AlgOI‘itth ROBERT SEDGEWICK | KEVIN WAYNE

1.4 ANALYSIS OF ALGORITHMS

» introduction

» observations

» mathematical models

» order-of-growth classifications

» memory

RoOBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

http://algs4.cs.princeton.edu
http://algs4.cs.princeton.edu
http://algs4.cs.princeton.edu
http://algs4.cs.princeton.edu

1.4 ANALYSIS OF ALGORITHMS

» introduction

Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

http://algs4.cs.princeton.edu
http://algs4.cs.princeton.edu
http://algs4.cs.princeton.edu
http://algs4.cs.princeton.edu

Cast of characters

Programmer needs to develop
a working solution. <

Student might play

_ / any or all of these
Client wants to solve

roles someday.
problem efficiently. v

Theoretician wants
to understand.

Running time

“As soon as an Analytic Engine exists, it will necessarily guide the future
course of the science. Whenever any result is sought by its aid, the question
will arise—By what course of calculation can these results be arrived at by
the machine in the shortest time? ° — Charles Babbage (1564)

how many times do you
have to turn the crank?

o
°
B
o

b, [3

Analytic Engine

Reasons to analyze algorithms

Predict performance. \

: < this course (COS 226
Compare algorithms. s course { !

Provide guarantees. \

Understand theoretical basis. < theory of algorithms (COS 423)

Primary practical reason: avoid performance bugs.

client gets poor performance because programmer

did not understand performance characteristics

Some algorithmic successes

Discrete Fourier transform.
 Break down waveform of N samples into periodic components.
« Applications: DVD, JPEG, MRI, astrophysics,

e Brute force: N?Z steps. Friedrich Gauss
1805

« FFT algorithm: Nlog N steps, enables new technology.

time

} quadratic
64T —
32T —
16T —)))
linearithmic
8T — -
linear

1 | |
size — 1K 2K 4K 8K

Some algorithmic successes

N-body simulation.
« Simulate gravitational interactions among N bodies.
e Brute force: NZ steps.

e Barnes-Hut algorithm: Nlog N steps, enables new research.
PU '81

time

} quadratic
64T —
32T —
16T —) .)
R linearithmic
8T — .
linear

1 | |
size — 1K 2K 4K 8K

The challenge

Q. Will my program be able to solve a large practical input?

Why is my program so SIOQ Why does it run out of mer@
— |

Insight. [Knuth 1970s] Use scientific method to understand performance.

Scientific method applied to analysis of algorithms

A framework for predicting performance and comparing algorithms.

Scientific method.
« Observe some feature of the natural world.
Hypothesize a model that is consistent with the observations.

Predict events using the hypothesis.
Verify the predictions by making further observations.
Validate by repeating until the hypothesis and observations agree.

Principles.
« Experiments must be reproducible.
« Hypotheses must be falsifiable.

Feature of the natural world. Computer itself.

1.4 ANALYSIS OF ALGORITHMS

» observations

Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

http://algs4.cs.princeton.edu
http://algs4.cs.princeton.edu
http://algs4.cs.princeton.edu
http://algs4.cs.princeton.edu

Example: 3-Sum

3-SuM. Given N distinct integers, how many triples sum to exactly zero?

8
30 -40 -20 -10 40 0 10 5

§ more gints. ot
] 30 -40 10 0

2 30 -20 -10 0
% java ThreeSum 8ints.txt
4 3 -40 40 0 0
4 -10 0 10 0

0

|) .—Q— :—Q
MMWAMWN _ kAl

Context. Deeply related to problems in computational geometry.

11

3-SUM: brute-force algorithm

public class ThreeSum

{

public static int count(int[] a)
{

int N = a.length;

int count = 0;

for (int 1 = 0; 1 < N; i++)

for (int j = 1+1; J < N; Jj++)
for (int k = j+1; k < N; k++)
1f (a[1] + a[j] + al[k] == 0)
count++;
return count;

public static void main(String[] args)

{
In in = new In(args[0]);
int[] a = in.readAl1Ints();
StdOut.printin(count(a));

check each triple

for simplicity, ignore
integer overflow

12

Measuring the running time

Q. How to time a program?
A. Manual.

% java ThreeSum 1Kints.txt

70

tick tick tick

% java ThreeSum 2Kints.txt

528

tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick

% java ThreeSum 4Kints.txt

4039

tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick

13

Measuring the running time

Q. How to time a program?
A. Automatic.

public class Stopwatch (partofstdlib.jar)

Stopwatc h() create a new stopwatch

double elapsedTime() time since creation (in seconds)

public static void main(String[] args)

{
In in = new In(args[0]);
int[] a = in.readAll1Ints(Q);
Stopwatch stopwatch = new Stopwatch();
StdOut.println(ThreeSum.count(a));
double time = stopwatch.elapsedTime();
StdOut.printin("elapsed time " + time);

14

Empirical analysis

Run the program for various input sizes and measure running time.

%

15

Empirical analysis

Run the program for various input sizes and measure running time.

250 0.0
500 0.0
1,000 0.1
2,000 0.8
4,000 6.4
8,000 51.1

16,000 ?

Data analysis

Standard plot. Plot running time T'(N) vs. input size N.

standard plot 5

running time T(N)
w IN
) o

N
o

10

1K 2K 4K 8K
problem size N

Data analysis

Log-log plot. Plot running time T (N) vs. input size N using log-log scale.

log-logplot 5712 —

stmz%ht line
=6 of slope 3 \
i lg(T(N))= blgN +c
iz 3 b=12.999
3.2 ¢ =-33.2103

Ig(T(N))

1.6 -
T(N)= aN?b wherea=2¢

o0
|

3 orders
of magnitude

IK 2K 4K 8K
IlgN

power law

Regression. Fit straight line through data points: aN®. _ slope
Hypothesis. The running time is about 1.006 x 10 10 x N 299 secondSs.

18

Prediction and validation

Hypothesis. The running time is about 1.006 x 10 10 x N 299 secondSs.

N\

"order of growth" of running
time is about N3 [stay tuned]

Predictions.
e 51.0 seconds for N = 8,000.
e 408.1 seconds for N =16,000.

oo

8,000 51.1
8,000 51.0
8,000 51.1
16,000 410.8

validates hypothesis!

19

Doubling hypothesis

Doubling hypothesis. Quick way to estimate b in a power-law relationship.

Run program, doubling the size of the input.

250 0.0 -

T(N) alN®
— 9b
500 0.0 4.8 2.3
1,000 0.1 6.9 2.8
2,000 0.8 7.7 2.9
4,000 6.4 8.0 3.0 «— 19(6.4/0.8)=3.0
8,000 51.1 8.0 3.0

T

seems to converge to a constant b=3

Hypothesis. Running time is about a N? with b =1g ratio.
Caveat. Cannot identify logarithmic factors with doubling hypothesis.

20

Doubling hypothesis

Doubling hypothesis. Quick way to estimate b in a power-law relationship.

Q. How to estimate a (assuming we know b) ?
A. Run the program (for a sufficient large value of N) and solve for a.

8,000 51.1

51.1 = a x 80003
8,000 >1.0 = a = 0.998 x 10 10
8,000 51.1

Hypothesis. Running time is about 0.998 x 10 -1 x N3 seconds.

T

almost identical hypothesis
to one obtained via linear regression

21

Experimental algorithmics

System independent effects.
* Algorithm. } determines exponent b)

in power law

e |Input data.

determines constant a
in power law

System dependent effects.
« Hardware: CPU, memory, cache, ...
o Software: compiler, interpreter, garbage collector, ...

« System: operating system, network, other apps, ...)

Bad news. Difficult to get precise measurements.
Good news. Much easier and cheaper than other sciences.

AN

e.g., can run huge number of experiments

22

1.4 ANALYSIS OF ALGORITHMS

» mathematical models

Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

http://algs4.cs.princeton.edu
http://algs4.cs.princeton.edu
http://algs4.cs.princeton.edu
http://algs4.cs.princeton.edu

Mathematical models for running time

Total running time: sum of cost x frequency for all operations.

« Need to analyze program to determine set of operations.
« Cost depends on machine, compiler.

« Frequency depends on algorithm, input data.

N THE CLASSIC WORK THE CLASSIC WORK
VY NEWLY UPDATED AND REVISED EXTENDED AND REFINED
The Art of The Art of The Art of The Art of
Computer Computer Computer Computer
Programming Programming Programming Programming
VOLI'™M VOLUME 2 VOLUME 4A
I | | Algoritl Seminumerical Algorithms i °C Combinatorial Algorithms
Third Edition Part 1
DONALD E. KNUTH DONALD E. KNUTH DONALD E. KNUTH DONALD E. KNUTH Donald Knuth

1974 Turing Award

In principle, accurate mathematical models are available.

Cost of basic operations

Challenge. How to estimate constants.

operation example nanoseconds f

integer add a+b 2.1
integer multiply a*b 2.4
integer divide a/ b 5.4

floating-point add a+b 4.6
floating-point multiply a*b 4.2
floating-point divide a/ b 13.5

sine Math.sin(theta) 91.3
arctangent Math.atan2(y, x) 129.0

1 Running OS X on Macbook Pro 2.2GHz with 2GB RAM

Cost of basic operations

Observation. Most primitive operations take constant time.

operation example nanoseconds f

variable declaration int a C1
assignment statement a=>b o
integer compare ab C3
array element access ali] Ca
array length a.length Cs
1D array allocation new 1nt[N] ce N
2D array allocation new 1nt[N][N] c7 N2

Caveat. Non-primitive operations often take more than constant time.

\

novice mistake: abusive string concatenation

26

Example: 1-Sum

Q. How many instructions as a function of input size N?

int count = 0;
for (int 1 = 0; 1 < N; 1++)
1if (a[1] == 0)
count++;

N array accesses

variable declaration 2
assignment statement 2
less than compare N+1
equal to compare N
array access N

increment Nto2 N

27

Example: 2-Sum

Q. How many instructions as a function of input size N?

int count = 0;
for (int 1 = 0; 1 < N; 1++)
for (int j = 1+1; j < N; Jj++)
if (ali1] + a[j] == 0)
count++;

0+1+2+...+(N—1)
Pf. [n even]

1 1
O+1+2+...+(N—-1) = 5N2 - 5N

half of half of
square diagonal

28

String theory infinite sum

http://www.nytimes.com/2014/02/04/science/in-the-end-it-all-adds-up-to.html

29

http://r2---sn-8xgp1vo-xfg6.googlevideo.com/videoplayback?mt=1391506171&itag=18&id=c3e23a5d35595f0c&upn=zmAOLkxlBSE&source=youtube&ms=au&mv=m&expire=1391530381&sver=3&ip=96.235.189.157&key=yt5&sparams=id%2Cip%2Cipbits%2Citag%2Cratebypass%2Csource%2Cupn%2Cexpire&fexp=912302%2C923302%2C927860%2C916624%2C936110%2C936910%2C936913&ipbits=0&ratebypass=yes&title=ASTOUNDING%3A+1+%2B+2+%2B+3+%2B+4+%2B+5+%2B+...+%3D+-1%2F12%20%5B360p%5D&signature=EC679565931793C7B5B9FF0F1EBAC0A271642E4B.D4E356867003CFB39D2B20029848BB36B112DF40
http://r2---sn-8xgp1vo-xfg6.googlevideo.com/videoplayback?mt=1391506171&itag=18&id=c3e23a5d35595f0c&upn=zmAOLkxlBSE&source=youtube&ms=au&mv=m&expire=1391530381&sver=3&ip=96.235.189.157&key=yt5&sparams=id%2Cip%2Cipbits%2Citag%2Cratebypass%2Csource%2Cupn%2Cexpire&fexp=912302%2C923302%2C927860%2C916624%2C936110%2C936910%2C936913&ipbits=0&ratebypass=yes&title=ASTOUNDING%3A+1+%2B+2+%2B+3+%2B+4+%2B+5+%2B+...+%3D+-1%2F12%20%5B360p%5D&signature=EC679565931793C7B5B9FF0F1EBAC0A271642E4B.D4E356867003CFB39D2B20029848BB36B112DF40

Example: 2-Sum

Q. How many instructions as a function of input size N?

int count = O;

for (int i = 0; i < N; i++)
for (int j = i+1; j < N; j++)
if (ali1] + a[j] == 0)

count++;

variable declaration
assignment statement
less than compare
equal to compare
array access

increment

04+1+2+...+(N—-1) =

N+2
N+2
WIN+1)(N+2)
WN(IN-1)
N({N-1)

BLNN-1)to N(N—-1)

-

tedious to count exactly

30

Simplifying the calculations

“ It is convenient to have a measure of the amount of work involved
in a computing process, even though it be a very crude one. We may
count up the number of times that various elementary operations are
applied in the whole process and then given them various weights.
We might, for instance, count the number of additions, subtractions,
multiplications, divisions, recording of numbers, and extractions
of figures from tables. In the case of computing with matrices most
of the work consists of multiplications and writing down numbers,
and we shall therefore only attempt to count the number of

multiplications and recordings. © — Alan Turing

ROUNDING-OFF ERRORS IN MATRIX PROCESSES
By A. M. TURING

(National Physical Laboratory, Teddington, Middlesex)
[Received 4 November 1947]

SUMMARY

A number of methods of solving sets of linear equations and inverting matrices
are discussed. The theory of the rounding-off errors involved is investigated for
some of the methods. In all cases examined, including the well-known °‘Gauss
elimination process’, it is found that the errors are normally quite moderate: no
exponential build-up need occur.

31

Simplification 1: cost model

Cost model. Use some basic operation as a proxy for running time.

int count = O;
for (Aint 1 =0; 1 < N; 1++)
for (int j = 1+1; j < N; Jj++)
if (ali1] + a[j] == 0)
count++;

04+1+2+...+(N—-1) =

L
2
-
2

variable declaration N+2
assignment statement N+2
less than compare B(N+T)N+2)
equal to compare “N(N-1)
array access NN-1) <«——— cost model = array accesses
_ (we assume compiler/JVM do not
increment WNIN-1)ToON(N-1)

optimize any array accesses away!)

32

Simplification 2: tilde notation

e Estimate running time (or memory) as a function of input size N.

e Ignore lower order terms.
— when N is large, terms are negligible
— when N is small, we don't care

Ex 1. WwWN3 + 20N + 16 ~ Ve N3
Ex 2. N3 + 100 N43 + 56 ~ Yo N3
Ex 3. WwWN3 - hHN2 + B N ~ Ve N3
N Y,
N

discard lower-order terms
(e.g., N=1000: 166.67 million vs. 166.17 million)

Technical definition. fiV) ~ g(N) means lim

\166,167,000

1
N— 1,000

Leading-term approximation

f

N—=>® ¢(N)

33

Simplification 2: tilde notation

e Estimate running time (or memory) as a function of input size N.
e Ignore lower order terms.

— when N is large, terms are negligible

— when N is small, we don't care

variable declaration N+2 ~N

assignment statement N+2 ~N
less than compare BL((N+1)(N+2) ~¥% N?2
equal to compare “WN(N-1) ~%B N2

array access N(N-1) ~N?2

increment WNIN-1)toN(N-1) ~%N? to ~N?

34

Example: 2-Sum

Q. Approximately how many array accesses as a function of input size N ?

int count = 0;
for (int 1 = 0; 1 < N; 1++)
for (int j = 1+1; j < N; Jj++)
if (a[i] + a[j] == 0) < “inner loop"
count++;

04+1+2+...+(N—-1) =

A. ~ NZarray accesses.

Bottom line. Use cost model and tilde notation to simplify counts.

35

Example: 3-Sum

Q. Approximately how many array accesses as a function of input size N ?

int count = 0;
for (int 1 = 0; 1 < N; 1++)
for (int j = 1+1; j < N; Jj++)
for (int k = j+1; k < N; k++)
if (a[i] + a[j] + al[k] == 0) < "inner loop"
count++;

(N> N(N — ;?(N _9)

A. ~% N3array accesses.

Bottom line. Use cost model and tilde notation to simplify counts.

36

Diversion: estimating a discrete sum

Q. How to estimate a discrete sum?
Al. Take a discrete mathematics course (COS 340).
A2. Replace the sum with an integral, and use calculus!

N N 1
Ex 1. 1+2+ ... +N. 1~ / rdr ~ = N?

a k S 1 2

| "

Ex 2. 1¥4+2k+ . + N*¥ >~ /_135 thy o e

i=1 r=

N g N 1
Ex 3. 1+12+13+...+ 1N, D= = /_1561:1: = N

N N N N

N N
1
Ex 4. 3-sum triple loop. S S S 1 ~ / / / dzdydx ~ = N°
P - =1 Jy=x J z=y 7 6

1=1 3=1 k=3

37

Estimating a discrete sum

Q. How to estimate a discrete sum?
Al. Take a discrete mathematics course (COS 340).
A2. Replace the sum with an integral, and use calculus!

Ex4. 1 +% +Va+16+ ...

>.(3) -

1=0

/(3M}LMM7
=0 2 h’l 2

Caveat. Integral trick doesn't always work!

38

Estimating a discrete sum

Q. How to estimate a discrete sum?
A3. Use Maple or Wolfram Alpha.

3% WolframAlpha pro

\ sum(sum(sum(1, k=j+1..N), j = i+1..N), i = 1..N) E!
s = Examples =2 Random
Sum:
N N N 1
Z Z(Zl]]:—N(N2—3N+2)
i=1\j=i+1\k=j+1 6

wolframalpha.com

[wayne:nobel.princeton.edu] > maplel5
I\A/ | Maple 15 (X86 64 LINUX)

|\ |/|_. Copyright (c) Maplesoft, a division of Waterloo Maple Inc.

\ MAPLE / A1l rights reserved. Maple is a trademark of
< > Waterloo Maple Inc.
| Type ? for help.
> factor(sum(sum(sum(l, k=j+1..N), j = i+1l..N), 1 = 1..N));

N (N-1) (N- 2)

2011

39

Mathematical models for running time

In principle, accurate mathematical models are available.

In practice,
« Formulas can be complicated.
« Advanced mathematics might be required.
« Exact models best left for experts.

costs (depend on machine, compiler)

— 7\ T~

ITvn =c1A +c2B +c3C +caD + csE
A = array access

= integer add k frequencies

C = integer compare < (depend on algorithm, input)

D = increment 7
E = variable assignment

Bottom line. We use approximate models in this course: T(N) ~ ¢ N3.

40

Analysis of algorithms quiz

How many array accesses does the following code fragment make as a
function of N ?

int count = O;
for (Aint 1 =0; 1 < N; 1++)
for (int j = 1+1; J < N; J++)
for (int k = 1; k < N; k = k*2)
1t (a[i1] + al[j] >= al[k])
count++;

A. ~3N:2

B. ~32 N2IgN
C. ~32 N3

D. ~3 N3

E. Idon't know.

1.4 ANALYSIS OF ALGORITHMS

Algorithms

» order-of-growth classifications

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

http://algs4.cs.princeton.edu
http://algs4.cs.princeton.edu
http://algs4.cs.princeton.edu
http://algs4.cs.princeton.edu

Common order-of-growth classifications

Definition. If f(N) ~c g(N) for some constant ¢ >0, then the order of growth
of f(N) is g(V).

« Ignores leading coefficient.
e Ignores lower-order terms.

Ex. The order of growth of the running time of this code is N 3.

int count = 0;
for (int i = 0; 1 < N; i++)
for (int j = 1+1; j < N; Jj++)
for (int k = j+1; k < N; k++)
1if (a[i1] + a[j] + alk] == 0)
count++;

Typical usage. With running times.

\ where leading coefficient
depends on machine, compiler, JVM, ...

43

Common order-of-growth classifications

Good news. The set of functions
1, logN, N, NlogN, N2, N3, and 2¥
suffices to describe the order of growth of most common algorithms.

log-log plot
512T 4 —~ O e ¢
= N &&\N Q“@N $
4 S S S & 8
S \\S‘ '(\QJ@ \N'{\
I \¥ AN
4 =
L
64T -
QU
S -
8T —
4T -
2T ' '
logarithmic
- constant
| | | | | | | | | |
1K 2K 4K 8K 512K

size

Typical orders of growth

Common order-of-growth classifications

order of

growth

typical code framework

description example

T(2N) | T(N)

log N

Nlog N

2N

constant

logarithmic

linear

linearithmic

quadratic

cubic

exponential

while (N > 1)
{ N=N/2; ... }

for (int i = 0; i < N; i++)

{ ... }

[see mergesort lecture]

for (int i = 0; i < N; i++)
for (int j = 0; j < N; j++)
{ ... }

for (int i = 0; i < N; i++)
for (int j = 0; j < N; j++)
for (int k = 0; k < N; k++)
{ ... }

[see combinatorial search lecture]

add two

statement
numbers

divide in half binary search

find the
loop .
maximum
divide
mergesort
and conquer
check all
double loop _
pairs
. check all
triple loop _
triples
exhaustive check all
search subsets

T(N)

45

Binary search

Goal. Given a sorted array and a key, find index of the key in the array?

Binary search. Compare key against middle entry.
« Too small, go left.

. Too big, go right. @
e Equal, found.

46

keynote:/Users/wayne/Dropbox/algs4/slides/spring14/keynote/14DemoBinarySearch.key
keynote:/Users/wayne/Dropbox/algs4/slides/spring14/keynote/14DemoBinarySearch.key
keynote:/Users/wayne/Dropbox/algs4/slides/spring14/keynote/14DemoBinarySearch.key
keynote:/Users/wayne/Dropbox/algs4/slides/spring14/keynote/14DemoBinarySearch.key
keynote:/Users/wayne/Dropbox/algs4/slides/spring14/keynote/14DemoBinarySearch.key
keynote:/Users/wayne/Dropbox/algs4/slides/spring14/keynote/14DemoBinarySearch.key
keynote:/Users/wayne/Dropbox/algs4/slides/spring14/keynote/14DemoBinarySearch.key
keynote:/Users/wayne/Dropbox/algs4/slides/spring14/keynote/14DemoBinarySearch.key
keynote:/Users/wayne/Dropbox/algs4/slides/spring14/keynote/14DemoBinarySearch.key
keynote:/Users/wayne/Dropbox/algs4/slides/spring14/keynote/14DemoBinarySearch.key
keynote:/Users/wayne/Dropbox/algs4/slides/spring14/keynote/14DemoBinarySearch.key
keynote:/Users/wayne/Dropbox/algs4/slides/spring14/keynote/14DemoBinarySearch.key
keynote:/Users/wayne/Dropbox/algs4/slides/spring14/keynote/14DemoBinarySearch.key
keynote:/Users/wayne/Dropbox/algs4/slides/spring14/keynote/14DemoBinarySearch.key

Binary search: implementation

Trivial to implement?
e First binary search published in 1946.
o First bug-free one in 1962.
« Bug in Java's Arrays.binarySearch() discovered in 2006.

Extra, Extra - Read All About It: Nearly All Binary Searches and
Mergesorts are Broken

Posted by Joshua Bloch, Software Engineer

| remember vividly Jon Bentley's first Algorithms lecture at CMU, where he asked all of us incoming Ph.D.
students to write a binary search, and then dissected one of our implementations in front of the class. Of
course it was broken, as were most of our implementations. This made a real impression on me, as did the
treatment of this material in his wonderful Programming Pearls (Addison-Wesley, 1986; Second Edition, 2000).

The key lesson was to carefully consider the invariants in your programs.

http://googleresearch.blogspot.com/2006/06/extra-extra-read-all-about-it-nearly.html

47

Binary search: Java implementation

Invariant. If key appears in array a[], then a[lo] = key = a[hi].

public static 1nt binarySearch(int[] a, 1nt key)

{

int lo = 0, hi = a.length - 1;

while (1o <= h1) why not mid = (lo + hi) / 2 ?

{ v
int mid = lo + Ch1 - lo) / 2;
if (key < a[mid]) hi = mid - 1;
else if (key > a[mid]) 1o = mid + 1; < one "3-way compare”
else return mid;

}

return -1;

Binary search: mathematical analysis

Proposition. Binary search uses at most 1 +1g N key compares to search in
a sorted array of size M.

Def. T(N) = # key compares to binary search a sorted subarray of size < M.

Binary search recurrence. T(N) < T(N/2) + 1 for N >1, with T(1)=1.
t t

left or right half possible to implement with one
(floored division) 2-way compare (instead of 3-way)

Pf sketch. [assume N is a power of 2]

T(N) < T(N/2)+ 1 [given]
< TIN/4) +1+1 [apply recurrence to first term]
< TN/ +1+1+1 [apply recurrence to first term]
<

T(N/N)+1+1+ ... +1 [stopapplying, T(1)=1]

= 1+ IgN g N

49

TECHNICAL INTERVIEW QUESTIONS
g Clsco SYSTEMS
<

Apple Computer
Ninlendo Mg JANE

Zige STREET

Morgan Stanley NETFELIN "‘

Adobe SECURITY"

DEShaw&Co ORACLE @

YaHoO! amazoncom Microsoftt r ¢ X A R

IIIIIIIIIIIIIIII

®

Google

<.II

50

HY ARE MANHOLE COVERS ROUND?

New York, New York Geneva, Switzerland Zermatt, Switzerland

51

THE 3-SUM PROBLEM

3-SuM. Given N distinct integers, find three such that a + b + ¢ =0.

Version 0. N3time, N space.
Version 1. N2log N time, N space.
Version 2. N2time, N space.

Note. For full credit, running time should be worst case.

52

An N? log N algorithm for 3-Sum

Algorithm.
e Step 1: Sort the N (distinct) numbers.
« Step 2: For each pair of numbers a[i]

and a[j], binary search for -(a[i] + a[j]).

Analysis. Order of growth is N2 log N.
e Step 1: N2 with insertion sort.
e Step 2: NZ2log N with binary search.

Remark. Can achieve N2 by modifying
binary search step.

input

30 -40 -20 -10 40 O 10 5

sort

-40 -20 -10

binary search

(-40,
(-40,
(-40,
(-40,
(-40,

(_20!

-20)
-10)
0)
5)
10)

-10)

0)

30)

40)
40)

0O 5 10 30 40

¢ 000 @

only count if
ali] < a[j] < a[k]
<“<— to avoid
double counting

53

Comparing programs

Hypothesis. The sorting-based N?log N algorithm for 3-SuMm is significantly
faster in practice than the brute-force N3 algorithm.

- time (seconds) - time (seconds)

1,000 1,000
2,000 0.8 2,000 0.18
4,000 6.4 4,000 0.34
8,000 51.1 8,000 0.96
ThreeSum.java 16,000 3.67
32,000 14.88
64,000 59.16

ThreeSumDeluxe.java

Guiding principle. Typically, better order of growth = faster in practice.

1.4 ANALYSIS OF ALGORITHMS

Algorithms

» memory

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

http://algs4.cs.princeton.edu
http://algs4.cs.princeton.edu
http://algs4.cs.princeton.edu
http://algs4.cs.princeton.edu

Basics

Bit. Oor 1. NIST most computer scientists
Byte. 8 bits. | |

Megabyte (MB). 1 million or 220 bytes.
Gigabyte (GB). 1 billion or 230 bytes.

64-bit machine. We assume a 64-bit machine with 8-byte pointers.
e Can address more memory. N

e Pointers use more space. some JVMs "compress” ordinary. object
pointers to 4 bytes to avoid this cost

56

Typical memory usage for primitive types and arrays

boolean char[] 2N+ 24
byte 1 int[] 4N + 24
char 2 double[] 8N + 24
int 4 one-dimensional arrays
float 4
Tong 8

double 8

char[][] ~2MN

primitive types
int[][] ~4MN
double[][] ~8MN

two-dimensional arrays

57

Typical memory usage for objects in Java

Object overhead. 16 bytes.

Reference. 8 bytes.

Padding. Each object uses a multiple of 8 bytes.

Ex 1.

A Date object uses 32 bytes of memory.

public class Date

{
private int day;
private int month;
private int year;

object
overhead

day

month

year

padding

=

int
alues

16 bytes (object overhead)

4 bytes (int)
4 bytes (int)
4 bytes (int)
4 bytes (padding)

32 bytes

58

Typical memory usage summary

Total memory usage for a data type value:
e Primitive type: 4 bytes for int, 8 bytes for double, ...

Object reference: 8 bytes.

Array: 24 bytes + memory for each array entry.

Object: 16 bytes + memory for each instance variable.
Padding: round up to multiple of 8 bytes. N

+ 8 extra bytes per inner class object
(for reference to enclosing class)

Note. Depending on application, we may want to count memory for any
referenced objects (recursively).

59

Memory analysis quiz

How much memory does a WeightedQuickUnionUF use as a function of N7

m o N w P

~4 N bytes
~ 8 N bytes
~4 N2 bytes
~ 8 N2 bytes

I don't know

public class WeightedQuickUnionUF
{

private 1nt[] 1d;

private 1int[] sz;

private int count;

public WeightedQuickUnionUF(int N)
{
1id = new 1nt[N];
sz = new 1nt[N];
for (int 1 = 0; 1 < N; i++) 1id[i] =
for (int 1 =0; 1 < N; 1++) sz[1] = 1;

—l
-

60

Turning the crank: summary

Empirical analysis.
o Execute program to perform experiments.

« Assume power law and formulate a hypothesis for running time.
« Model enables us to make predictions.

Mathematical analysis.

« Analyze algorithm to count frequency of operations.
o Use tilde notation to simplify analysis.
« Model enables us to explain behavior.

Scientific method.
« Mathematical model is independent of a particular system;
applies to machines not yet built.

« Empirical analysis is necessary to validate mathematical models
and to make predictions.

62

