
COS 226 – Data Structures and Algorithms 

Fall 2014 – Flipped Lecture Section 

Individual worksheet  

Week 5 – 10.07.14 

 

Instructions: Answer at least 5-10 questions in class using anonymous comments. When you find the location of 

the video that is relevant to answering the question, make a comment, with the title Question 1 (for example). Write 

the possible answer to the question (anonymous) and link any other videos that may be relevant to answering the 

question. You are not expected to answer all questions. Look for answers written by other “anonymous” students 

and vote for good answers so we can see which answers get the most votes. We will try to compile some of the best 

answers for Thursdays lecture. 

 

1. State 3 applications where a symbol table data structure can be used. 

 

 

 

 

 

 

 

2. Suppose that a symbol table API (page 363) is implemented with a sorted array. What is the order of growth 

of each operation in symbol table API?  

 

 

 

 

 

 

3. Suppose that a symbol table API (page 363) is implemented with an unsorted linked list. What is the 

complexity of each operation in symbol table API?  

 

 

 

 

 

 

4. Give a trace of the process of inserting the keys E A S Y Q U E S T I ON into an initially empty table using 

SequentialSearchST.  How many compares are involved? (compares are given in parenthesis) 

 

          

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

There are many, implementing a dictionary, hash tables, database applications, or any 

application where keys and values need to be connected. That is, applications, where 

searching by a key is more efficient and values can be large data structures such a 

personal record 

put -  n ,   get – lgN ,  delete-N , contains- lgN , isempty() – constant,  size() - constant 

keys() - N 

put -  1 ,   get – N ,  delete-N , contains-N , isempty() – constant,  size() – constant, keys() 

- N 

E (0) 

A E (1) 

S A E (2) 

Y S A E (3) 

Q Y S A E (4) 

U Q Y S A E (5) 

U Q Y S A E (5) 

U Q Y S A E (6) 

T U Q Y S A E (6) 

I T U Q Y S A E (7) 

O I T U Q Y S A E (8) 

N O I T U Q Y S A E (9) 

 



 

5. What is a lazy implementation of delete and explain a situation where lazy implementation may not be the 

best way to do delete in a symbol table? 

 

 

 

 

 

 
 

6. In a symbol table which one is unique? keys or values? why? 

 

 

 

 
7. If a symbol table is implemented with a linked list, what is the complexity of each of the operations listed in 

the API (as in question 2)? 

 

 

 

 

8. What is the definition of rank(key)? 

 

 

9. List all operations in an ordered symbol table API.  

 

 

 

10. How much memory is required to hold a node of a BST that contains an Item and two pointers? 

 

 

11. Insert the keys {B, D, A, Z, R, C} in alphabetical order into a BST. Explain all the operations performed 

(compare, insert, initialize) in the process of building the BST 

 

 

 

 

 

 

 

12. List 4 ordered ways that a BST can be traversed. Show the output when the BST in question #11 is traversed 

in two of the orders that was described. 

 

 

 

 

 

 

13. If keys {1,2,3,…n} are inserted into a BST into the order they come in (non-randomized) what is the worst 

case search complexity? 

 

 

 

 

A lazy implementation of delete leaves keys in place with null. However, if you have many deletes in a symbol table, 

this can be a problem. One way to avoid this problem is to keep track of the “delete factor”. This is an index where it 

can inform you when there are too many nulls. At that point you can reinitialize the table (linear cost) to remove all 

null elements. 

keys have to be unique. 

see answer to question #3 

number of keys in the ST that are less than key 

see page 366 in the textbook 

see page 375. You would need 3 references (24 bytes) 

B     |    B     |          B           |         B               |            B            |            B 

               D          A      D           A        D                 A        D                  A        D 

                                                                   Z                           Z                      C      Z 

                                                                                           R                                R 

  

inorder – Left, Root, Right                                 A  B  C  D  R  Z 

preorder – Root, Left, Right                              B   A  D  C  Z  R 

postorder – left, right, Root 

level order – traverse by levels 

 

The BST will grow linearly. The search would cost:   n 



14. Draw a BST when keys E A S Y Q U E S T I O N is inserted in that order associating value i with i
th

 key. 

 

 

 

 

 

 

 

 

15. In general BST’s cannot handle duplicate keys. Suggest a way to design the data structure so that duplicate 

keys can be handled. What is the extra cost? memory and/or runtime? 

 

 

 

 

16. If n keys are inserted into a BST in random order what is the expected number of compares to search or 

insert in tilde notation? 

 

 

 

17. Design an algorithm to find the total number of nodes in BST. What is order of growth of your algorithm? 

 

 

 

 

18. Design an algorithm to find the height of a BST. What is order of growth of your algorithm? 

 

 

 

 

19. Design an algorithm to find the floor and ceiling of a given key. What is the order of growth of your 

algorithm? 

 

 

 

 

20. Given 4 comparable keys {1,2,3,4} how many BST’s are possible? Draw all the trees. 

 

 

 

21. Why is it that the lazy approach of deleting keys from a BST is not desirable? State a situation where the 

lazy approach can be a problem. 
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                               N   

One possibility is to store the key count in the node. This would cost extra integer for each node and a total of 4N 

memory 

                                

~ 1.39 lg N 

                                

An idea would be to define a recursive formula: Let count(T) be the total nodes in a tree T (T also represents the root). 

Then count(T) = 1 + count(left child of T) + count( right child of T) 

This can be done in linear time. 

An idea would be to define a recursive formula: Let height(T) be the total nodes in a tree T (T also represents the 

root). 

Then height(T) = 1 + Math.max(height(left child of T), height( right child of T))  - linear time 

 

In an ordered list …….. floor   entry    ceiling ……….. 

Find the entry in lg N time (balanced BST). To find the floor we may need N work. To find the ceiling a  

 

you should draw all possible BST’s. You can actually show (not in this class) the number is 1/(n+1)*(2n C n)  where n 

is the number of keys 

 

same as the argument we made with ST’s. Just leaving a lots of dead nodes can waste space. You can rebuild the tree 

when the dead node percentage goes up. 

                                



 

22. Consider the following BST (source: Wikipedia). Show the tree after deleting the keys 1, 14 and 8 

successively. 

 

  

  

 
 

 

23. Show that it is not possible to build a BST in linear time given n keys 

 

 

 

 

 

24. What is the worst case complexity of the following operations. State your answer in order of growth 

notation. 

a. traverse a BST inorder 

b. traverse a BST in level order 

c. Find the max of a BST 

d. Find the floor of a key 

e. Find all keys in a given range [k1, k2] including k1 and k2 

 

 

 

 

 

 

25. Given n horizontal and n vertical line segments, design a naive algorithm for each of the following 

operations and determine worst case order of growth for your algorithm 

a. Find all intersection points 

b. Find all intersection points between two horizontal or two vertical line segments 

 

 

 

 

 

Suppose it is possible to build a BST in linear time. Then we have a sorting algorithm that can sort a set of comparable 

keys in linear time. But we showed that we need at least N lg N comparisons to sort a list  of size n. So this is a 

contradiction 

a. N 

b. N 

c. lg N (if the BST is balanced) 

d. N 

e. N 

A naïve algorithm can scan all pairs (there are n2 of them) of and find if they intersect. You can find if two lines 

intersect in linear time (how). So the order of growth is n2 



 

26. Explain an efficient algorithm for finding intersection of n horizontal and n vertical line segments. What is 

the order of growth of your algorithm for finding all intersection points? 

 

 

 

 

 

 

27. Given n points (x,y) form, design an algorithm to find all points that are inside a given rectangle? What is 

the worst case order of growth for your algorithm? 

 

 

 

 

 

28. Insert the points (2,3) , (2,4), (1,1), (5,2), (3,3) into a 2d tree. Show the tree and corresponding bounding box 

for each point. 

 

 

 

 

 

 

 

 

 

 

 

29. Describe the operations, nearest neighbor search and range search in 2d trees. What is the worst case order 

of growth in each case? 

 

 

 

 

see salon video 

http://www.classroomsalon.com/video/view_video.aspx?mode=view&document_id=3418 

for sweep algorithm 

A naïve algorithm for doing this is to scan all points (N of them) and call the method contains(point, rectangle) that 

checks if the point is inside the rectangle. The order of growth is N 

                               (2,3) 

               (1,1)                       (2,4) 

                                      (5,2) 

                           (3,3) 

(2,3) � (-inf, -inf)  (inf, inf) 

(2,4) � (2, -inf)  (inf, inf) 

(1,1) � (-inf, -inf)  (2,inf) 

(5,2) � (1, -inf) (2, inf) 

(3,3) � (1, -inf), (2,2) 

Nearest neighbor search requires finding the closet bounding box for a given point. The range search requires pruning 

the tree until we find the points that are contained in the bounding box. 


