
Awaking drenched in sweat one night, you clearly see your path to fame and fortune.

You will build a robotic rhinoceros and tour the country singing songs about nature to

children, who will be allowed to play and interact with the rhinoceros. While a real

rhinoceros would be too dangerous, you believe a robotic rhinoceros can be kept in

check. In each of the situations below, which sort would you use? In all cases, assume

memory is not an issue, and that the goal is to minimize run time so that the rhino can

react as quickly as possible to any potential trouble. Answers may be used many times.

----- The rhinoceros is outfitted with a large number of

 sensors, each of which generates objects of type

 Observation. Observations include many instance

 variables, including importance, timestamp,

 pressure, temperature, light intensity, etc. These

 are placed in an unsorted array, and every time

 1000000 Observations are generated, they are

 delivered to a central processing unit that sorts

 the Observations by the importance field, which

 is of type double. What sort should you use to

 minimize the run time required to sort all

 Observations by importance?

----- Due to some close calls, you’re going to refactor

the sorting process to deal with a rare but

dangerous situation where some Observations are

generated with an incorrect importance value.

For engineering reasons not described here, you

can detect these by sorting by the timestamp and

importance of each Observation.

 Instead of importance, you first want to sort by

the timestamp of each Observation. The

timestamp is of a comparable type called

DateTime. What sort should you use to minimize

the run time required to sort all 1000000

Observations by timestamp?

----- After sorting by timestamp, you want to sort by

importance such that all the objects of the same

timestamp stay clustered. What sort should you

use to minimize the run time while maintaining

this clustering?

----- You iterate through the array, update the

importance of the very rare bad Observations

with a new value, and sort once more. What sort

do you use to put items in order of importance

while minimizing run time?

A.

B.

C.

D.

E.

Answers to above:
A. If we want to sort a set of randomly ordered items such that we get the best
performance and we don’t care about stability, we should use quicksort.

A or C. Again, we just want speed, but don’t care about stability. If the Observations
are randomly ordered, quicksort is the winner. It was also reasonable to assume
that the unsorted Observation array was filled in roughly by timestamp, in which
case we’d want to use insertion sort to take advantage of the partially ordered
nature of the array.

B. In this case, we want speed and stability, and our objects are randomly ordered
with respect to importance. The winning sort here is mergesort.

C. Here we have an array that is almost perfectly ordered, so we should use
insertion sort.

Inversions. Design a subquadratic algorithm that counts the number of inversions in an
array.

Answerish: Use a modified version of mergesort that counts the number of inversions
fixed as it sorts. See http://algs4.cs.princeton.edu/22mergesort/Inversions.java.html
for an example.

Linked List Scramble. Given a singly-linked list containing N items, rearrange the
items uniformly at random. Your algorithm should consume a logarithmic (or constant)
amount of extra memory and run in time proportional to in the worst case.

Hint (but not full solution): design a linear-time subroutine that can take two uniformly
shuffled linked lists of sizes N1 and N2 and combined them into a uniformly shuffled
linked lists of size N1+N2.

http://algs4.cs.princeton.edu/22mergesort/Inversions.java.html

