Flipped Lecture
Concepts

Week 8
Ananda Guna
11.06.14

11/6/2014

Topics this week

« directed graphs (digraphs)
— API
—Search
— Topological sort
- Strong components
* Minimum spanning trees (MST's)
—The cut
— Kruskalls
—Prim’s

€05 226 - Fall 2014 - Princeton University

API

public class Digraph

Digraph(int V)
Digraph(In in)
void addEdge(int v, int w)
Iterable<Integer> adj(int v)
int VO
int EQ
Digraph reverse()

String toString()

Complexity of operations

representation space insert edge edge from iterate over vertices
fromvtow vtow? adjacent from v?
E 1 E E

list of edges
adjacency matrix V2 1t 1 L
adjacency lists E+V 1 outdegree(v) outdegree(v)

Digraph search

DFS (to visit a vertex v) « Reachability.

Mark vertex v as visited. ‘ « Path finding.

Recursively visit all unmarked

« Topological sort.
vertices w adjacent from v.

BFS (from source vertex s)

Put s onto a FIFO queue, and mark s as visited.
Repeat until the queue is empty:
- remove the least recently added vertex v
- for each unmarked vertex adjacent from v:
add to queue and mark as visited.

Proposition. BFS computes shortest paths (fewest number of edges)
from s to all other vertices in a digraph in time proportional to £+ 7.

« Directed cycle detection.

Topological sort

* Given a DAG, arrange vertices so that, edges only
go forward

e Algorithm
— Use the DFS to find the postorder of vertices

— Reverse postorder provides a topological sort of
vertices

¢ Intuition

— First node in a postorder (last in reverse postorder)
has outdegree 0

— Second-to-last vertex in postorder can only point to
last vertex

11/6/2014

Directed Cycle Detection

Proposition. A digraph has a topological order iff no directed cycle.
Pf.

« If directed cycle, topological order impossible.

« If no directed cycle, DFS-based algorithm finds a topological order.

orderings

Orderings.
« Preorder: order in which dfs() is called.
« Postorder: order in which dfs() returns.
« Reverse postorder: reverse order in which dfs() returns.

Strong components

Def. Vertices v and w are strongly connected if there is both a directed path
from v to w and a directed path from w to v.

Kosaraju-Sharir algorithm: intuition

Reverse graph. Strong components in G are same as in G,

Kernel DAG. Contract each strong component into a single vertex.

Idea. how to compute?
« Compute topological order (reverse postorder) in kernel DAG.

« Run DFS, considering vertices in reverse topological order.

Proposition. Kosaraju-Sharir algorithm computes the strong components of

a digraph in time proportional to E+ V.

Minimum Spanning Tree
§44©—424

Proposition: A connected graph with distinct edge weights has a unique MST

Cut property

Def. A cut in a graph is a partition of its vertices into two (nonempty) sets.
Def. A crossing edge connects a vertex in one set with a vertex in the other.

Cut property. Given any cut, the crossing edge of min weight is in the MST.

Greedy MST algorithm

« Start with all edges colored gray.
« Find cut with no black crossing edges; color its min-weight edge black.
« Repeat until ¥ - 1 edges are colored black.

Greedy MST Algorithms

Efficient implementations. Choose cut? Find min-weight edge?
Ex 1. Kruskal's algorithm. [stay tuned]

Ex 2. Prim's algorithm. [stay tuned]

Ex 3. Boriivka's algorithm.

Weighted Edge API

public class Edge implements Comparable<Edge>

Edge(int v, int w, double weight)
int eitherQ
int other(int v)
int compareTo(Edge that)
double weight(Q)

String toString()

11/6/2014

Adjacency List

~(6[of.58}~{o[2].26}~{o[4].38}~{0[7].16]| Sas,
wi /. A GGLaFGaE A e-0)
|\[6\2\.40}—42\7\.34}—~\1\z|.35}—~\0\z\.zel—\z\al.ul\
\\3\5\.52}—41\3\,29}—»\2\3|.17H
[~[elel-03}[o[e[38}-[s[7[-37}-[+5]33]
[~ Las-[a]5[35] o Lo st
[~[sLeL-03}[6To[.58}-[3] e[.52}[6]2[.40]]
\[2\7].34}——\1[7].19}—»[0]7|.15}—»\5[7\,28|—»\s|7[,2s[‘

N uwswN RO

MST API

public class MST

Kruskal’s Algorithm

Order edges by weight or maintain a minPQ
add the minimum edge first to MST

Continue to add edges as long as they don’t
create a cycle.

When |V]-1 edges are added, MST is created

MST(EdgeWeightedGraph G) constructor
Iterable<Edge> edges() edges in MST
double weight(Q)
Implementation
* Maintain a minPQ of edges

— |E| to build
— |E| In|E| inthe worst case to deleteMin
* Use a union-find
— To test if adding an edge creates a cycle
« log|V| in the worst case (weighted UF)
* Proposition: Kruskal's algorithm computes
MST in time proportional to E log E (in the
worst case).

Kruskal code

public KruskalMST(EdgeWeightedGraph G)

{
MinPQ<Edge> pq = new MinPQ<Edge>(G.edges());

UF uf = new UF(G.VQ);
while (!pq.isEmpty() && mst.size() < G.VQO-1)

Edge e = pq.delMin(Q);
int v = e.either(), w = e.other(v);
if (luf.connected(v, w))
{
uf.union(v, w);
mst.enqueue(e);

Kruskal Summary

build pq 1 E
delete-min E log E
union \'4 log* V't
connected E log* V't

11/6/2014

Prim’s Algorithm Prim’s Algorithm (lazy implementation)

. . Challenge. Find the min weight edge with exactl dpoint in T.
» Start with vertex 0 and greedily grow tree T. arenge. T the min weight ecge with exactly one endpointin
Lazy solution. Maintain a PQ o with (at least) one endpoint in T.

¢ Add to T the min weight edge with exactly one
+ Key = edge; priority = weight of edge.

endpointin T. X)
« Delete-min to determine next edge e = v-w to add to T.

* Repeat until v -1 edges' « Disregard if both endpoints v and w are marked (both in 7).

« Otherwise, let w be the unmarked vertex (not in T):
- add to PQ any edge incident to w (assuming other endpoint not in 7)
- add eto Tand mark w

Implementation Prim’s runtime
public LazyPrimMST(WeightedGraph G)
{
Pq = new MinPQ<Edge>(); Proposition. Lazy Prim's algorithm computes the MST in time proportional
mst = new Queue<Edge>(); . .
marked = new boolean[G.VO1; to E log E and extra space proportional to E (in the worst case).
visit(G, 0); B

while (!pq.isEmpty() & mst.size() < G.VO - 1) Pf. " @
{ operation quency [EGYA T

Edge e = pg.delMin();

int v = e.either(), w = e.other(v);

if (marked[v] && marked[w]) continue;

mst.enqueue(e) ;

if (!marked[v]) visit(G, V); — insert E log E

if (Imarked[w]) visit(G, w);
}

— delete min E log E
Pl |

private void visit(WeightedGraph G, int v)

marked[v] = true;
for (Edge e : G.adj(v))
if (!marked[e.other(v)])
pa.insert(e);

}
.y
Prim’s (eager implementation) Implementing a PQ with decreaseKey
public class IndexMinPQ<Key extends Comparable<Key>>
Eager solution. Maintain a PQ o’onnected by an edge to 7, IndexMinPQ(int N) U\tjl,’/: 11//:1[/!11‘%\[0,‘”[[,“/“\A\j'l:“i“
where priority of vertex v = weight of shortest edge connecting v to 7. void insert(int i, Key key) associate key with index i

« Delete min vertex vand add its associated edge e =v-w to T.

I L void decreaseKey(int i, Key key) decrease the key associated with index i
« Update PQ by considering all edges e =v—x incident to v

- ignore if x is already in T boolean contains(int 1) is i an index on the priority queue?

— add x to PQ if not already on it int delMinQ) remove a minimal key and return its

L) . associated index
- decrease priority of x if v—x becomes shortest edge connecting x to T .
boolean isEmpty() is the priority queue empty?

int sizeQ) number of keys in the priority queue

The idea

« Maintain parallel arrays keys[1, pq[1, and qp[] so that:

— keys[i] is the priority of i

— pq[i] is the index of the key in heap position i

— qp[i] is the heap position of the key with index i
« Use swim(gp[i]) to implement decreasekey(i, key).

i 012345678
keys[il] A S 0 R T I (N)G -
palil - 0® 7 2 15 4 3
eplil 1 5 4 8 7 62 3 -

1

11/6/2014

