
COS 226 Algorithms and Data Structures Spring 2012

Final Solutions

1. Analysis of algorithms.

(a) f(N) = 1
100N

1/2

(b) ∼ 24N + 64M bytes

• Object overhead (16 bytes)

• inner class (8 bytes)

• four references (32 bytes)

• char (2 bytes)

• padding (6 bytes)

• Integer objects (24N bytes)

(c) B E H C G A

2. Miscellaneous.

C A D A C/D B A A C A

We accepted either C or D for finding a longest path from s to t in an edge-weighted digraph.
If path is required to be simple (as usual), then it can be solved in exponential time. If
the path does not need to be simple, then the longest path can be made arbitrarily long by
repeatedly going around a directed cycle.

3. Graph search.

(a) 0 2 8 7 1 6 3 4 5

(b) 0 1 2 6 4 8 3 5 7

4. Minimum spanning trees.

(a) 1 2 3 4 5 7 9 14

(b) 4 5 1 7 3 2 9 14

1

5. Shortest paths.

(a) 5 2 4 8 7

(b)

v distTo[] edgeTo[]

0 19.0 6→ 0

1 10.0 6→ 1

2 1.0 5→ 2

3 24.0 6→ 3

4 3.0 5→ 4

5 0.0 null

6 7.0 4→ 6

7 6.0 4→ 7

8 4.0 5→ 8

9 11.0 6→ 9

10 11.0 6→ 10

6. String sorting.

rabid cable table fable sable cache ... hedge wedge ledge media medic

7. Substring search.

0 1 2 3 4 5 6 7 8 9 10 11

A 1 1 3 1 5 1 7 1 9 1 11 1

B 0 2 0 2 0 6 0 8 0 2 0 6

C 0 0 0 4 0 0 0 4 0 10 0 12

s A B A C A B A B A C A C

8. Regular expressions.

2→ 6, 2→ 8, 3→ 4, 4→ 3, 4→ 5, 5→ 7, 8→ 2, 8→ 9

Final, Spring 2012

(A * | C) *)

0 1 2 3 4 5 6 7 8 9 10

(B

2

9. Ternary search tries.

(a) 10

COLONIAL and COTTAGE are at depth 10; CLOISTER, TERRACE, and TOWER are at depth 9;
TIGER is at depth 8; CHARTER is at depth 7; CANNON and QUAD are at depth 5; CAP and
IVY are at depth 3.

(b) 8

Since COLONIAL and CLOISTER each contain 8 characters, at least one of them will end
up at depth 8 or higher.

The following order leaves all strings at depth 8 or lower, which is the best possible:
COLONIAL, CLOISTER, COTTAGE, TERRACE, CHARTER, CANNON, TIGER, TOWER, QUAD, CAP,
and IVY. CLOISTER, CHARTER, and CANNON are at depth 8; COLONIAL, COTTAGE, TERRACE,
and TOWER are at depth 7; CAP and TIGER are at depth 6; IVY and QUAD are at depth 5.

10. Burrows-Wheeler transform.

(a) 0

B C C A B C C B

(b) C B A C B A C B D

11. Maximum flow.

(a) 37

(b) There are four possible augmenting paths (all with bottleneck capacity equal to 1).

• s→ 3→ 2→ 5→ t

• s→ 3→ 2→ 5→ 4→ t

• s→ 3→ 6→ 2→ 5→ t

• s→ 3→ 6→ 2→ 5→ 4→ t

(c) 38

(d) There are two possible minimum cuts

• {s, 2, 3, 6}
• {s, 1, 2, 3, 6}

(e) 38 = 9 + 15 + 14

3

12. Algorithm design.

(a) Form the digraph G′ consisting only of edges of weight greater than or equal to T . Use
BFS or DFS to determine whether there is any path from s to t in G′. Alternatively,
run BFS or DFS as usual in G, but ignore edges with weight strictly less than T .

(b) Use a version of binary search to find the largest threshold value T such that there
exists a path from s to t of bottleneck capacity T but there is not one of capacity
strictly more than T . To accomplish this, first sort the edges in increasing order of
weight. w1, w2, . . . , wE . If there is no path from s to t or if there is a bottleneck path
of capacity wE , then we are done. Otherwise, initialize lo = 1 and hi = E, maintaining
the invariant that there is a path from s to t of bottleneck capacity wlo but not one of
bottleneck capacity whi.

• Set mid = (lo + hi)/2.

• Using the subroutine from (a), determine whether this is a path from s to t of
bottleneck capacity greater than or equal to wmid.

• If yes, set lo = mid and repeat; if no, set hi = mid and repeat.

13. Reductions.

(a) Form the 2N integers as follows:

b0 + 6M, b1 + 6M, b2 + 6M, b3 + 6M, b4 + 6M

−8b0 − 12M, −8b1 − 12M, −8b2 − 12M, −8b3 − 12M, −8b4 − 12M

where M equal to 1 + maximum absolute value of any integer in b. Observe that all
of the terms with 6M are strictly positive and all of the terms with 12M are strictly
negative.

To see why it works, we must show that there exists i, j, and k such that bi + bk = 8bk
if and only if there exists i, j, and k such that ai + aj + ak = 0.

• Suppose that there exists i, j, and k such that bi + bj = 8bk. Then, the entries
ai′ = bi + 6M , aj′ = bj + 6M , and ak′ = −8bk − 12M satisfy ai′ + aj′ + ak′ = 0
because the 6M and 12M terms cancel out.

• Suppose that there exists i, j, and k such that ai + aj + ak = 0. The terms must be
of the form bi′ + 6M , bj′ + 6M , and −8bk′ − 12M : if no entry contains a term with
12M , then the sum will be strictly positive; if more than one entry contains a term
with 12M , then the sum will be strictly negative. Thus, bi′ + bj′ = 8bk′ because the
6M and 12M terms cancel out.

Remark: If you use +M and −2M (instead of +6M and −12M), then the reductions
fails because the −2M terms may not be negative. The array b[] = { -2, 0, -4, 9

} provides a counterexample since it has no solution but the resulting array a[] = {8,
10, 6, 19, -4, -20, 12, -92 } has the solution 8 +−20 + 12 = 0.

(b) I and III only.

4

