
Flipped Lecture

Concepts

Week 4

Ananda Guna

10.02.14

Focus this week

• Quicksort

– 2-way and 3-way partitioning

– Bad cases, average cases

– Dealing with equal elements

– Proof of average case

• Priority Queues

– API

– Implementation using binary heaps

– Applications

Quick sort idea

• Good general purpose sort

• Works great for randomized data sets

• In-place but not stable (unless you use extra

memory)

• Bad cases

– All equal keys

– Non-randomized data sets

Partitioning

• 2-way partitioning

• 3-way partitioning (Dijkstra’s)

Choosing the pivot

• First element in a randomized set

• Median of the three

• Double pivots

Idea of quick-select

• Given N items, find the k-th largest element

Optimal algorithm

Upper bound N lg N

Lower bound N

Quick-select is ~ N

Duplicate keys

Exercise: Show that standard 2-way partitioning algorithm behaves

badly when it does not stop at equal keys

Just curious!

• Is there an efficient algorithm (something less

than N lgN) to sort N items where only k

distinct keys exists?

– If k=N then we know the answer is NO!

– What if there is some magic k where this can be

true?

Best sorting algorithm to use?

Priority Queues

implementation

Binary Heaps
• Maintains the invariants

– Shape invariant

– Order invariant

• Implemented as a complete binary tree

– Perfectly balanced except the last level

• Max is the root element

• Compact representation using an array

• Array[0] is unused

– A[I] is parent, A[2i] and A[2i+1] are left and right children

• Height h of the binary heap with N elements

– 2h < N <= 2h+1 - 1

Operations

• deleteMax

– Replace last element with root and sink

• Insert

– Insert new as last element and swim up

• Heap shape Invariant violations (temporary)

Challenge

• Build a data structure that can do the

following operations

– find median in constant time

– delete median in lg N time

– insert an element in lg N time

Challenge problem

• Checkout line problem

– 5 customers each requiring different times of

service

– Times required in original order (shown in mins)

– What is the average time to serve a customer?

1 2 3 4 5

18 5 25 2 10

Challenge problem ctd..

• Suppose the customers are placed in a minPQ

• What is the average time to serve a customer?

1 2 3 4 5

18 5 25 2 10

Heap Sort

• Two step process

– Build a Max Heap

– while (!heap.empty()) delete Max

• Complexity?

Sort summary

