
Princeton University
COS 217: Introduction to Programming Systems

C Symbolic Constants

Method 1: #define

Example

int main(void)
{
 #define START_STATE 0
 #define POSSIBLE_COMMENT_STATE 1
 #define COMMENT_STATE 2
 ...
 int iState;
 ...
 iState = START_STATE;
 ...
}

Strengths

Preprocessor does substitutions only for tokens.

int iSTART_STATE; /* No substitution. */

Preprocessor does not do substitutions within string literals.

printf("What is the START_STATE?\n"); /* No substitution. */

Simple textual substitution; works for any type of data.

#define PI 3.14159

Weaknesses

Preprocessor does not respect context.

int START_STATE;

After preprocessing, becomes:
int 0; /* Compiletime error. */

Convention: Use all uppercase letters to reduce probability of unintended
replacement.

Preprocessor does not respect scope.

Preprocessor replaces START_STATE with 0 from point of #define to end
of file, not to end of function. Could affect subsequent functions
unintentionally.

Convention: Place #defines at beginning of file, not within function
definitions

Page 1 of 4

Method 2: Constant Variables

Example

int main(void)
{
 const int START_STATE = 0;
 const int POSSIBLE_COMMENT_STATE = 1;
 const int COMMENT_STATE = 2;
 ...
 ...
 int iState;
 ...
 iState = START_STATE;
 ...
 iState = COMMENT_STATE;
 ...
}

Strengths

Works for any type of data.

const double PI = 3.14159;

Handled by compiler; compiler respects context and scope.

Weaknesses

Does not work for array lengths (unlike C++).

const int ARRAY_LENGTH = 10;
...
int aiNumbers[ARRAY_LENGTH]; /* Compile-time error */

Page 2 of 4

Method 3: Enumerations

Example

int main(void)
{
 /* Define a type named "enum State". */
 enum State {START_STATE, POSSIBLE_COMMENT_STATE, COMMENT_STATE, ...};

 /* Declare "eState" to be a variable of type "enum State".
 enum State eState;
 ...
 eState = START_STATE;
 ...
 eState = COMMENT_STATE;
 ...
}

Notes

Interchangeable with type int.

eState = 0; /* Can assign int to enum. */

i = START_STATE; /* Can assign enum to int. START_STATE is an alias for
 0, POSSIBLE_COMMENT_STATE is an alias for 1, etc. */

Strengths

Can explicitly specify values for names.

enum State {START_STATE = 5,
 POSSIBLE_COMMENT_STATE = 3,
 COMMENT_STATE = 4,
 ...};

Can omit type name, thus effectively giving symbolic names to int literals.

enum {MAX_VALUE = 9999};
...
int i;
...
i = MAX_VALUE;
...

Works when specifying array lengths.

enum {ARRAY_LENGTH = 10};
...
int aiNumbers[ARRAY_LENGTH];
...

Weakness

Does not work for non-integral data types.

enum {PI = 3.14159}; /* Compile-time error */

Page 3 of 4

Style Rules (see Kernighan and Pike Chapter 1)

(1) Use enumerations to give symbolic names to integral literals.

(2) Use const variables to give symbolic names to non-integral literals.

(3) Avoid using #define.

Copyright © 2009 by Robert M. Dondero, Jr.

Page 4 of 4

