
1

Assembly Language:
Part 1

Context of this Lecture
First half lectures: “Programming in the large”

Second half lectures: “Under the hood”

2

Starting Now Afterward

C Language

Assembly Language

Machine Language

Application Program

Operating System

Hardware

language
levels
tour

service
levels
tour

Goals of this Lecture

Help you learn:
•  Language levels
•  The basics of IA-32 architecture

•  Enough to understand IA-32 assembly language
•  The basics of IA-32 assembly language

•  Instructions to define global data
•  Instructions to transfer data and perform arithmetic

3

Lectures vs. Precepts

Precepts Lectures
Study complete pgms Study partial pgms
Begin with small pgms;
proceed to large ones

Begin with simple
constructs; proceed to
complex ones

Emphasis on writing
code

Emphasis on reading
code

Approach to studying assembly language:

4

Agenda

Language Levels

Architecture

Assembly Language: Defining Global Data

Assembly Language: Performing Arithmetic

5

High-Level Languages

Characteristics
•  Portable

•  To varying degrees
•  Complex

•  One statement can do
much work

•  Expressive
•  To varying degrees
•  Good (code functionality /

code size) ratio
•  Human readable

6

count = 0;
while (n>1)
{ count++;
 if (n&1)
 n = n*3+1;
 else
 n = n/2;
}

7

Machine Languages
Characteristics

•  Not portable
•  Specific to hardware

•  Simple
•  Each instruction does

a simple task
•  Not expressive

•  Each instruction performs
little work

•  Poor (code functionality /
code size) ratio

•  Not human readable
•  Requires lots of effort!
•  Requires tool support

0000 0000 0000 0000 0000 0000 0000 0000

0000 0000 0000 0000 0000 0000 0000 0000

9222 9120 1121 A120 1121 A121 7211 0000

0000 0001 0002 0003 0004 0005 0006 0007

0008 0009 000A 000B 000C 000D 000E 000F

0000 0000 0000 FE10 FACE CAFE ACED CEDE

1234 5678 9ABC DEF0 0000 0000 F00D 0000

0000 0000 EEEE 1111 EEEE 1111 0000 0000

B1B2 F1F5 0000 0000 0000 0000 0000 0000

Assembly Languages
Characteristics

•  Not portable
•  Each assembly lang

instruction maps to one
machine lang instruction

•  Simple
•  Each instruction does a

simple task
•  Not expressive

•  Poor (code functionality /
code size) ratio

•  Human readable!!!

8

 movl %edx, %eax
 andl $1, %eax
 je else

 jmp endif
else:

endif:

 sarl $1, %edx

 movl %edx, %eax
 addl %eax, %edx
 addl %eax, %edx
 addl $1, %edx

 addl $1, %ecx

loop:
 cmpl $1, %edx
 jle endloop

 jmp loop
endloop:

 movl $0, %ecx

9

Why Learn Assembly Language?

Q: Why learn assembly language?

A: Knowing assembly language helps you:
•  Write faster code

•  In assembly language
•  In a high-level language!

•  Understand what’s happening “under the hood”
•  Someone needs to develop future computer systems
•  Maybe that will be you!

10

Why Learn IA-32 Assembly Lang?
Why learn IA-32 assembly language?

Pros
•  IA-32 is the most popular processor
•  Nobel computers are IA-32 computers

•  Program natively on nobel instead of using an emulator

Cons
•  IA-32 assembly language is big

•  Each instruction is simple, but…
•  There are many instructions
•  Instructions differ widely

We’ll study a popular subset
•  As defined by Bryant & O’Hallaron Ch 3 and precept IA-32

Assembly Language document

Agenda

Language Levels

Architecture

Assembly Language: Defining Global Data

Assembly Language: Performing Arithmetic

11

John Von Neumann (1903-1957)
In computing

•  Stored program computers
•  Cellular automata
•  Self-replication

Other interests
•  Mathematics
•  Nuclear physics (hydrogen bomb)

Princeton connection
•  Princeton Univ & IAS, 1930-death

Known for “Von Neumann architecture”
•  In contrast to less successful “Harvard architecture”

12

Von Neumann Architecture

13

RAM

Control
Unit

ALU

CPU

Registers

Data bus

RAM (Random Access Memory)
•  Conceptually: large array of bytes

14

RAM

RAM

Control
Unit

ALU

CPU

Registers

Data bus

TEXT"
RODATA"
DATA"
BSS"
HEAP"

STACK"

…"

…"

00000000

FFFFFFFF

15

Registers

Registers
•  Small amount of storage on the CPU
•  Much faster than RAM
•  Top of the storage hierarchy

•  Above RAM, disk, …

RAM

Control
Unit

ALU

CPU

Registers

Data bus

General purpose registers

16

Registers

 AH AL
 BH BL
 CH CL
 DH DL
 SI
 DI

EAX
EBX
ECX
EDX
ESI
EDI
EBP
ESP

31 0
AX
BX
CX
DX

16-bit 32-bit 8 7 15

 BP
 SP

ESP and EBP Registers

ESP (Stack Pointer) register
•  Contains address of top

(low address) of current
function’s stack frame

EBP (Base Pointer) register
•  Contains address of bottom

(high address) of current
function’s stack frame

Allow effective use of the STACK section of memory

(See Assembly Language: Function Calls lecture)

17

ESP

EBP

S
TA

C
K

 fr
am

e

low memory

high memory

EFLAGS Register

Special-purpose register…

EFLAGS (Flags) register
•  Contains CC (Condition Code) bits
•  Affected by compare (cmp) instruction

•  And many others
•  Used by conditional jump instructions

• je, jne, jl, jg, jle, jge, jb, jbe, ja, jae, jb

(See Assembly Language: Part 2 lecture)

18

19

EIP Register
Special-purpose register…

EIP (Instruction Pointer) register
•  Stores the location of the next instruction

•  Address (in TEXT section) of machine-language instructions to
be executed next

•  Value changed:
•  Automatically to implement sequential control flow
•  By jump instructions to implement selection, repetition

EIP

TE
X

T
se

ct
io

n

20

Registers and RAM

Typical pattern:
•  Load data from RAM to registers
•  Manipulate data in registers
•  Store data from registers to RAM

Many instructions combine steps

21

ALU
ALU (Arithmetic Logic Unit)

•  Performs arithmetic and logic
operations

ALU

src1 src2

dest

operation

flag/carry

ALU

RAM

Control
Unit

ALU

CPU

Registers

Data bus

EFLAGS

22

Control Unit

Control Unit
•  Fetches and decodes each

machine-language instruction
•  Sends proper data to ALU

RAM

Control
Unit

ALU

CPU

Registers

Data bus

23

CPU

CPU (Central Processing Unit)
•  Control unit

•  Fetch, decode, and execute
•  ALU

•  Execute low-level operations
•  Registers

•  High-speed temporary storage

RAM

Control
Unit

ALU

CPU

Registers

Data bus

Agenda

Language Levels

Architecture

Assembly Language: Defining Global Data

Assembly Language: Performing Arithmetic

24

Defining Data: DATA Section 1

25

static char c = 'a';
static short s = 12;
static int i = 345;

 .section ".data"
c:
 .byte 'a'
s:
 .word 12
i:
 .long 345

Note:
.section instruction (to announce DATA section)
label definition (marks a spot in RAM)
.byte instruction (1 byte)
.word instruction (2 bytes)
.long instruction (4 bytes)

Note:
Best to avoid “word” (2 byte) data

Defining Data: DATA Section 2

26

char c = 'a';
short s = 12;
int i = 345;

 .section ".data"

 .globl c
c: .byte 'a'

 .globl s
s: .word 12

 .globl i
i: .long 345

Note:
Can place label on same line as next instruction
.globl instruction

Defining Data: BSS Section

27

static char c;
static short s;
static int i;

 .section ".bss"
c:
 .skip 1
s:
 .skip 2
i:
 .skip 4

Note:
.section instruction (to announce BSS section)
.skip instruction

Defining Data: RODATA Section

28

…
…"hello\n"…;
…

 .section ".rodata"
helloLabel:
 .string "hello\n"

Note:
.section instruction (to announce RODATA section)
.string instruction

Agenda

Language Levels

Architecture

Assembly Language: Defining Global Data

Assembly Language: Performing Arithmetic

29

Instruction Format
Many instructions have this format:

•  name: name of the instruction (mov, add, sub, and, etc.)

•  byte => operands are one-byte entities
•  word => operands are two-byte entities
•  long => operands are four-byte entities

name{b,w,l} src, dest

30

Instruction Format
Many instructions have this format:

•  src: source operand
•  The source of data
•  Can be

•  Register operand: %eax, %ebx, etc.
•  Memory operand: 5 (legal but silly), someLabel
•  Immediate operand: $5, $someLabel

name{b,w,l} src, dest

31

Instruction Format
Many instructions have this format:

•  dest: destination operand
•  The destination of data
•  Can be

•  Register operand: %eax, %ebx, etc.
•  Memory operand: 5 (legal but silly), someLabel

•  Cannot be
•  Immediate operand

name{b,w,l} src, dest

32

Performing Arithmetic: Long Data

33

static int length;
static int width;
static int perim;

…
perim =
 (length + width) * 2;

 .section ".bss"
length: .skip 4
width: .skip 4

perim: .skip 4
…
 .section ".text"
…
 movl length, %eax
 addl width, %eax
 sall $1, %eax
 movl %eax, perim

Note:
movl instruction
addl instruction
sall instruction
Register operand
Immediate operand
Memory operand
.section instruction (to announce TEXT section)

Performing Arithmetic: Byte Data

34

static char grade = 'B';
…
grade--;

 .section ".data"
grade: .byte 'B'
…

 .section ".text"
…
 # Option 1
 movb grade, %al
 subb $1, %al
 movb %al, grade
 …
 # Option 2
 subb $1, grade
 …
 # Option 3
 decb grade

Note:
Comment
movb instruction
subb instruction
decb instruction

What would happen if
we use movl instead
of movb?

Generalization: Operands
Immediate operands

• $5 => use the number 5 (i.e. the number that is available
immediately within the instruction)

• $i => use the address denoted by i (i.e. the address that is
available immediately within the instruction)

•  Can be source operand; cannot be destination operand

Register operands
• %eax => read from (or write to) register EAX
•  Can be source or destination operand

Memory operands
• 5 => load from (or store to) memory at address 5 (silly; seg fault)
• i => load from (or store to) memory at the address denoted by i
•  Can be source or destination operand (but not both)
•  There’s more to memory operands; see next lecture

35

Generalization: Notation

Instruction notation:
•  l => long (4 bytes); w => word (2 bytes); b => byte (1 byte)

Operand notation:
•  src => source; dest => destination
•  R => register; I => immediate; M => memory

36

Generalization: Data Transfer
Data transfer instructions

37

mov{l,w,b} srcIRM, destRM dest = src
movsb{l,w} srcRM, destR dest = src (sign extend)
movswl srcRM, destR dest = src (sign extend)

movzb{l,w} srcRM, destR dest = src (zero fill)
movzwl srcRM, destR dest = src (zero fill)
cltd reg[EDX:EAX] = reg[EAX]
 (sign extend)
cwtd reg[DX:AX] = reg[AX]
 (sign extend)
cbtw reg[AX] = reg[AL]
 (sign extend)

mov is used often; others rarely

Generalization: Arithmetic

Arithmetic instructions

38

add{l,w,b} srcIRM, destRM dest += src
sub{l,w,b} srcIRM, destRM dest -= src
inc{l,w,b} destRM dest++

dec{l,w,b} destRM dest--
neg{l,w,b} destRM dest = -dest

Generalization: Signed Mult & Div
Signed multiplication and division instructions

39

imull srcRM reg[EDX:EAX] = reg[EAX]*src
imulw srcRM reg[DX:AX] = reg[AX]*src
imulb srcRM reg[AX] = reg[AL]*src

idivl srcRM reg[EAX] = reg[EDX:EAX]/src
 reg[EDX] = reg[EDX:EAX]%src
idivw srcRM reg[AX] = reg[DX:AX]/src
 reg[DX] = reg[DX:AX]%src
idivb srcRM reg[AL] = reg[AX]/src
 reg[AH] = reg[AX]%src

See Bryant & O’Hallaron book for description of
signed vs. unsigned multiplication and division

Generalization: Unsigned Mult & Div
Unsigned multiplication and division instructions

40

mull srcRM reg[EDX:EAX] = reg[EAX]*src
mulw srcRM reg[DX:AX] = reg[AX]*src
mulb srcRM reg[AX] = reg[AL]*src

divl srcRM reg[EAX] = reg[EDX:EAX]/src
 reg[EDX] = reg[EDX:EAX]%src
divw srcRM reg[AX] = reg[DX:AX]/src
 reg[DX] = reg[DX:AX]%src
divb srcRM reg[AL] = reg[AX]/src
 reg[AH] = reg[AX]%src

See Bryant & O’Hallaron book for description of
signed vs. unsigned multiplication and division

Generalization: Bit Manipulation
Bitwise instructions

41

and{l,w,b} srcIRM, destRM dest = src & dest
or{l,w,b} srcIRM, destRM dest = src | dest
xor{l,w,b} srcIRM, destRM dest = src ^ dest

not{l,w,b} destRM dest = ~dest
sal{l,w,b} srcIR, destRM dest = dest << src
sar{l,w,b} srcIR, destRM dest = dest >> src (sign extend)
shl{l,w,b} srcIR, destRM (Same as sal)
shr{l,w,b} srcIR, destRM dest = dest >> src (zero fill)

Summary
Language levels

The basics of computer architecture
•  Enough to understand IA-32 assembly language

The basics of IA-32 assembly language
•  Instructions to define global data
•  Instructions to perform data transfer and arithmetic

To learn more
•  Study more assembly language examples

•  Chapter 3 of Bryant and O’Hallaron book
•  Study compiler-generated assembly language code

• gcc217 –S somefile.c
42

Appendix

Big-endian vs little-endian byte order

43

44

Byte Order
Intel is a little endian architecture

•  Least significant byte of multi-byte entity
is stored at lowest memory address

•  “Little end goes first”

Some other systems use big endian
•  Most significant byte of multi-byte entity

is stored at lowest memory address
•  “Big end goes first”

00000101
00000000
00000000
00000000

1000
1001
1002
1003

The int 5 at address 1000:

00000000
00000000
00000000
00000101

1000
1001
1002
1003

The int 5 at address 1000:

45

Byte Order Example 1

Byte 0: ff

Byte 1: 77

Byte 2: 33

Byte 3: 00

#include <stdio.h>
int main(void)
{ unsigned int i = 0x003377ff;
 unsigned char *p;
 int j;
 p = (unsigned char *)&i;
 for (j=0; j<4; j++)
 printf("Byte %d: %2x\n", j, p[j]);
}

Output on a
little-endian

machine

Byte 0: 00

Byte 1: 33

Byte 2: 77

Byte 3: ff

Output on a
big-endian
machine

Byte Order Example 2

46

 .section ".data"
grade: .long 'B'
…

 .section ".text"
 …
 # Option 1
 movb grade, %al
 subb $1, %al
 movb %al, grade
 …
 # Option 2
 subb $1, grade

Note:
Flawed code; uses “b”
instructions to manipulate
a four-byte memory area

What would be the value
of grade if Intel were big
endian?

Intel is little endian, so
what will be the value of
grade?

Byte Order Example 3

47

 .section ".data"
grade: .byte 'B'
…

 .section ".text"
…
 # Option 1
 movl grade, %eax
 subl $1, %eax
 movl %eax, grade
 …
 # Option 2
 subl $1, grade

Note:
Flawed code; uses “l”
instructions to manipulate
a one-byte memory area

What would happen?

