
COS 226 – Data Structures and Algorithms 

Fall 2014 – Flipped Lecture Section 

Individual/small group worksheet  

Week 8 – 11.04.14 

Topics covered: digraphs, MST 

Solution 

 

Instructions: This worksheet covers directed graphs (digraphs) and Minimum spanning trees (MST). Read the 

worksheet first (before viewing the videos) and understand what type of questions needs to be answered. As you 

watch videos, if you find the answer to a problem, write the answer here and if possible in salon, so you can share it 

with others. Also be sure to make some comments/questions on salon. 

 

1. MST Problem 

 

Consider the graph given below. 

 
(a) Complete the list of edges in the MST in the order that Kruskal’s algorithm includes them. For reference, the 

edge weights in ascending order are: 

 

4 16 18 19 20 21 22 23 25 30 33 34 35 36 42 65 

 

B-D  ____  ____  ____  ____  ____  ____ 

 

Solution:  The idea of the kruskal’s algorithm is that all edges are maintained in a minPQ (cost to build – E). 

Then starting with the minimum edge, add that to the MST if the new edge does not create a cycle (that is, both 

end points of the edge is already in the MST). We can test the connectivity of two vertices in log time using a 

weighted UF. The process is as follow. The red indicates that no change to MST or cut since that edge would 

create a cycle (if added) 
 

       Edge/cost   MST  vertices in the cut (shown are connected components) 
       (B,D) /4   {(B,D)}                          {B,D} 

       (D,G) /16   {(B,D),(D,G)}   {B,D,G} 

       (E,F) /18   {(B,D),(D,G),(E,F)}   {B,D,G} {E,F} 

       (H,C) /19   {(B,D),(D,G),(E,F),(H,C)}   {B,D,G} {E,F},{H,C} 

       (F,H) /20       {(B,D),(D,G),(E,F),(H,C),(F,H)}  {B,D,G} {E,F,H,C} 

       (G,C) /21   {(B,D),(D,G),(E,F),(H,C),(F,H),(G,C)}  {B,D,G,E,F,H,C} 

       (F,G) /22   {(B,D),(D,G),(E,F),(H,C),(F,H),(G,C)}  {B,D,G,E,F,H,C} 

       (E,G) /23   {(B,D),(D,G),(E,F),(H,C),(F,H),(G,C)}  {B,D,G,E,F,H,C} 

(G,H) /25   {(B,D),(D,G),(E,F),(H,C),(F,H),(G,C)}  {B,D,G,E,F,H,C} 

(D,C) /30   {(B,D),(D,G),(E,F),(H,C),(F,H),(G,C)}  {B,D,G,E,F,H,C} 

(D,E) /33   {(B,D),(D,G),(E,F),(H,C),(F,H),(G,C)}  {B,D,G,E,F,H,C} 

(A,H) /34   {(B,D),(D,G),(E,F),(H,C),(F,H),(G,C),(A,H)} {B,D,G,E,F,H,C,A} 

 

MST is now complete as the MST contains |V|-1 = 8-1 = 7 edges 

 

 

 

 



 

(b) Complete the list of edges in the MST in the order that Prim’s algorithm includes them. Start Prim’s algorithm 

from vertex A. 

 

A-H  ____  ____  ____  ____  ____  ____ 

 

 

  The idea of the Prim’s algorithm is that, we start with a vertex and start expanding MST, by greedily selecting the next min edge. It uses 

a minPQ, but unlike in Kruskals (where all edges are built into a PQ), Prim’s algorithm only keeps the edges that are relevant up to that 

point. Given below is the process. As n Kruskals, it checks to see adding a new edge will create a cycle. Shown below is the vertex that 

is under process and the current minPQ (not shown as sorted. Always pick the cheapest node). The minPQ is marked with min edge (in 

red) and placed in MST 

vertex   minPQ (edge/cost)     MST 

A {(A,H)/34, (A,F)/36, (A,B)/35}      { } 

H { (A,F)/36, (A,B)/35, (H,F)/20,(H,G)/25,(H,C)/19}    { (A,H),(H,C)} 

C { (A,F)/36, (A,B)/35,(H,G)/25,(C,G)/21, (C,D)/30,(H,F)/20}   { (A,H),(H,C),(H,F)} 

F { (A,F)/36, (A,B)/35,(H,G)/25,(C,G)/21, (C,D)/30,(F,G)/22,(F,E)/18,(F,B)/42} { (A,H),(H,C),(H,F),(F,E)} 

F { (A,F)/36, (A,B)/35,(H,G)/25,(C,G)/21, (C,D)/30,(F,G)/22,(F,B)/42,(E,B)/65,(E,D)/33,(E,G)/23}   

MST = {(A,H),(H,C),(H,F),(F,E),(C,G)} 

G { (A,F)/36, (A,B)/35,(H,G)/25,(C,D)/30,(F,G)/22,(F,B)/42,(E,B)/65,(E,D)/33,(E,G)/23,(G,C)/21,(G,D)/16}   

MST = {(A,H),(H,C),(H,F),(F,E),(C,G),(G,D)} 

D { (A,F)/36, (A,B)/35,(H,G)/25,(C,D)/30,(F,G)/22,(F,B)/42,(E,B)/65,(E,D)/33,(E,G)/23,(G,C)/21,(D,C)/30,(D,E)/33,(D,B)/4}

   

MST = {(A,H),(H,C),(H,F),(F,E),(C,G),(G,D),(D,B)} 

 



 

 

2. Topological Sort [fin-f11] 
 

 
 

(a) Compute the topological order by running the DFS-based algorithm and listing the vertices in reverse postorder. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(b) Run breadth-first search on the digraph, starting from vertex 2. List the vertices in the order in which they are 

dequeued from the FIFO queue. 

 

2  ___  ___  ___  ___  ___  ___  ___  ___  ___ 

 

 

 

 

 

 

 

 

 

 

Run DFS on the graph and print nodes in post order. Shown is the stack and output. 

Stack  Output 

2  {} 

2 0  {} 

2 0 6  {} 

2 0 6 3  {} 

2 0 6 3 5  {} 

2 0 6 3 5 4  {} 

2 0 6 3 5   {4} 

2 0 6 3    {4,5} 

2 0 6     {4,5,3} 

2 0      {4,5,3,6} 

2 0 7     {4,5,3,6} 

2 0      {4,5,3,6,7} 

2 0 1     {4,5,3,6,7} 

2 0     {4,5,3,6,7,1} 

2      {4,5,3,6,7,1,0} 

2  8   {4,5,3,6,7,1,0} 

2    {4,5,3,6,7,1,0,8} 

{}    {4,5,3,6,7,1,0,8,2} 

 

post order: 4 5 3 6 7 1 0 8 2        Reverse postorder: 2 8 0 1 7 6 3 5 4  � a topological sort 

 

in BFS, we use a queue to run the algorithm. Shown below is queue and BFS order. Start by enque(2) 

enque Queue  deque output 

2 2  _ {} 

0 1 8 2 0 1 8  2 {2} 

6 7 0 1 8 6 7  0 {2,0} 

4  1 8 6 7 4   1 {2,0,1} 

_ 8 6 7 4  8 {2,0,1,8} 

_ 6 7 4  6 {2,0,1,8,6} 

3 7 4 3  7 {2,0,1,8,6,7} 

_ 4 3  4 {2,0,1,8,6,7,4} 

5 3 5  3 {2,0,1,8,6,7,4,3} 

_ 5  5 {2,0,1,8,6,7,4,3,5} � this is the BFS order 

 



 

 

3. Strong Components(SCs) 
 

Find all strong components (SCC’s) in this digraph 

 

   
 Apply Kosaraju-Sharir algorithm to find a strong components. 

Step 1 – Find the reverse post order of Gr (the reverse graph of C). The reverse graph of G is shown in right 

  start with 0 and find the post order 

          3  2  7  6  0  1  5  10  12  9  11  4 

Find the reverse post order of Gr (the reverse graph of C)�  4   11  9  12  10  5  1  0  6  7  2  3 

 

 

Step 2: Do DFS on G in the order found above and mark SC’s with integers starting with 0 

0 � {4, 2, 0, 5, 3} 

1 � {11,12,9,10} 

2 � {1} 

3 � {6,8} 

4 � {7} 

 


