

Summary of topics discussed this week – 11/04/14

1. Post order

a. traverse the graph using DFS and list the vertices in postorder

b. note: first vertex in post order is a sink (no outgoing edges)

2. Reverse post order

a. find the post order of a graph using DFS and state them in reverse order

b. Note: last vertex in reverse post order is a sink

3. topological sort

a. find the reverse post order of a graph using DFS

b. this is a topological order where edges only go forward

4. BFS on a digraph

a. Traverse using a queue. Mark each node with a number starting with 0

5. connected components

a. ugraphs – two vertices are connected

6. strong components

a. digraph – connected(v,w) & connected(w,v)

7. Finding SC’s in a graph

a. compute the reverse post order of G
r

b. run the DFS in the order of G
r

8. MST

a. cut – a separation of vertices into two disjoint sets

b. crossing edge – connects a vertex in one set to the vertex in the other set

c. cut property – given any edge, the crossing edge of min weight is in MST

9. Two algorithms

a. Kruskals – sort edges by weight or maintain in a minPQ

i. keep adding edges to MST as long as an edge does not create a cycle

ii. need a minPQ and UF (of vertices) structures to implement this

b. Prim (lazy)

i. start with a specific vertex and add the minimum edge that is connected to it

ii. maintain a minPQ of edges

iii. no need to remove edges that may not be useful from the minPQ (as they will

be removed later)

c. Prim(eager)

i. maintain a minPQ of vertices : vertex edge weight

ii. adjust the edge and weight if there is a better way to get to that vertex using

another edge

iii. need a minPQ with additional property of : decreasePriority

d. indexedPQ

i. The big idea here is that, there is a new operation called decreaseKey(index,

key) that allows updating an entry in a PQ

ii. Maintain two structures

1. a minPQ – each key has an index and

2. indexed array – that tells which index is a given key. So if a key needs to

be changed, we can use the index to find the key (constant time) and

decrease the key (log time, since we may have to swim up)

