
COS 226 – Data Structures and Algorithms

Fall 2014 – Flipped Lecture Section

Group Worksheet week 6 – 10.16.14

30 minutes

Problem #1: AVL and Red-black Trees

An AVL tree is a balanced tree such the height invariant is satisfied between left and

right sub trees of any node. That is, |height (TL) – height (TR)| <=1 for all nodes T,

where TL and TR denotes left and right sub trees. There are 4 different scenarios that

occur in AVL trees when inserting a new entry as shown below.

(a) Two of them require a single rotation (a left or right rotation) and other two

requires double rotation (left followed by right or vice versa). Identify which

ones are which and show the balanced tree after single or double rotations.

(b) Insert the keys 7, 6, 5, 4, 3, 2, 1 in that order into an red-black tree while

performing balance operations. How many rotations, and color flips are

required to create a balanced tree of the 7 nodes.

(c) Now create a balance tree using AVL operations in Part (a). Note that when a

new element is inserted the balance of the tree can be broken in one of the 4

ways listed. Perform the rotations as necessary to maintain the AVL height

invariant. How many rotations were performed in the case of AVL trees? Is it

more or less than red-black tree operations?

(d) (Challenge) Prove that the height of an AVL tree is of order log2 n for any

tree with n nodes. Hint: Let Nh denote the number of nodes in an AVL tree

of depth h and convince yourself that following equation holds based on

AVL tree invariant.

Nh > Nh-1 + Nh-2 + 1

Problem #2: Hashing with Quadratic Probing

Bonus Problems

Problem #3

Find a sequence of keys to be inserted into a BST and into a red-black BST such that

the height of the BST is less than the height of the red-black BST, or prove that no

such sequence is possible.

Problem 4: (Cuckoo hashing)

Develop a ST implementation that maintains two hash tables and two hash

functions. Any given key is in one of the hash tables, but not both. When inserting a

new key, hash to one of the tables, if the position is occupied, replace the key with

the new key and hash the old key into the other table (again kicking out a key that

may be residing there). If the process cycles, restart. Keep the tables less than half

full. Show that this method uses amortized constant time for insert.

