Flipped Lecture
Concepts

Week 4
Ananda Guna
10.02.14

Focus this week

* Quicksort
— 2-way and 3-way partitioning
— Bad cases, average cases
— Dealing with equal elements
— Proof of average case

* Priority Queues
— API
— Implementation using binary heaps
— Applications

Quick sort idea

Good general purpose sort
Works great for randomized data sets

In-place but not stable (unless you use extra
memory)

Bad cases
— All equal keys
— Non-randomized data sets

Partitioning

e 2-way partitioning

e 3-way partitioning (Dijkstra’s)

Choosing the pivot

* First element in a randomized set
 Median of the three
* Double pivots

ldea of quick-select
* Given N items, find the k-th largest element

Upper bound N Ig N

Optimal algorithm

1

Lower bound N

Quick-selectis ~ N

Duplicate keys

Exercise: Show that standard 2-way partitioning algorithm behaves
badly when it does not stop at equal keys

Dijkstra 3-way partitioning demo

« Let v be partitioning item a[lo].

« Scan i from left to right.
- (a[i] < v): exchange a[1t] with a[i]; increment both 1t and i

- (a[i] > v): exchange a[gt] with a[i]; decrement gt

- (a[i] == v): increment i

Just curious!

* |s there an efficient algorithm (something less
than N IgN) to sort N items where only k
distinct keys exists?

— If k=N then we know the answer is NO!

— What if there is some magic k where this can be
true?

Best sorting algorithm to use?

Applications have diverse attributes.
« Stable?
« Parallel?
+« Deterministic?
« Keys all distinct?
« Multiple key types?
« Linked list or arrays?
« Large or small items?
« |s your array randomly ordered?
+ Need guaranteed performance?

Priority Queues

public class MaxPQ<Key extends Coﬁbarab1e<Key>>

MaxPQ() create an empty priority queue
MaxPQ(Key [] a) create a priority queue with given keys
void insert(Key v) insert a key into the priority queue
Key delMax() return and remove the largest key
boolean 1isEmpty() is the priority queue empty?
Key max() return the largest key

int size() number of entries in the priority queue

implementation

implementation insert del max -

unordered array

ordered array N 1 1

goal log N log N log N

Binary Heaps

Maintains the invariants
— Shape invariant
— Order invariant

Implemented as a complete binary tree
— Perfectly balanced except the last level

Max is the root element
Compact representation using an array

Array[0] is unused

— A[l] is parent, A[2i] and A[2i+1] are left and right children
Height h of the binary heap with N elements

—2h < N <=2h1 _ 1

Operations

e deleteMax

— Replace last element with root and sink

e |Insert

— Insert new as last element and swim up

* Heap shape Invariant violations (temporary)

Challenge

Build a data structure that can do the
following operations

— find median in constant time

— delete median in Ig N time

— insert an element in Ig N time

Challenge problem

* Checkout line problem

— 5 customers each requiring different times of
service

— Times required in original order (shown in mins)

1| 2 | 3 | 4 | 5
18 5 25 2 10

— What is the average time to serve a customer?

Challenge problem ctd..

e Suppose the customers are placed in a minPQ
 What is the average time to serve a customer?

1| 2 | 3 | 4 | 5
18 5 25 2 10

Heap Sort

* Two step process
— Build a Max Heap
— while (!heap.empty()) delete Max

 Complexity?

Sort summary

v 15 N2

selection 1A N2 N2 N exchanges

use for small N

insertion v v N 4 N2 va vz
or partially ordered
tight code;
hell 9 N ’
S1e v Nlogs N ' cN subqguadratic
merge v %NIgN NIgN NIgN sk ": tga‘;’;'e"a”'“‘

improves mergesort

timsort
imsor 2 N NlgN NlgN when preexisting order

Nlog N probabilistic guarantee;

quick v NlgN 2NIhN N2 . :
fastest in practice

improves quicksort

- i 2

A d N ISR | when duplicate keys

heap v N 2NIgN 2NIgN NlogIN guarantee;
in-nlare

