1. Given n random items, prove that it is not possible to build a BST in linear

time.

COS 226 — Data Structures and Algorithms
Fall 2014 - Flipped Lecture Section
Group Worksheet week 5 —10.09.14

30 minutes

Proof by Contradiction

Suppose we can build a BST in linear time using random elements.

Now we can use inorder traversal (linear time) to go over the elements and so that we can
produce a sorted list.

This means, now we have discovered a comparison based sorting algorithm that is linear time.
Contradicts our earlier finding that, there exists no comparison based sorting algorithm that is

better than N 1g N

So our assumption is incorrect and hence we cannot build a BST in linear time.

2. The figure below illustrates the results of inserting points 1-10 into a KdTree

10 [ ]

a. What are all the points examined in a query for the points inside the
rectangle shown above (in dotted lines)

123689 (though the search may go one extra level, depending on implementation)




b. Draw the result of inserting point 11, then point 12 in the two figures above

| e P
i P
] P
H - HE
@ P
3 | @ HE
3 '-...4 .......................................... T
1 b | | I
i - |
] i ] i
i o H :
e i
7 i
1 1 :
3 i
-3 |
10 —_—
- i

[ ]




3. String symbol table implementation

For each of the operations on the left, list which one or more of the symbol table implemen-
tations on the right can be used to efficiently implement it. By efficient, we mean Llog N
or better on typical ASCIT strings (in random order) of average length L, where N is the
number of keys in the data structure.

Solution

BCDE Find the value associated with a given string A. Unordered array.
key in the data structure.

CDE Associate a value with a string key. B. Ordered array.

CDE Delete a string key (and its associated value)
from the data structure. C. Red-black BST.

BCE Find the smallest string key in the data struc-

ture. D. Separate-chaining hash table.

BCE Find the smallest string key in the data struc-
ture that is greater than or equal to a given

string.

E. Ternary search trie.

E Find the string key in the data structure that is
the longest prefix of a given string.

E How many string keys in the data structure
starts with a given prefix?

Can also be done with an ordered array (B) or a
red-black BST (') by calling rank () twice, once
with the prefix and once with the last characler
in the prefiz incremented by one.



