Flipped Lecture
Concepts

Week 5
Ananda Guna
10.09.14

Plan today

e ST’s
e K-D trees

COS 226 - Fall 2014 - Princeton University

Basic ST API

public class ST<Key, Value>

STO create an empty symbol table
void put(Key key, Value val) put key-value pair into the table
Value get(Key key) value paired with key
boolean contains(Key key) is there a value paired with key?
void delete(Key key) remove key (and its value) from table
mapping

Keys

Elementary Symbol Table (ST)

* Implementations

— Ordered array
e put, get, contains, delete

— linked list
e put, get, contains, delete

* Properties of Keys
— Keys are comparable

— API provides an equals method
* why cant we use just : keyl == key2 ?

Ordered ST

public class ST{Key@ Ccmparab'l@ Value>

Key min() smallest key
Key max() largest key
Key floor(Key key) largest key less than or equal to key
Key ceiling(Key key) smallest key greater than or equal to key
int rank(Key key) number of keys less than key
Key select(int k) key of rank k
void deleteMin() delete smallest key
void deleteMax() delete largest key
int size(Key lo, Key hi) number of keys between lo and hi

Iterable<Key> keys() all keys, in sorted order

PQ

ST

PQ versus ST

delMax findMax

Unordered array /

Ordered arrays /

Binary Heaps

put get

Unordered array

Ordered arrays
Binary Search Trees\

COS 226 — Spring 2014 - Princeton
University

insert

contains delete

ST Performance

guarantee average case
operations

implementation |
on keys
search insert search hit insert

sequential search
{unordered list)

N N N N equals()

bi h
oieawrn eV () wn (W) comareroo

BST's

Left
subtree right
subtree

Two invariants
e Shape —Itis a binary tree and recursively defined
* Order - Left subtree < Root < Right subtree

BST API

public class BST<Key extends Comparable<Key>, Value>

{

private Node root;

private class Node
{ /* see previous slide */ }

public void put(Key key, Value val)
{ /* see next slides */ }

public Value get(Key key)
{ /* see next slides */ }

public void delete(Key key)
{ /* see next slides */ }

public Iterable<Key> iterator()
{ /* see next slides */ }

Trace the Code

Tree Traversals

Inorder (L, Root, R)
— Produces an ordered sequence when traversing a BST

— A binary tree B is a BST iff inorder traversal of B produces
and ordered sequence

Preorder (Left, Root, Right)
Post order (Left, Right, Root)

Level order
— Produces nodes by level from left to right
— Exercise: Implement a level order traversal of a BST using a queue

Deleting keys

Hibbard Deletion (3 cases)

* Delete aleaf node

* Delete a node with one child

* Delete a node with two children

Delete the following keys (in that order)
e X
 H
* E

Question

* |sit possible to delete random keys using
Hibbard deletion and maintain the Ig N
performance?

— Answer:

* |s there a delete algorithm that can always
maintain a logarithmic height

— Answer:

public class

Ordered BST API

ST{Keycggggﬁﬁﬁ Ccmparab1%EEE£E} Value>

Key
Key
Key
Key
int
Key
void
void
int

Iterable<Key>

min()

max ()

floor(Key key)
ceiling(Key key)
rank(Key key)
select(int k)
deleteMin()
deleteMax()

size(Key To, Key hi)

keys(

smallest key
largest key
largest key less than or equal to key
smallest key greater than or equal to key
number of keys less than key

key of rank k

delete smallest key

delete largest key

number of keys between lo and hi

all keys, in sorted order

Order of growth of ST operations

guarantee average case
operations

implementation
on keys
search insert search hit insert
N

sequential search

(unordered list) N N N equals()

binary search

Gedired iy log N N log N N compareTo()

BST N N log N log N compareTo()

Challenge

e Argue that it is not possible to build a BST in
linear time.

* How many BST’s of size n can be created from
n distinct keys?

1D Range Search

e Points on a line

OO0 O—C—C—CO0—

e Applications
— Insert key-value pairs (database tables)
— Find all values between two given keys k1 and k2
— Find the count of keys between two keys

Expected Performance

order of growth of running time for 1d range search

data structure insert range count range search

unordered list

ordered array N log N R+1log N

goal log N log N R+log N

N = number of keys

E = number of keys that match

Range count

if (contains(hi)) return rankChi) - rank(lo) + 1;
else return rank(hi) - rank(lo):

KdTrees

* A way to order k-dimensional trees in space to
make search more efficient

 We will consider 2dTrees as an example

— Given a set of points in the form (x,y), how do we
partition the 2d space so that a search can be
performed more efficiently?

2dTree idea

10

e 4

* Recursively partition space into rectangles.

* Each rectangle is a bounding box for some point

* The rectangles are determined by a BST (shown on right) called a
KdTree

 See ademo of building a KdTree

2dTree insert

et te et EELECEEE T . St ECE Ry

points points : points points
left of p right of p : : below q above g

even levels odd levels

2D range search

* Recursively search Left and Right subtrees to find the points that fall within the

green search rectangle
» Since the bounding rectangle for point 2 or [(2,-inf), (inf, inf)] do not intersect the
green search box, we can “prune” the entire right half of the tree.
* Thatis, there is no way the points {2, 7, 10, 8, 9 } can be inside the search

rectangle. So we can focus on the left subtree

An observation

i

T 4
1. Note that entire right subtree is pruned.
2. The bounding rectangles of points, {1, 3, 6, 4, 5} intersects with search area

Upon testing.
3. We find that only the point 5 is within the box

2D Nearest Neighbor

i

04 : nearest neighbor = 5

Algorithm works by pruning subtrees that may be away from the target point

Assignment 5
bonus slides

Assignment 5 — Kd trees

query rectangle que?fpoim
\
L] [] . s * \ ™ IIII'.I & % .
\
L & L] L] & Il\l ™ * .HI ;

L] L] L
L] L] L]
- L] L]
L] L] L] L] L] L]
L L] L
L] [] L]
- L ™ - L ™ & L]
L] L] L] [] L]
L] L] L]
set of points 2d range search 4 nearest neighbors

Support two searches

* range search (find all of the points contained in a
query rectangle)

e nearest neighbor search (find a closest point to a
query point).

COS 226 - Fall 2013 - Princeton University

Geometric Primitives

distance to r = 0.0 \u:n's-ﬁh'gm’d rectangle r
distance to r = 0.3 \

l ®

— o mmm m omm

= o o o o -

(0.1,04) @
distance to r = 01.5 (0.4,0.3)
@ (0000

COS 226 - Fall 2013 - Princeton University

Implementation

2D Point type

public class Point2D {

public
public
public
public
public
public
public
public

Point2D(double %, double y) /!
double x() /!
double y() //
double distanceSquaredTo(Point2D that) //

int compareTo(Point2D that) I/
boolean equals(Object that) [/
void draw() /!
String toString() //

Use Point2D.java (part of algs4.jar)

COS 226 - Fall 2013 - Princeton University

construct the point (%, y)
x-coordinate

y-coordinate

square of Euclidean distance between
for use in an ordered symbol table
does this point equal that?

draw to standard draw

string representation

Rectangle Class

public class RectHV

public RectHV (double xmin, double ymin,
double xmax, double ymax)

public double xmin/()

public double ymin/()

public double xmax()

public double ymax()

public boolean contains (PointZ2D p)

public boolean intersects (RectHV that)

public double distanceSquaredTo (PointZD p)

public boolean equals (Cbhbject that)

public vold draw()

public String toString()

Use RectHV.java (given)

COS 226 - Fall 2013 - Princeton University

Brute Force Implementation

Implement pointST.java using a RB BST

public class Point8T<Value> {
public PointsST ()
public boolean isEmpty ()
public int size ()
public void insert(PointZD p, Values v)
public Value get (PointiZD p)
public boolean contains (PointZD p)
public vold draw()
public Iterable<PointZD> range (RectHV rect)
public PointZD nearest (PointiZD p)
public static void main(String[] args)

* PointST is a map: Point = arbitrary value
e using RedBlackBST from algs4.jar or java.util.TreeMap
* insert(), get() and contains() in O(log n) time
* nearest()
* Scan all points and compute distance squared and find the ones
with the minimum
* range()
e Scan all points and find the ones within the given rectangle
* Both operationscare,O(n)

Node class design for k-d trees

private static class Node {
private Point2D p; // the point private
Value value; // the symbol table maps the point to this value private
RectHV rect; // the axis-aligned rectangle corresponding to this
// node
private Node Ib; // the left/bottom subtree
private Node rt; // the right/top subtré

Two pointers
to left and
right
subtrees

COS 226 - Fall 2013 - Princeton University

Assignment help session

Friend 108

Friday October 10, from 4;30-6:00

Optional

— Watch the videos and/or attend the help session

Read the assignment before you go to help
session

