
Flipped Lecture

Concepts

Week 6

Ananda Guna

10.16.14

Plan today

• 2-3 trees

• Red-black trees

• Hashing

• worksheet

COS 226 - Fall 2014 - Princeton University

Balanced Trees

• The goal is to create a well balanced BST

regardless of the input order.

• Why don’t we just randomize the elements

and build a BST?

• Desired performance for BST

• Insert in log N

• Delete in log N

• Find in log N

Implementing ST

2-3 Trees

Two invariants

• Balance invariant – each path from root to leaf nodes have the same length

• Order invariant – an inorder traversal of the tree produces an ordered sequence

2-3 Tree operations

Exercise: Insert 6, 10, 15, 8 , 9 , 20, 30, 40, 50, 25

2-3 Trees Facts

• Worst case - log2 N

• Best Case – log3 N

• Direct implementation is complicated
– Maintaining multiple node types is cumbersome.

– Need multiple compares to move down tree.

– Need to move back up the tree to split 4-nodes.

– Large number of cases for splitting.

• Not practical to implement

Red-black trees

• How to represent 3-nodes?

– Regular BST with red "glue" links.

Exercise

• Convert to a red-black tree

2-3 Trees and red-black trees

Question: How do you convert a red-black tree to a 2-3 tree?

Red-black tree properties

• A BST such that

– No node has two red links connected to it

– Every path from root to null link has the same

number of black links

– Red links lean left.

Red-black tree implementation

B-Trees

Inserting to a B-tree

B-Tree Facts

hashing

Hash Table

• A better way (almost constant time) to

support

– put and find operations

• Ideal goal

– Distribute keys evenly in a table

– Need a function (we call hash function) to

compute a table index

– The hash function must perform well for given

keys

Hash Function

• Easy to compute

• Avoid collisions

• Maps the object to a table of size M

Finding a hash function

• What would be a good hash function for

following key types?

– Social Security number

– Phone number

– B’day

– Strings

– Integer

– Double

– Just Java objects

Java hashCode()

Java hash codes

Java string hashCode()

Based on the formula

Modular Hashing

Hash code design

Uniform hashing

Implementation
• A hash table of N keys can be implemented

using

– Separate Chaining

• An array of M Linked Lists

– Insert to beginning if the key is not present

– Double when N/M > 8 or halve when N/M < 2

– Rehash all keys when resizing

– Linear Probing

• An Array of size M >= N

– Open addressing when resolving collisions

– Linear probing – x, x+1, x+2 etc

– rehash all keys when resizing.

Deleting in a hash table

• Separate chaining hash table

• Linear probing hash table

Applications of ST

• Sets

• Indexing

• Sparse vectors

Sets

File Indexing
Query: given a string, find all files that contains that string

