
Flipped Lecture

Concepts

Week 5

Ananda Guna

10.09.14



Plan today

• ST’s

• K-D trees

COS 226 - Fall 2014 - Princeton University



Basic ST API

Keys Values

mapping



Elementary Symbol Table (ST)

• Implementations

– Ordered array

• put,  get, contains, delete

– linked list

• put,  get, contains, delete

• Properties of Keys 

– Keys are comparable

– API provides an equals method

• why cant we use just :  key1 == key2 ?



Ordered ST



PQ versus ST

COS 226 – Spring 2014 - Princeton 

University

PQ

ST

Unordered array

Ordered arrays

Binary Heaps

delMax findMax insert

put               get          contains   delete

Unordered array

Ordered arrays

Binary Search Trees



ST Performance



BST’s

root

Left

subtree right

subtree

Two invariants

• Shape – It is a binary tree and recursively defined

• Order - Left subtree < Root < Right subtree



BST API



Trace the Code



Tree Traversals

• Inorder (L, Root, R)

– Produces an ordered sequence when traversing a BST

– A binary tree B is a BST iff inorder traversal of B produces 

and ordered sequence

• Preorder (Left, Root, Right)

• Post order (Left, Right, Root)

• Level order

– Produces nodes by level from left to right

– Exercise: Implement a level order traversal of a BST using a queue



Deleting keys

Delete the following keys (in that order)

• X

• H

• E

Hibbard Deletion ( 3 cases)

• Delete a leaf node

• Delete a node with one child

• Delete a node with two children



Question

• Is it possible to delete random keys using 

Hibbard deletion and maintain the lg N 

performance?

– Answer:

• Is there a delete algorithm that can always 

maintain a logarithmic height

– Answer: 



Ordered BST API



Order of growth of ST operations



Challenge

• Argue that it is not possible to build a BST in 

linear time.

• How many BST’s of size n can be created from 

n distinct keys?



1D Range Search

• Points on a line

• Applications

– Insert key-value pairs (database tables)

– Find all values between two given keys k1 and k2

– Find the count of keys between two keys



Expected Performance



Range count



KdTrees

• A way to order k-dimensional trees in space to 

make search more efficient

• We will consider 2dTrees as an example

– Given a set of points in the form (x,y), how do we 

partition the 2d space so that a search can be 

performed more efficiently?



2dTree idea

• Recursively partition space into rectangles.

• Each rectangle is a bounding box for some point

• The rectangles are determined by a BST (shown on right) called a 

KdTree

• See a demo of building a KdTree



2dTree insert



2D range search

• Recursively search Left and Right subtrees to find the points that fall within the 

green search rectangle

• Since the bounding rectangle for point 2 or [(2,-inf), (inf, inf)] do not intersect the 

green search box, we can “prune” the entire right half of the tree.

• That is, there is no way the points {2, 7, 10, 8,  9 } can be inside the search 

rectangle. So we can focus on the left subtree



An observation

1. Note that entire right subtree is pruned.

2. The bounding rectangles of points, {1, 3, 6, 4, 5} intersects with search area

Upon testing.

3. We find that only the point 5 is within the box



2D Nearest Neighbor

Algorithm works by pruning subtrees that may be away from the target point



Assignment 5

bonus slides



Assignment 5 – Kd trees

COS 226 - Fall 2013 - Princeton University

Support two searches

• range search (find all of the points contained in a 

query rectangle)

• nearest neighbor search (find a closest point to a 

query point).



Geometric Primitives

COS 226 - Fall 2013 - Princeton University



Implementation



2D Point type

COS 226 - Fall 2013 - Princeton University

Use  Point2D.java (part of algs4.jar)  



Rectangle Class

COS 226 - Fall 2013 - Princeton University

Use  RectHV.java (given)



Brute Force Implementation

• Implement pointST.java using a RB BST

COS 226 - Fall 2013 - Princeton University

• PointST is a map: Point � arbitrary value

• using RedBlackBST from algs4.jar or java.util.TreeMap

• insert(), get() and contains() in O(log n) time

• nearest()

• Scan all points and compute distance squared and find the ones 

with the minimum

• range()

• Scan all points and find the ones within the given rectangle

• Both operations are O(n)



Node class design for k-d trees

private static class Node { 

private Point2D p; // the point private 

Value value; // the symbol table maps the point to this value private 

RectHV rect; // the axis-aligned rectangle corresponding to this 

// node 

private Node lb; // the left/bottom subtree

private Node rt; // the right/top subtree

}

COS 226 - Fall 2013 - Princeton University

Two pointers 

to left and 

right 

subtrees



Assignment help session

• Friend 108

• Friday October 10, from 4;30-6:00

• Optional

– Watch the videos and/or attend the help session

• Read the assignment before you go to help 

session


