
COS 226 – Data Structures and Algorithms 

Fall 2014 – Flipped Lecture Section 

Individual or small group worksheet week 4 – 10.02.14 

25 minutes 

 

Instructions: Answer these solo or in small groups (2-3). 

 

1. Apply 2-way partitioning to the set:  S S S O B E R R   Show the array after each exchange in one partition 

run. 

 

ANS:  S S S O B E R R  ���� E R R O B S S S  

 

 

2. Apply 3-way partitioning to the set:  S S S O B E R R   Show the array after each exchange in one partition 

run. 

 

ANS:  S S S O B E R R  ���� O S S S B E R R ����O B S S S E R R ���� O B E S S S S R R ���� O B E R S S S R ���� 

O B E R R S S S  

 

3. Suppose that a mysterious data set (not seen by human eye) is randomized and yet the runtime of the 

quicksort ended up quadratic. What could be a possible reason for this? 

 

ANS:  Most likely the data set had many duplicates and 2-way quicksort with no stop at equal elements was 

applied  

 

4. The quick-select algorithm for finding median was applied to a non-randomized data set. What is the worst 

case runtime of the algorithm? 

 

ANS:  It is proven that (theoretically) that the worst case run time for quick-select is still linear. But the 

construction to make that happen is not practical. So there is still an opportunity to find a “practical” linear 

time quick-select algorithm 

 

5. Assuming at each partition step, we were lucky to get median as the pivot. Write down a recurrence 

relation that represents the quicksort and argue that it is linearithmic. 

 

ANS:  T(N)  = 2 T (N/2) + N  ���� T(N)  ~  N lg N 

 

6. Assuming at each partition step, we get 1/3 and 2/3 split of the array. Write down a recurrence relation that 

represents the runtime of the quicksort.  

 

ANS:  T(N)  = T (N/3) + T(2N/3) + N   

 

7. Consider the following binary max heap. Show the original array that represents this heap and the array 

after Max is deleted 

 
ANS:    Y W M G U K C A F H P (original)     W U M G P K C A F H (after max is deleted) 

 



 

8. Why is it impossible to build a PQ that supports insert() and delMax() in constant time? 

 

ANS:  it is impossible to get constant performance w/o an array implementation. But if we keep insert() 

constant time, then delMax would be linear and vice versa. So at least we try to keep both lg N by using a 

binary heap 

 

9. Design an implementation of a PQ that supports delMax() in constant time. 

 

ANS:  Suppose we keep max at the end of the array and so delete would be constant time. However, we will 

pay a linear price to insert an element since we need to make sure current max is always at the end of the 

array 

 

 

10. Suppose we use a linked list instead of an array to implement a binary heap. Do we expect the running time 

to be better or worse? Memory usage? 

 

ANS:  probably not a good idea. First of all for each node, we have to keep two pointers of extra memory. So 

we will be using at least 16N more memory for a heap of size N. Actual runtime may be more as arrays are 

well cached and linked lists are not. 

 

11. We can use binary search to find out where a new item should be inserted in the heap (instead of sinking 

one-by-one) in log(log(N)). Why don’t we do this? 

 

ANS:  Even if you find a place to insert, you will still need to do lg N work to move the element into the right 

place.  
 

12. Suppose we used a linked data structure, which allows constant time insertion. Why can’t we use the 

binary-search trick from #4? 

 

ANS:  You cannot do binary search on a linked list. Linked lists are not random access 
 

 

13. Suppose we use bottom-up SWIMMING (i.e. every node at the lowest level is swum, then every node at 

the next level up is swum, etc.). Is this procedure guaranteed to result in a heap? 

 

ANS:  No. we can give a counter example. Try the heap represented by array: x 1 2 3 4 5 6 7 to make a 

maxHeap by swimming up 
 

14. For each of the following sorts, write down an invariant that is true during the execution of the algorithm 

after i-steps 

 

(a) selection sort � All elements in A[0..i]  is ___Less than A[i+1…n-1]_______________ 

 

(b) insertion sort � is _A[0..i-1] is sorted_______________ 

 

(c) top-down merge sort _____Subarrays of size power of 2 can be sorted at any given 

time____________ 

 

(d) heap sort �  A[i+1..n-1] is the largest n-I elements 

 

15. Binary heap is not cache friendly. Explain why? 

 

ANS:  The fact the children of A[i] are A[2i] and A[2i+1] makes it difficult to keep elements together in 

cache (A[i] and A[2i] may be in different blocks) 


