Flipped Lecture
Concepts

Week 6
Ananda Guna
10.16.14

Plan today

2-3 trees
Red-black trees
Hashing
worksheet

COS 226 - Fall 2014 - Princeton University

Balanced Trees

 The goal is to create a well balanced BST
regardless of the input order.

* Why don’t we just randomize the elements
and build a BST?

* Desired performance for BST
* Insertinlog N
e Delete inlog N
 Findinlog N

Implementing ST

guarantee dverage case

: : ordered key
implementation

ops? interface
delete search hit insert delete

sequential search

(unordered list) 2 N N N N N equals O

(:i:zr':dse;:::} log N N N log N N N v compareTo()
BST N N N logN logN VN v compareTo()
goal log N log N log N log N log N log N v compareTo()

2-3 Trees

3-node

smaller than E

between E and |

Two invariants
e Balance invariant — each path from root to leaf nodes have the same length
e Order invariant —an inorder traversal of the tree produces an ordered sequence

2-3 Tree operations

root

(b)
R = of%

parent is a 2-node

left d) . (b d

(a) ()

right (a) .
(b) ()

parent is a 3-node

left (d e) (b d e)
w—--
@) ()
middle (a e) = oA
E—
b c d (b) ()
right (a b (a b d)
—
(c) (el

Exercise: Insert 6, 10, 15, 8, 9, 20, 30, 40, 50, 25

2-3 Trees Facts

Worst case - log, N
Best Case —log; N
Direct implementation is complicated

— Maintaining multiple node types is cumbersome.
— Need multiple compares to move down tree.

— Need to move back up the tree to split 4-nodes.
— Large number of cases for splitting.

Not practical to implement

Red-black trees

* How to represent 3-nodes? 0

— Regular BST with red "glue" links. e

3-node 0 o larger key is root

|I, IrL’55 IE:'L’r'l'I"L;L';Jf j&;'ﬂ'uh; grﬁlrrffr
f
than a a dne TN !hrm b
less between
than a aandb

Exercise

e Convert to a red-black tree

2-3 Trees and red-black trees

red-black tree

2-3 tree

Question: How do you convert a red-black tree to a 2-3 tree?

Red-black tree properties

e A BST such that

— No node has two red links connected to it

— Every path from root to null link has the same
number of black links

— Red links lean left.

Red-black tree implementation

private static final boolean RED true;
private static final boolean BLACK = false;

private class Node

{
Key key;
Value val;
Node left, right;
boolean color; // color of parent Tink
}
private boolean isRed(Node x)
{
if (x == null) return false;

return x.color == RED:
}

null links are black

h.left.color
is RED ~

(C)
(A) (D)

(E)

re

h

(G

(3)

h.right.color
w15 BLACK

B-Trees

B-tree. Generalize 2-3 trees by allowing up to M - 1 key-link pairs per node.

« At least 2 key-link pairs at root. Xhoose M as large as possible so
« At least M /2 key-link pairs in other nodes. that Mlinks fitin a page, e.g., M = 1024
- External nodes contain client keys.

» Internal nodes contain copies of keys to guide search.

2-node
* K "

sentinel key Nﬂﬂf 3-node
each red key isa copy ___

of min key in subtree” KiQU

external
3-node / \ external 5- mm‘{ V \ ufﬂrrrr:f{f node

EC [}EF I{MNDP QRT uwxv

client ﬂﬂa s (black) all nodes except the root are 3-, 4- or 5-nodes
are in external nodes

Anatomy of a B-tree set (M = 6)

Inserting to a B-tree

il'lSEI"til'lg.ﬂl. Ve H K Q U
I*|BICIE|IFL/][HIT]] | IKIMINOIPL-]|QIR!T | lU W X |
I1*|A|BIC|E|F]
v kev (A) causes new key (C) causes
F:::.,..ﬁtﬂ}.ﬂ,.{ﬁ.:II:;:;JI; Z{CIHIKIQY overflow and split
|* AB | LlCIE|F |
* K
*|C|H root split causes KiQlu
a new root to be created

Z i =

Inserting a new key into a B-tree set

B-Tree Facts

Insertion in a B-tree

« Search for new key.
 Insert at bottom.
« Split nodes with M key-link pairs on the way up the tree.

Proposition. A search or an insertion in a B-tree of order M with N keys
requires between log -1 N and logyn N probes.

hashing

Hash Table

* A better way (almost constant time) to
support

— put and find operations

* |deal goal
— Distribute keys evenly in a table

— Need a function (we call hash function) to
compute a table index

— The hash function must perform well for given
keys

Hash Function

* Easy to compute
* Avoid collisions
 Maps the object to a table of size M

o I

Hash function

M-1

Finding a hash function

 What would be a good hash function for
following key types?
— Social Security number
— Phone number
— B'day
— Strings
— Integer
— Double
— Just Java objects

Java hashCode()

Requirement. If x.equals(y), then (x.hashCode() == y.hashCode()).

Default implementation. Memory address of x.
Legal (but poor) implementation. Always return 17.

Customized implementations. Integer, Double, String, File, URL, Date, ...

User-defined types. Users are on their own.

Java hash codes

public int hashCode() public int hashCode()
return value; {

long bits = doubleTolLongBits(value);
return (int) (bits A (bits >>> 32));

convert to IEEE 64-bit representation;
xor most significant 32-bits
with least significant 32-bits
public int hashCode()

{ Warning: -0.0 and +0.0 have different hash codes

if (value) return 1231;
else return 1237;

Java string hashCode()

Java library implementation

int hash = 0;

for (int i = 0; i < lengthQ; i++)
hash = s[i] + (31 * hash);

return hash;

Based on the formula

h=s[0] -31L1 + ...+ s[L-3]-312 + s[L-2]- 31! + s[L-1]-31°.

Modular Hashing

Hash code. An int between -2 and 23 - 1.

Hash function. An int between 0 and M - 1 (for use as array index).
typically a prime or power of 2

private int hash(Key key)
{ return key.hashCode() % M; %

bug

private int hash(Key key)
{ return Math.abs(key.hashCode()) % M; }

1-in-a-billion bug

\ hashCode() of "polygenelubricants" is —231

private int hash(Key key)
{ return (key.hashCode() & Ox7fffffff) % M; }

correct

Hash code design

Hash code design

"Standard" recipe for user-defined types.
 Combine each significant field using the 31x +y rule.

If field is a primitive type, use wrapper type hashCode().
If field is nul1, return 0.

If field is a reference type, use hashCode(). <—— applies rule recursively

If field is an array, apply to each entry. «—— or use Arrays.deepHashCode ()

Uniform hashing

Bins and balls. Throw balls uniformly at random into M bins.

o 1 2 3 4 5 & 7 B8 9 10 11 12 13 14 15

Birthday problem. Expect two balls in the same bin after ~+/nt M/ 2 tosses.
Coupon collector. Expect every bin has =1 ball after ~ M In M tosses.

Load balancing. After M tosses, expect most loaded bin has
® (log M /log log M) balls.

Implementation

* A hash table of N keys can be implemented
using
— Separate Chaining
e An array of M Linked Lists

— Insert to beginning if the key is not present
— Double when N/M > 8 or halve when N/M < 2
— Rehash all keys when resizing

— Linear Probing
* An Array of size M >=N

— Open addressing when resolving collisions
— Linear probing — x, x+1, x+2 etc
— rehash all keys when resizing.

Deleting in a hash table

e Separate chaining hash table

* Linear probing hash table

Applications of ST
* Sets

* |Indexing

* Sparse vectors

Sets

public class SET<Key extends Comparable<Key>>

SETQ) create an empty set
void add(Key key) add the key to the set
boolean contains(Key key) is the key in the set?
void remove(Key key) remove the key from the set
int size() return the number of keys in the set
Iterator<Key> diterator() iterator through keys in the set

T R

spell checker
browser
parental controls
chess
spam filter

credit cards

identify misspelled words word dictionary words
mark visited pages URL visited pages
block sites URL bad sites
detect draw board positions
eliminate spam IP address spam addresses

check for stolen cards number stolen cards

File Indexing
Query: given a string, find all files that contains that string

Solution. Key = query string; value = set of files containing that string.

import java.io.File;
publiec class Filelndex
{

public static void main(String[] args)

{
5T<5tring, SET<Filex> st = new 5T<5tring, SET<File>>();

for (S5tring filename : args) {
File file = new File(filename);
In in = new In(filel;
while (!in.isEmpty())
{
5tring key = in.readString();
it (!st.contains(key))
st.put({word, new SET<Filex>());
SET<File> set = st.get(key);
set.add(file);
}
}

while (!StdIn.isEmpty())

{
5tring query = 5tdIn.readString();

StdOut.printin(st.get{query));
1

}
}

