COS 226 — Data Structures and Algorithms
Fall 2014 - Flipped Lecture Section
Group Worksheet week 4 —10.02.14

25 minutes

1. Dynamic median. Design a data type that supports the following operations
a. insertin logarithmic time
b. find-the-median in constant time
c. remove-the-median in logarithmic time.

You may use any ADTs we've discussed in class. This problem may be harder
than any you'll find on a 226 exam.

One idea is to create a structure as follows:
median

/ \

max_heap min_heap

Where median is at the root or one of the root elements in max or min heap.
1. insert- if the element is more than median, then insert to min_heap else insert to max_heap (Ig N
time)
2. find_median - just return the root element (or one of the children) - constant time
3. remove median - delete the median and promote the next candidate to median (from max or min
heap). Adjust the heap in Ig N time

2. Somewhat Leaky Stack.
Aleaky stack is a generalization of a stack that supports
¢ adding a string - Ig N time
¢ removing the most-recently added string -1g N
e deleting a random string - find a random string and delete in linear time or
less

Design a data structure that can perform all operations to meet the performance
goals as listed above

insert keys to a PQ in the order they come (most recently will have the highest priority and hence the root
element of the heap).
1. whenyouinsert a string, you need to give a priority and insert. Insert takes lg N worst case time
2. removing the most-recently added will be Ig N time (equivalent to del_max)
3. Arandom number is generated, but we cannot know where the key is and hence we have to look
at all strings (we will discuss a better implementation next week)

3. Heapification.

What is the run-time required to perform a bottom-up sink-based heapification? That is you would
sink elements starting from level (h-1) up to level 0 maintaining the heap order property

Bottom up heapification works as follows.

assume the binary heap is of height h

there are 2 elements in the lowest level, 21 in the level above etc.

there are 2° or 1 node (root) at level 0

Drop the 21 elements by at most 1 level to maintain the heap invariant

Drop the 22 elements by at most 2 level to maintain the heap invariant

Continue this until the last element (root) is heapified

Total operations required: 2h-1*1 + 2h-2%2 + 2h-3%3 + + 2h-h¥h

Show that above sum is roughly ~ N using an integral as an approximation to the discrete sum,
where N = floor(2h*1 - 1)

ONQULEWN

4. Largest Common [tem

Given an N-by-N matrix of real numbers, find the largest number that appears (at least)
once in each row (or report that no such number exists).

The running time of your algorithm should be proportional to N?log N in the worst case.
You may use extra space proportional to N2.

1. Sort each row using heapsort. (N g N)*N

2. For each number in row 0, from largest to smallest, use binary search to check if it
appears in the other N - 1 rows. (Ig N * N)

3. Return the first number that appears in all N rows.

The order of growth of the running time is N2log N, with the bottleneck being steps 1 and 2. Correctness
follows because the largest common number must appear in row 0. Scanning the numbers in row 0 from
largest to smallest ensures that we find the largest common number.

