
COS 226 – Data Structures and Algorithms

Fall 2014 – Flipped Lecture Section

Individual or small group worksheet week 4 – 10.02.14

25 minutes

Instructions: Answer these solo or in small groups (2-3).

1. Apply 2-way partitioning to the set: S S S O B E R R Show the array after each exchange in one partition

run.

ANS: S S S O B E R R ���� E R R O B S S S

2. Apply 3-way partitioning to the set: S S S O B E R R Show the array after each exchange in one partition

run.

ANS: S S S O B E R R ���� O S S S B E R R ����O B S S S E R R ���� O B E S S S S R R ���� O B E R S S S R ����

O B E R R S S S

3. Suppose that a mysterious data set (not seen by human eye) is randomized and yet the runtime of the

quicksort ended up quadratic. What could be a possible reason for this?

ANS: Most likely the data set had many duplicates and 2-way quicksort with no stop at equal elements was

applied

4. The quick-select algorithm for finding median was applied to a non-randomized data set. What is the worst

case runtime of the algorithm?

ANS: It is proven that (theoretically) that the worst case run time for quick-select is still linear. But the

construction to make that happen is not practical. So there is still an opportunity to find a “practical” linear

time quick-select algorithm

5. Assuming at each partition step, we were lucky to get median as the pivot. Write down a recurrence

relation that represents the quicksort and argue that it is linearithmic.

ANS: T(N) = 2 T (N/2) + N ���� T(N) ~ N lg N

6. Assuming at each partition step, we get 1/3 and 2/3 split of the array. Write down a recurrence relation that

represents the runtime of the quicksort.

ANS: T(N) = T (N/3) + T(2N/3) + N

7. Consider the following binary max heap. Show the original array that represents this heap and the array

after Max is deleted

ANS: Y W M G U K C A F H P (original) W U M G P K C A F H (after max is deleted)

8. Why is it impossible to build a PQ that supports insert() and delMax() in constant time?

ANS: it is impossible to get constant performance w/o an array implementation. But if we keep insert()

constant time, then delMax would be linear and vice versa. So at least we try to keep both lg N by using a

binary heap

9. Design an implementation of a PQ that supports delMax() in constant time.

ANS: Suppose we keep max at the end of the array and so delete would be constant time. However, we will

pay a linear price to insert an element since we need to make sure current max is always at the end of the

array

10. Suppose we use a linked list instead of an array to implement a binary heap. Do we expect the running time

to be better or worse? Memory usage?

ANS: probably not a good idea. First of all for each node, we have to keep two pointers of extra memory. So

we will be using at least 16N more memory for a heap of size N. Actual runtime may be more as arrays are

well cached and linked lists are not.

11. We can use binary search to find out where a new item should be inserted in the heap (instead of sinking

one-by-one) in log(log(N)). Why don’t we do this?

ANS: Even if you find a place to insert, you will still need to do lg N work to move the element into the right

place.

12. Suppose we used a linked data structure, which allows constant time insertion. Why can’t we use the

binary-search trick from #4?

ANS: You cannot do binary search on a linked list. Linked lists are not random access

13. Suppose we use bottom-up SWIMMING (i.e. every node at the lowest level is swum, then every node at

the next level up is swum, etc.). Is this procedure guaranteed to result in a heap?

ANS: No. we can give a counter example. Try the heap represented by array: x 1 2 3 4 5 6 7 to make a

maxHeap by swimming up

14. For each of the following sorts, write down an invariant that is true during the execution of the algorithm

after i-steps

(a) selection sort � All elements in A[0..i] is ___Less than A[i+1…n-1]_______________

(b) insertion sort � is _A[0..i-1] is sorted_______________

(c) top-down merge sort _____Subarrays of size power of 2 can be sorted at any given

time____________

(d) heap sort � A[i+1..n-1] is the largest n-I elements

15. Binary heap is not cache friendly. Explain why?

ANS: The fact the children of A[i] are A[2i] and A[2i+1] makes it difficult to keep elements together in

cache (A[i] and A[2i] may be in different blocks)

