COS 226 – Data Structures and Algorithms
Fall 2014 – Flipped Lecture Section
Group worksheet
Week 9 – 11.13.14
Topics covered: shortest path, maxflow-mincut
Solution

Instructions: This worksheet covers shortest path algorithms and flow diagrams. Answer questions as a group (3-4 students)

1. Fattest Path : Given an edge-weighted digraph and two vertices s and t, design an algorithm to find a fattest path from s to t. The bottleneck capacity of a path is the minimum weight of an edge on the path. A fattest path is a path such that no other path has a higher bottleneck capacity.
First create a pathExists(T) algorithm that determines whether or not a path exists of fatness T. We can do this by simply removing all edges of weight less than T, then running BFS from s to t, taking E+V time. Given this routine, we then need to simply perform a binary search on our edge weight values. Sorting the edge weights is time ElogE, and running log(E) pathExists is also ElogE.

2. Modified Dijkstra’s algorithm (fin-f13)

The standard version of Dijkstra’s algorithm does not consider a vertex once it is removed from the minPQ. However a modified version of Dijkstra’s algorithm that may reconsider a vertex (even after removing from the minPQ) is given below.

private void relax(Graph G, vertex v)
 for (Edge e: G.adj(v)) {
 w = e.to();
 if (distTo[w] > distTo[v] = e.weight()) {
 distTo[w] = distTo[v] + e.weight();
 edgeTo[w] = e;
 if (pq.contains(w)) pq.change(w, distTo[w])
 else pq.insert(w, distTo[w]);
 }
 }
}

Will this code work even if there are negative edges in the graph? What is the complexity of the algorithm?

Yes, the standard Dijkstra’s version (based on the correctness proof) assumes that once a node is removed from the PQ, its min distance is determined and will not be considered again. In this version of Dijkstra’s, the code works even if there is a negative edge (not a negative cycle). The main code calls the relax() method as shown below.

insert(s, minPQ); /* insert source into min PQ */
while (!minPQ.empty())[image:]
 relax (G, minPQ.delMin());

Consider the example below. Apply the Dijkstra’s algorithm using the version above.
Put A to PQ. Delete A from PQ. set A=0. Relax C=5, B=10.
Choose C and delete C from PQ. Relax D to 4. So we have in minPQ: B=10, D=4
Choose D and delete D from PQ. No relaxations. So we have in minPQ: B=10
Choose B and delete B from PQ. No relax of D. But there is a C distance can now be set to 0. And C is added back to PQ.
[bookmark: _GoBack]Hence a vertex can go back to PQ many times. but no more than E times. hence in the worst case the code runs EV

3. Shortest directed cycle (fin-f08)
Given a directed graph with V vertices and E edges, design an efficient algorithm to find a directed cycle with the minimum number of edges (or report that the graph is acyclic).

(a) Describe your algorithm in the space below

[image:]

(b) What is the order of growth of the worst-case running time of your algorithm?

[image:]

(c) What is the order of growth of the memory usage of your algorithm?

[image:]

4. Algorithm Design [fin-s14]

There are N dorm rooms, each of which needs a secure internet connection. It costs wi > 0 dollars to install a secure router in dorm room i and it costs cij > 0 dollars to build a secure fiber connection between rooms i and j. A dorm room receives a secure internet connection if either there is a router installed there or there is some path of
fiber connections between the dorm room and a dorm room with an installed router. The goal is to determine in which dorm rooms to install the secure routers and which pairs of dorm rooms to connect with fiber so as to minimize the total cost.

[image:]

Formulate the problem as a minimum spanning tree problem. To demonstrate your formulation, modify the figure above to show the MST problem that you would solve to find the minimum cost set of routers and fiber connections.

Solution

[image:]
image5.png
60 10 «— router cost

20
o
s <
15 «— fiber cost

AN

H as

image6.png
Create an edge-weighted graph with N + 1 vertices (one for each dorm room plus an artificial
source vertex s).

 Include an edge between i and j with weight c;; (to represent potential fiber connections).
» Tnclude an edge between s and i with cost w; (to represent potential routers).

Now, if the MST contains any edge of the form s-i, then we install a router in dorm room i;
if the MST contains any edge i~j not of this form, then we build a fiber connection between
dorm rooms i and j.

image1.png

image2.png
The critical observation is that the shortest directed cycle is a shortest path (number of
edges) from s to v, plus a single edge v—s.

For each vertex s:
+ Use BFS to compute shortest path from s to each other vertex.

* For each edge v->s entering s, consider cycle formed by
shortest path from s to v (if the path exists) plus the edge v->s.
Return shortest overall cycle.

image3.png
The running time is O(EV).

‘The single-source shortest path computation from s takes O(E+V') time per using BF
Finding all edges entering s takes O(E + V') time by scanning all edges (though a better
way is to compute the reverse graph at once and access the adjacency lists). We must
do this for each vertex 5. Thus, the overall running time is O(EV).

image4.png
The memory usage is O(E + V).

BFS uses O(V) extra memory and we only need to run one at a time. (A less efficient
solution is to compute a V-by-V’ table containing the shortest path from v to w for every
v and w. This uses O(V?) memory.)

