
COS 226 – Data Structures and Algorithms 

Fall 2014 – Flipped Lecture Section 

Group Worksheet week 4 – 10.02.14 

25 minutes 

 

 

1. Dynamic median. Design a data type that supports the following operations 

a.  insert in logarithmic time 

b. find-the-median in constant time 

c. remove-the-median in logarithmic time.  

 

You may use any ADTs we’ve discussed in class. This problem may be harder 

than any you’ll find on a 226 exam. 

 

 

 

 

 

 

 

 

 

 

 

 

 

2. Somewhat Leaky Stack.  

A leaky stack is a generalization of a stack that supports 

• adding a string – lg N time 

• removing the most-recently added string  - lg N 

• deleting a random string – find a random string and delete in linear time or 

less 

 

Design a data structure that can perform all operations to meet the performance 

goals as listed above 

  

One idea is to create a structure as follows: 

                  median 

            /                     \ 

     max_heap      min_heap 

 

Where median is at the root or one of the root elements in max or min heap. 

1. insert – if the element is more than median, then insert to min_heap else insert to max_heap (lg N 

time) 

2. find_median – just return the root element (or one of the children) – constant time 

3. remove median – delete the median and promote the next candidate to median (from max or min 

heap). Adjust the heap in lg N time 

insert keys to a PQ in the order they come (most recently will have the highest priority and hence the root 

element of the heap). 

1. when you insert a string, you need to give a priority and insert. Insert takes lg N worst case time 

2. removing the most-recently added will be lg N time (equivalent to del_max) 

3. A random number is generated, but we cannot know where the key is and hence we have to look 

at all strings (we will discuss a better implementation next week) 

 

 



 

3. Heapification.  

 
What is the run-time required to perform a bottom-up sink-based heapification? That is you would 

sink elements starting from level (h-1) up to level 0 maintaining the heap order property 

 

 

 

 

 

 

 

 

 

 

 

4. Largest Common Item 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

Bottom up heapification works as follows.  

1. assume the binary heap is of height h 

2. there are 2h elements in the lowest level, 2h-1 in the level above etc.  

3. there are 20 or 1 node (root) at level 0 

4. Drop the 2h-1 elements by at most 1 level to maintain the heap invariant 

5. Drop the 2h-2 elements by at most 2 level to maintain the heap invariant 

6. Continue this until the last element (root) is heapified 

7. Total operations required: 2h-1*1 + 2h-2*2 + 2h-3*3 + ……. + 2h-h*h 

8. Show that above sum is roughly ~ N using an integral as an approximation to the discrete sum, 

where N = floor(2h+1 – 1) 

 

 

1. Sort each row using heapsort. (N lg N)*N 

2. For each number in row 0, from largest to smallest, use binary search to check if it 

appears in the other N − 1 rows. (lg N * N) 

3. Return the first number that appears in all N rows. 

 

The order of growth of the running time is N2 log N, with the bottleneck being steps 1 and 2. Correctness 

follows because the largest common number must appear in row 0. Scanning the numbers in row 0 from 

largest to smallest ensures that we find the largest common number. 

 

 


