
A algorithm position
result A CE EI KL MOWPAQR S TUX s in order
Quicksort trace (array contents after each partition) | || I " E— current subarray
s not in order

http://www.sorting-algorithms.com/quick-sort

Quicksort: implementation details Quicksort: empirical analysis (1961)

Partitioning in-place. Using an extra array makes partitioning easier Running time estimates:
(and stable), but is not worth the cost. « Algol 60 implementation.
« National-Elliott 405 computer.
Terminating the loop. Testing whether the pointers cross is trickier
than it might seem.

Table 1
Equal keys. When duplicates are present, it is (counter-intuitively) NUMBER OF ITEMS MERGE SORT QUICKSORT
better to stop scans on keys equal to the partitioning item's key. «— stay tuned 500 2 min 8 sec | min 21 sec
1,000 L4 min 48 sec. 3 min 8 sec
Preserving randomness. Shuffling is needed for performance guarantee. é:ggg | I? $:2 1(5)222: | 22::2 43 :ZE
Equivalent alternative. Pick a random partitioning item in each subarray.

* These figures were computed by formula, since they cannot
be achieved on the 405 owing to limited store size.

Elliott 405 magnetic disc

sorting N 6-word items with 1-word keys
(16K words)

Quicksort: empirical analysis Quicksort: best-case analysis
Running time estimates: Best case. Number of compares is ~Nlg N.
+ Home PC executes 108 compares/second.
» Supercomputer executes 10'2 compares/second. al]
lo j hi 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
initial values H A C B F E G D L | J M O
randomshufle H A C B F E G D L | J M O
insertion sort (N2) mergesort (N log N) quicksort (N log N) 0 7 14 D A C B F E G H L | J M O
0 3 6 B A CDF E G
e e e
A
home instant 2.8 hours 317 years instant 1 second 18 min instant 0.6 sec 12 min C
4 5 6 E F G
super instant 1 second 1 week instant instant instant instant instant instant E
G
8 11 14 J | L NMO
9 10 [
|
K
12 13 14 M N O
Lesson 1. Good algorithms are better than supercomputers.) o

Lesson 2. Great algorithms are better than good ones. ABCDETFGHI J KLMNDO

Quicksort: worst-case analysis

Worst case. Number of compares is ~ 5 N2.

k=3

lo j hi 0 1 2 3 4 5 6 7 8 9 1011 12 13 14
initial values A B CDEF GH I J KL MNDO
randomshufle A°- B C D E F G H | J K L M N O
0 0 14 A B CDEF GH I J K L MNDO
1 1 14 B CDEFGH I J KL MNDO
2 2 14 C bDEFGH 1 J KL MNDO
3 3 14 D EF GH I J KL MNDO
4 4 14 EF GH I J K L MNDO
5 5 14 F GH I J K L MNDO
6 6 14 GH 1 J KL MNDO
7 7 14 H I J K L M N O
8 8 14 I J K L M N O
9 9 14 J K L M NO
10 10 14 K L M N O
11 11 14 L M N O
12 12 14 M N O
13 13 14 N O
(0]
A B CDUEF GH I J KL MNDO
Quicksort: average-case analysis
» Repeatedly apply previous equation:
Cy On_a 2
N+1 N + N+1
_ Cn-o 2 2 . . .
= N_1 + N + Ni—i-l <«—— substitute previous equation
= CN_3 + 2 + 3 + L
N -2 N -1 N N+1
2 2 2 2
S 3tats Tt N
« Approximate sum by an integral:
1 1 1 1
Cn = 2(N+1) (3+4+5+...N+1>

N+1
~ 2(N+1)/ —dx
3 €T

 Finally, the desired result:

Cny ~2(N+1)InN =~ 1.39NIgN

21

28]

Quicksort: average-case analysis

Proposition. The average number of compares C, to quicksort an array of
N distinct keys is ~2N In N (and the number of exchanges is ~ % NIn N).

Pf. C, satisfies the recurrence C,=C,=0 and for N > 2:

partitioning left rifht
\ Co+C C, +C C C
Ov= W41+ (O+NN_1> + (1+NN‘2> M- (N—}V+0>

partitioning probability

e Multiply both sides by N and collect terms:

NCy = N(N-i—l) + 2(00 + Cy + ... +CN71)

» Subtract from this equation the same equation for N - 1:

NCy — (N=1)Cy_1 =2N + 2Cn_;

e Rearrange terms and divide by N (N + 1):

Cn _CN_1+ 2
N+1 N N+1

22

Quicksort: summary of performance characteristics

Quicksort is a (Las Vegas) randomized algorithm.
« Guaranteed to be correct.
« Running time depends on random shuffle.

Average case. Expected number of compares is ~1.39 NlgN.
« 39% more compares than mergesort.
« Faster than mergesort in practice because of less data movement.

Best case. Number of compares is ~ Nlg N.
Worst case. Number of compares is ~ 14 N2.
[but more likely that lightning bolt strikes computer during execution]

24

Quicksort properties Quicksort: practical improvements

Proposition. Quicksort is an in-place sorting algorithm. Insertion sort small subarrays.
Pf. « Even quicksort has too much overhead for tiny subarrays.
« Partitioning: constant extra space. o Cutoff to insertion sort for = 10 items.

» Depth of recursion: logarithmic extra space (with high probability).

AN

can guarantee logarithmic depth by recurring
on smaller subarray before larger subarray
(requires using an explicit stack)

Proposition. Quicksort is not stable.
private static void sort(Comparable[] a, int To, int hi)

Pf. [by counterexample] {

i j 0 ! 2 3 if (hi <= 1o + CUTOFF - 1)

B; C C> Al Insertion.sort(a, lo, hi);

return;
1 3 B G A }
int j = partition(a, lo, hi);

1 3 By Al G sort(a, lo, j-1);
0 1 A B C G) sort(a, j+l, hi);

25

Quicksort: practical improvements

Median of sample.
» Best choice of pivot item = median.
» Estimate true median by taking median of sample.
« Median-of-3 (random) items.

2.3 QUICKSORT

~ 12/7 N In N compares (14% fewer)

~ 12/35 N In N exchanges (3% more)

» selection

private static void sort(Comparable[] a, int lo, int hi)

: Algorithms

if (hi <= 10) return;

int median = medianOf3(a, lo, 1o + ¢hi - 10)/2, hi);

. ROBERT SEDGEWICK | KEVIN WAYNE
swap(a, lo, median);

http://algs4.cs.princeton.edu
int j = partition(a, lo, hi);
sort(a, lo, j-1);
sort(a, j+1, hi);

27

Selection

Goal. Given an array of N items, find the k& smallest item.

Ex. Min (k=0), max (k=N -1), median (k=N/2).

Applications.
« Order statistics.
e Find the "top %."

Use theory as a guide.
e Easy Nlog N upper bound. How?
« Easy N upper bound for k=1, 2,3. How?
« Easy N lower bound. Why?

Which is true?
o NlOg N lower bound? <«—— s selection as hard as sorting?

* N upper bound? <«——— is there a linear-time algorithm?

Quick-select: mathematical analysis

Proposition. Quick-select takes linear time on average.

Pf sketch.

« Intuitively, each partitioning step splits array approximately in half:

N+N/2+N/4+...+1 ~ 2N compares.
« Formal analysis similar to quicksort analysis yields:

Cy = 2N +2kIn(N/K) +2(N—K)In(N/(N— k)

* Ex: 2+2In2)N = 3.38 N compares to find median k= N/2.

Quick-select

Partition array so that:
« Entry a[j] is in place. @
« No larger entry to the left of j.
« No smaller entry to the right of j.

Repeat in one subarray, depending on j; finished when j equals k.

public static Comparable select(Comparable[] a, int k)

{ if a[k] is here if a[k] is here
StdRandom. shuffle(a); set hi to j-1 set 10 to j+1

int 1o = 0, hi = a.length - 1;

while Chi > 1o) \\ f/
{

int j = partition(a, lo, hi);

. . . =v |v| =v
if (G <k lo=3j+ 1; " N
else if (3 > k) hi = j - 1; To i hi
else return al[k];

}

return al[k];

}
29 30

Theoretical context for selection

Proposition. [Blum, Floyd, Pratt, Rivest, Tarjan, 1973] Compare-based
selection algorithm whose worst-case running time is linear.

Time Bounds for Selection

by .

Manuel Blum, Robert W. Floyd, Vaughan Pratt,
Ronald L. Rivest, and Robert E. Tarjan

Abstract

The number of comparisons required to select the i-th smallest of
n numbers is shown to be at most a linear function of n by analysis of
a new selection algorithm -- PICK. Specifically, no more than

5.4305 n comparisons are ever required. This bound is improved for

Remark. Constants are high = not used in practice.

Use theory as a guide.
« Still worthwhile to seek practical linear-time (worst-case) algorithm.
« Until one is discovered, use quick-select if you don’t need a full sort.

31 22

2.3 QUICKSORT

Algorithms » duplicate keys

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

Duplicate keys: stop on equal keys

Our partitioning subroutine stops both scans on equal keys.

scan until > P scan until < P

> —

n G E P A Q B P Y C O U P Z S R

Q. Why not continue scans on equal keys?

scan until > P scan until <P

35

Duplicate keys

Often, purpose of sort is to bring items with equal keys together.
« Sort population by age.
« Remove duplicates from mailing list.
« Sort job applicants by college attended.

Chicago 09:25:52

Typical characteristics of such applications. Chicago 09:03:13
Chicago 09:21:05

« Huge array. Chicago 09:19:46
Chicago 09:19:32

« Small number of key values. Chicago 09:00:00

Chicago 09:35:21
Chicago 09:00:59
Houston 09:01:10
Houston 09:00:13
Phoenix 09:37:44
Phoenix 09:00:03
Phoenix 09:14:25
Seattle 09:10:25
Seattle 09:36:14
Seattle 09:22:43
Seattle 09:10:11
Seattle 09:22:54

|

key

Quicksort quiz 2

What is the result of partitioning the following array (skip over equal keys)?

scan until > A scan until < A
> <4+—]

A A A A A A A A A A A A A A A
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

D. I don't know.

34

36

Quicksort quiz 3

What is the result of partitioning the following array (stop on equal keys)?

scan until = A scan until < A
> 4+

A A A A A A A A A A A A A A A
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

D. I don't know.

37

Duplicate keys: partitioning strategies

Bad. Don't stop scans on equal keys.
[~% N? compares when all keys equal]

BAABABBBCCC AAAAAAAAAAA

Good. Stop scans on equal keys.
[~Nlg N compares when all keys equal]

BAABABCCBCSB AAAAAAAAAAA

Better. Put all equal keys in place. How?
[~N compares when all keys equal]

AAABBBBBCCC AAAAAAAAAAA

39

Partitioning an array with all equal keys

a[]

i J 0 1 2 3 4 5 6 7 8 9 1011 12 13 14 15
AAAAAAAAAAAAAAAA
1 15 A A
1 15 A A
2 14 A A
2 14 A A
3 13 A A
3 13 A A
4 12 A A
4 12 A A
5 11 A A
5 11 A A
6 10 A A
6 10 A A
7 9 A A
7 9 A A
8 A A
8 A AAAAAAAAAAAAAAA

38

DUTCH NATIONAL FLAG PROBLEM

Problem. [Edsger Dijkstra] Given an array of N buckets, each containing a
red, white, or blue pebble, sort them by color.

- [l W 1—4
o | NI] et

Operations allowed.
* swap(i,j): swap the pebble in bucket i with the pebble in bucket ;.
* color(i): color of pebble in bucket i.

Requirements.
» Exactly N calls to color().
* At most N calls to swap().
« Constant extra space.

40

3-way partitioning

Goal. Partition array into three parts so that:
» Entries between 1t and gt equal to the partition item.
« No larger entries to left of 1t.
» No smaller entries to right of gt.

before |V| | |
t t

lo hi

after | <V | =v >V |

t i 4 t

To 1t gt hi

Dutch national flag problem. [Edsger Dijkstra]
« Conventional wisdom until mid 1990s: not worth doing.
» Now incorporated into C library gsort() and Java 6 system sort.

41

Dijkstra 3-way partitioning demo

« Let v be partitioning item a[lo].

« Scan i from left to right.
— (a[i] < v): exchange a[1t] with a[i]; increment both 1t and i
— (a[i] > v): exchange a[gt] with a[i]; decrement gt
— (a[i] == v): increment i

It gt
¥ ¥

invariant

| <v |=v | >V
t 4 i
1t i gt

43

Dijkstra 3-way partitioning demo

« Let v be partitioning item a[10].

« Scan i from left to right.
— (a[i]l < v): exchange a[1t] with a[i]; increment both 1t and i
— (a[i] > v): exchange a[gt] with a[i]; decrement gt
— (a[i] == v): increment i

It i gt

2 v

n A B X W P P \% P D P C Y Z

0)

lo hi
invariant

@ [=] v
4 4 t
1t i

42

Dijkstra's 3-way partitioning: trace

v a[]

Tt i gt \ 0 1 2 3 456 7 8 91011
0 0 11 R B W W R W B R R W B R
0 1 11 R. B R
1 2 11 R W R
1 2 10 R R B
1 3 10 R W B
1 3 9 R B W
2 4 9 R R W
2 5 9 R W W
2 5 8 R W R
2 5 7 R R R
2 6 7 R B R
3 7 7 R R
3 8 7 R R W
3 8 7 B B B R R R R R W WW W
3-way partitioning trace (array contents after each loop iteration)

44

3-way quicksort: Java implementation

private static void sort(Comparable[] a, int Tlo, int hi)
{

if (hi <= 10) return;

int 1t = lo, gt = hi;

Comparable v = a[lo];

int i = lo;

while (i <= gt)

{
int cmp = a[i].compareTo(Vv);
if (cmp < 0) exch(a, Tt++, i++);
else if (cmp > 0) exch(a, i, gt--);
else 4+
}
before |V| | |
sort(a, lo, 1t - 1); " \
sort(a, gt + 1, hi); duing [<v [=V | [>v |
} P }
1t i gt
after | <V | =V | >V |
t 4 4 t
To 1t gt hi

45

Duplicate keys: lower bound

Sorting lower bound. If there are n distinct keys and the i one occurs
x; times, any compare-based sorting algorithm must use at least

| n)
I <Lx‘> ~ —inlg% «— NlgN when all distinct;

|
Ty: Ta: n 5=l linear when only a constant number of distinct keys

compares in the worst case.

proportional to lower bound

Proposition. [Sedgewick-Bentley 1997]
Quicksort with 3-way partitioning is entropy-optimal.
Pf. [beyond scope of course]

Bottom line. Quicksort with 3-way partitioning reduces running time
from linearithmic to linear in broad class of applications.

47

3-way quicksort: visual trace

I il
equal to partitioning element

Rl T ECECECEEEEpe
m..mm||||||||||||||||||||||IIIIIIIIIIII|||||||||||||||||||||||||||""""""""""""""

46

Sorting summary

inplace? | stable? best average worst remarks
v

selection B IN2 BLIN2 L N2 N exchanges

use for small N

insertion v v N VN2 WBLIN?2 ,
or partially ordered
tight code;
2 32
shell v Nlogs N ! cN subquadratic
merge v “NIgN NIgN NlgN Nlog I\S’till;?erantee;

improves mergesort

ti t
imsor v N NlgN NlgN when preexisting order

Nlog N probabilistic guarantee;

quick v NigN 2NInN %N2 : :
fastest in practice

improves quicksort

. . k 1 2
3-way quic v N 2NInN LN when duplicate keys

v v N NlgN NlgN holy sorting grail

48

Sorting applications

Sorting algorithms are essential in a broad variety of applications:
« Sort a list of names.
« Organize an MP3 library. s splieos
« Display Google PageRank results.

2.3 QUICKSORT « List RSS feed in reverse chronological order.

e Find the median.

problems become easy once items

« |dentify statistical outliers. :
are in sorted order

« Binary search in a database.

AlgOI‘itth « Find duplicates in a mailing list.
» system sorts

« Data compression.

ROBERT SEDGEWICK | KEVIN WAYNE

« Computer graphics.

http://algs4.cs.princeton.edu non-obvious applications

« Computational biology.
» Load balancing on a parallel computer.

50

War story (system sort in C) War story (system sort in C)

A beautiful bug report. [Allan Wilks and Rick Becker, 1991] Bug. A gsort() call that should have taken seconds was taking minutes.

We found that gsort is unbearably slow on "organ-pipe" inputs Tike "01233210":
Why is gqsort() so sIowD

main (int argc, char**argv) {
int n = atoi(argv[1l]), i, x[100000];
for (i = 0; i < n; i++)
x[i] = i;
for (; i < 2*n; i++)
x[1] = 2*n-i-1;
gsort(x, 2*n, sizeof(int), intcmp);

}
At the time, almost all gsort() implementations based on those in:
Here are the timings on our machine: + Version 7 Unix (1979): quadratic time to sort organ-pipe arrays.
$ time a.out 2000 _ o
real 5.85s « BSD Unix (1983): quadratic time to sort random arrays of Os and 1s.

$ time a.out 4000
real 21.64s
$time a.out 8000
real 85.11s

51 52

Engineering a system sort (in 1993) A beautiful mailing list post (Yaroslavskiy, September 2009)

Bentley-Mcllroy quicksort.

. ; samples 9 items Replacement of quicksort in java.util.Arrays with new dual-pivot quicksort
« Cutoff to insertion sort for small subarrays. /
« Partitioning item: median of 3 or Tukey's ninther. Hello AT1,
. Partitioning scheme: Bent|ey-MCI|r0y 3-Way partitioning_ I'd 1ike to share with you new Dual-Pivot Quicksort which is faster than the
\ known implementations (theoretically and experimental). I'd like to propose
to replace the JDK's Quicksort implementation by new one.

similar to Dijkstra 3-way partitioning
(but fewer exchanges when not many equal keys)

The new Dual-Pivot Quicksort uses *two* pivots elements in this manner:
Engineering a Sort Function
1. Pick an elements P1, P2, called pivots from the array.
JON L. BENTLEY 2. Assume that P1 <= P2, otherwise swap it.
A,,&],Beuwbormﬁm60’5‘525%31&;‘3%"@Hi,,vNJ07974VU'SA_ 3. Reorder the array into three parts: those less than the smaller pivot,
those Tlarger than the Targer pivot, and in between are those elements

between (or equal to) the two pivots.

SUMMARY 4. Recursively sort the sub-arrays.
‘We recount the history of a new gsort function for a C library. Our function is clearer, faster and more
robust than existing sorts. It chooses partitioni ! by a new ling scheme; it partitions by a
novel solution to Dijkstra’s Dutch National Flag problem; and it swaps efficiently. Its behavior was
assessed with timing and debugging testbeds, and with a program to certify performance. The design The invariant of the Dual-Pivot QLI'I cksort 1is:

techniques apply in domains beyond sorting.

[<Pl | Pl<=&<=P21} >P2]

Very widely used. C, C++, Java 6,

http://mail.openjdk.java.net/pipermail/core-libs-dev/2009-September/002630.html
53 54

A beautiful mailing list post (Yaroslavskiy-Bloch-Bentley, October 2009) Dual-pivot quicksort

Use two partitioning items p: and p, and partition into three subarrays:
Replacement of quicksort in java.util.Arrays with new dual-pivot quicksort

* Keys less than p;.

Date: Thu, 29 Oct 2009 11:19:39 +0000 . Keys between DI and D
Subject: Replace quicksort in java.util.Arrays with dual-pivot implementation)

» Keys greater than p».
Changeset: b05abb410c52

Author: alanb
Date: 2009-10-29 11:18 +0000
URL: http://hg.openjdk.java.net/jdk7/t1/jdk/rev/b05abb410c52
< p1 p1 > p1 and < p» D2 > 2
6880672: Replace quicksort in java.util.Arrays with dual-pivot implementation
Reviewed-by: jjb 0 0 0 0
Contributed-by: vladimir.yaroslavskiy at sun.com, joshua.bloch at google.com, To 1t gt hi
jbentley at avaya.com
! make/java/java/FILES_java.gmk
! src/share/classes/java/util/Arrays.java
+ src/share/classes/java/util/DualPivotQuicksort.java Recursively sort three subarrays.

http://mail.openjdk.java.net/pipermail /compiler-dev/2009-October.txt

degenerates to Dijkstra's 3-way partitioning

Note. Skip middle subarray if pi = p..

55 56

Dual-pivot partitioning demo Dual-pivot partitioning demo

Initialization. Main loop. Repeat until i and gt pointers cross.
e Choose a[lo] and a[hi] as partitioning items. @ o If (a[i] < a[lol), exchange a[i] with a[1t] and increment 1t and 1.
* Exchange if necessary to ensure a[lo] < a[hi].

« Else if (a[i] > a[hi]), exchange a[i] with a[gt] and decrement gt.
« Else, increment i.

< p1 p1 > p1 and < p ? D2 > Do
t t 1 t 1
lo 1t i

hi

=3
Q
(ad

exchange a[lo] and a[hi]

Dual-pivot partitioning demo Dual-pivot quicksort

Finalize. Use two partitioning items p: and p, and partition into three subarrays:

« Exchange a[l1o] with a[--1t]. * Keys less than p;.

« Exchange a[hi] with a[++gt]. » Keys between p; and p..

» Keys greater than p».

< pi pi = p1 and < p2 D2 > p2 < pi p1 > p1 and < p» P2 > ;2
t t t t t t 1
To 1t gt hi 1o 1t gt hi

t t t t
lo It gt hi

Now widely used. Java 7, Python unstable sort, Android, ...

3-way partitioned

60

Three-pivot quicksort

Use three partitioning items pi, p2, and p3 and partition into four subarrays:
* Keys less than p;.
* Keys between p; and po.
* Keys between p; and ps.
» Keys greater than ps.

< pi Pi > p1 and < p» P2 > p2 and < p3 p3 > p3
0 0 0 0 0
lo al a2 a3 hi

Multi-Pivot Quicksort: Theory and Experiments

Shrinu Kushagra Alejandro Lopez-Ortiz J. Tan Munro
skushagr@uwaterloo.ca alopez-o@uwaterloo.ca imunroQuwaterloo.ca
University of Waterloo University of Waterloo University of Waterloo

Aurick Qiao
a2qiao@uwaterloo.ca
University of Waterloo

61

Quicksort quiz 4

Why do 2-pivot (and 3-pivot) quicksort perform better than 1-pivot?
A. Fewer-compares.
entries scanned is a good proxy

for cache performance when
comparing quicksort variants

B. Fewer-exchanges.

C. Fewer cache misses.

partitioning compares exchanges entries scanned

1-pivot 2NInN 0333 NInN 2NInN

median-of-3 1.714NIn N 0343 NIn N 1.714N1In N
2-pivot 19NInN 0.6NInN AONInN
3-pivot 1.846 NIn N 0.616 NIn N 1385N1In N

Reference: Analysis of Pivot Sampling in Dual-Pivot Quicksort by Wild-Nebel-Martinez

Bottom line. Caching can have a significant impact on performance.

N

beyond scope of this course 63

Quicksort quiz 4

Why do 2-pivot (and 3-pivot) quicksort perform better than 1-pivot?
A. Fewer compares.
B. Fewer exchanges.
C. Fewer cache misses.
D

. I don't know.

62

Which sorting algorithm to use?

Many sorting algorithms to choose from:

elementary sorts insertion sort, selection sort, bubblesort, shaker sort, ...
subquadratic sorts quicksort, mergesort, heapsort, shellsort, samplesort, ...

system sorts dual-pivot quicksort, timsort, introsort, ...
external sorts Poly-phase mergesort, cascade-merge, psort,
radix sorts MSD, LSD, 3-way radix quicksort, ...

parallel sorts bitonic sort, odd-even sort, smooth sort, GPUsort, ...

64

Which sorting algorithm to use?

Applications have diverse attributes.

O

Stable?

Parallel?

In-place?

Deterministic?

Duplicate keys?

Multiple key types?
Linked list or arrays?
Large or small items?
Randomly-ordered array?
Guaranteed performance?

Is the system sort good enough?
Usually.

Ineffective sorts

attributes
1 2 3 4
algorithm A e .
B ° °
c . °
D °
E L)
F . . .
G e
° ° °
o o .
.
K e °

many more combinations of

attributes than algorithms

INEFFECTIVE SORTS

DEFINE. HALPHEARTEDMERGESORT (LiST):
IF LENGH(LIoT) < 2:
RETORN LST
PIOT = INT (LENGTH(LIST) / 2)
A= MWM(USFE:MJ;
B = HALFHEARTEDMERGE SORT (LiST [PWOT:]
/1 oMMMMM
RETURN[A, B] // HERE. SORRY.

DEFINE FRSTBOGOSORT(LIST):

// AN OPTM\ZED BOGOSORT
// RUNS IN O(N LoGN)
FOR N FROM 1. TO LOG(LENGTH(LIST)):
SHUFFLE(LIST):
IF I5S0RTED (LIST):
REORN LiST
RETURN “KERNEL PRGE FRULT (ERROR CODE: 2)°

DEFNE JOBINTERAEW QUICKSORT (LIST):
0K 50 YOU CHOOSE A PVOT
THEN DIVIDE THE LIST IN HALF
FOR EACH HALF:
(HECX To SEE IF 1T SORED
NO,UAIT ITDOESN'T MATTER
COMPRARE EACH ELEMENT To THE PNVOT
THE BIGER ONES GO IN ANEJS LIST
THE EUAL ONES GO INTO, UH
THE SECOND LIST FROM BEFORE
HANG ON, LET ME NAME THE USTS
THIS IS UST A
THE NEW ONE 15 LIST B
PUT THE BIG ONES INTO LST B
NOW TAKE THE SECOND LIST
CALL IT LisT; UH, AZ
WHICH ONE WRS THE PIVOT IN?
SCRATCH AL THAT
ITJUST RECURSMELY CAUS SELF
ONTIL BOTH UST5 ARE EMPTY
RIGHT?
NOT EMPTY, BUT YOU KNOW WHAT T MEAN
AM I ALLOWED T USE THE STANDARD LIBRARIES?

DEFINE PANICSORT(UST):

IF [SSORTED (LiST):
RERN LiST
FOR N FROM 1 To 10000:
PIVOT =RANDOM (0, LENGTH(L1ST))
LT = UST [PvoT: 1+ LIST:PIvOT]
IF 1550RTED(UST):
RETURN LiST
IF ISSORTED(LIST):
RETURN UST:
IF 1SS0RTED(LIST): //THIS CAN'T BE HAPPENING
RETORN LIST
IF ISSORTED (L1ST): // COME ON COME ON
REURN UST
/| OH JEEZ
// TV GONNA BE IN 50 MUCH TROUBLE
ust=L1]
SYSTEM (“SHUTDOWN -H +5™)
SYSTEM (“RM -RF /")
SYSTEM ("RM -RF ~/#")
SYSTEM("RM -RF /")
SYSTEM('RD /5 /Q C:**) //PORTABILITY
RETORN [1,2, 3,4,5]

http://xkcd.com /1185

65

67

System sort in Java 7

Arrays.sort().
« Has method for objects that are ComparabTe.
« Has overloaded method for each primitive type.

» Has overloaded method for use with a Comparator.

» Has overloaded methods for sorting subarrays.

Algorithms.
» Dual-pivot quicksort for primitive types.
« Timsort for reference types.

€

<> Java

—

Q. Why use different algorithms for primitive and reference types?

66

