
1

Debugging (Part 2)

“Programming in the Large” Steps
Design & Implement

•  Program & programming style (done)
•  Common data structures and algorithms
•  Modularity
•  Building techniques & tools (done)

Test
•  Testing techniques (done)

Debug
•  Debugging techniques & tools <-- we are still here

Maintain
•  Performance improvement techniques & tools

2

3

Goals of this Lecture
Help you learn about:

•  Debugging strategies & tools related to dynamic memory
management (DMM) *

Why?
•  Many bugs occur in code that does DMM
•  DMM errors can be difficult to find

•  DMM error in one area can manifest itself in a distant area
•  A power programmer knows a wide variety of DMM debugging

strategies
•  A power programmer knows about tools that facilitate DMM

debugging

* Management of heap memory via malloc(), calloc(),
realloc(), and free()

4

Agenda
(9) Look for common DMM bugs

(10) Diagnose seg faults using gdb

(11) Manually inspect malloc calls

(12) Hard-code malloc calls

(13) Comment-out free calls

(14) Use Meminfo

(15) Use Valgrind

5

Look for Common DMM Bugs
Some of our favorites:

int *p; /* value of p undefined */
…
*p = somevalue;

char *p; /* value of p undefined */
…
fgets(p, 1024, stdin);

int *p;
…
p = (int*)malloc(sizeof(int));
…
*p = 5;
…
free(p);
…
*p = 6;

What are
the
errors?

6

Look for Common DMM Bugs
Some of our favorites:

int *p;
…
p = (int*)malloc(sizeof(int));
…
*p = 5;
…
p = (int*)malloc(sizeof(int));

int *p;
…
p = (int*)malloc(sizeof(int));
…
*p = 5;
…
free(p);
…
free(p);

What are
the
errors?

7

Agenda
(9) Look for common DMM bugs

(10) Diagnose seg faults using gdb

(11) Manually inspect malloc calls

(12) Hard-code malloc calls

(13) Comment-out free calls

(14) Use Meminfo

(15) Use Valgrind

Diagnose Seg Faults Using GDB

Segmentation fault => make it happen in gdb
•  Then issue the gdb where command
•  Output will lead you to the line that caused the fault

•  But that line may not be where the error resides!

8

9

Agenda
(9) Look for common DMM bugs

(10) Diagnose seg faults using gdb

(11) Manually inspect malloc calls

(12) Hard-code malloc calls

(13) Comment-out free calls

(14) Use Meminfo

(15) Use Valgrind

10

Manually Inspect Malloc Calls

Manually inspect each call of malloc()
•  Make sure it allocates enough memory

Do the same for calloc() and realloc()

11

Manually Inspect Malloc Calls
Some of our favorites:

char *s1 = "Hello";
char *s2;
s2 = (char*)malloc(strlen(s1));
strcpy(s2, s1);

double *p;
p = (double*)malloc(sizeof(double*));

char *s1 = "Hello";
char *s2;
s2 = (char*)malloc(sizeof(s1));
strcpy(s2, s1);

double *p;
p = (double*)malloc(sizeof(p));

What are
the
errors?

12

Agenda
(9) Look for common DMM bugs

(10) Diagnose seg faults using gdb

(11) Manually inspect malloc calls

(12) Hard-code malloc calls

(13) Comment-out free calls

(14) Use Meminfo

(15) Use Valgrind

Hard-Code Malloc Calls

Temporarily change each call of malloc() to request a
large number of bytes
•  Say, 10000 bytes
•  If the error disappears, then at least one of your calls is requesting

too few bytes

Then incrementally restore each call of malloc() to its
previous form
•  When the error reappears, you might have found the culprit

Do the same for calloc() and realloc()

13

14

Agenda
(9) Look for common DMM bugs

(10) Diagnose seg faults using gdb

(11) Manually inspect malloc calls

(12) Hard-code malloc calls

(13) Comment-out free calls

(14) Use Meminfo

(15) Use Valgrind

Comment-Out Free Calls

Temporarily comment-out every call of free()
•  If the error disappears, then program is

•  Freeing memory too soon, or
•  Freeing memory that already has been freed, or
•  Freeing memory that should not be freed,
•  Etc.

Then incrementally “comment-in” each call of free()
•  When the error reappears, you might have found the culprit

15

16

Agenda
(9) Look for common DMM bugs

(10) Diagnose seg faults using gdb

(11) Manually inspect malloc calls

(12) Hard-code malloc calls

(13) Comment-out free calls

(14) Use Meminfo

(15) Use Valgrind

Use Meminfo

Use the Meminfo tool
•  Simple tool
•  Initial version written by Dondero
•  Current version written by COS 217 alumnus RJ Liljestrom
•  Reports errors after program execution

•  Memory leaks
•  Some memory corruption

•  User-friendly output

Appendix 1 provides example buggy programs

Appendix 2 provides Meminfo analyses

17

18

Agenda
(9) Look for common DMM bugs

(10) Diagnose seg faults using gdb

(11) Manually inspect malloc calls

(12) Hard-code malloc calls

(13) Comment-out free calls

(14) Use Meminfo

(15) Use Valgrind

Use Valgrind

Use the Valgrind tool
•  Complex tool
•  Written by multiple developers, worldwide

•  See www.valgrind.org
•  Reports errors during program execution

•  Memory leaks
•  Multiple frees
•  Dereferences of dangling pointers
•  Memory corruption

•  Comprehensive output
•  But not always user-friendly

19

Use Valgrind

Valgrind is new to COS 217
•  Let instructors know if helpful (or not)

Appendix 1 provides example buggy programs

Appendix 3 provides Valgrind analyses

20

Summary

Strategies and tools for debugging the DMM aspects of your
code:
•  Look for common DMM bugs
•  Diagnose seg faults using gdb
•  Manually inspect malloc calls
•  Hard-code malloc calls
•  Comment-out free calls
•  Use Meminfo
•  Use Valgrind

21

Appendix 1: Buggy Programs
leak.c

 1. #include <stdio.h>
 2. #include <stdlib.h>
 3. int main(void)
 4. { int *pi;
 5. pi = (int*)malloc(sizeof(int));
 6. *pi = 5;
 7. printf("%d\n", *pi);
 8. pi = (int*)malloc(sizeof(int));
 9. *pi = 6;
10. printf("%d\n", *pi);
11. free(pi);
12. return 0;
13. }

22

Memory leak:
 Memory allocated at line 5 is leaked

Appendix 1: Buggy Programs
doublefree.c

 1. #include <stdio.h>
 2. #include <stdlib.h>
 3. int main(void)
 4. { int *pi;
 5. pi = (int*)malloc(sizeof(int));
 6. *pi = 5;
 7. printf("%d\n", *pi);
 8. free(pi);
 9. free(pi);
10. return 0;
11. }

23

Multiple free:
 Memory allocated at line 5 is freed twice

Appendix 1: Buggy Programs
danglingptr.c

 1. #include <stdio.h>
 2. #include <stdlib.h>
 3. int main(void)
 4. { int *pi;
 5. pi = (int*)malloc(sizeof(int));
 6. *pi = 5;
 7. printf("%d\n", *pi);
 8. free(pi);
 9. printf("%d\n", *pi);
10. return 0;
11. }

24

Dereference of dangling pointer:
 Memory accessed at line 9 already was freed

Appendix 1: Buggy Programs
toosmall.c

 1. #include <stdio.h>
 2. #include <stdlib.h>
 3. int main(void)
 4. { int *pi;
 5. pi = (int*)malloc(1);
 6. *pi = 5;
 7. printf("%d\n", *pi);
 8. free(pi);
 9. return 0;
10. }

25

Memory corruption:
 Too little memory is allocated at line 5
 Line 6 corrupts memory

Appendix 2: Meminfo
Meminfo can detect memory leaks:

$ gcc217m leak.c -o leak
$ leak
5
6
$ ls
. .. leak.c leak meminfo30462.out
$ meminforeport meminfo30462.out
Errors:
 ** 4 un-freed bytes (1 block) allocated at leak.c:5
Summary Statistics:
 Maximum bytes allocated at once: 8
 Total number of allocated bytes: 8
Statistics by Line:
 Bytes Location
 -4 leak.c:11
 4 leak.c:5
 4 leak.c:8
 4 TOTAL
Statistics by Compilation Unit:
 4 leak.c
 4 TOTAL

26

Appendix 2: Meminfo
Meminfo can detect memory corruption:

$ gcc217m toosmall.c -o toosmall
$ toosmall
5
$ ls
. .. toosmall.c toosmall meminfo31891.out
$ meminforeport meminfo31891.out
Errors:
 ** Underflow detected at toosmall.c:8 for memory allocated at toosmall.c:5
Summary Statistics:
 Maximum bytes allocated at once: 1
 Total number of allocated bytes: 1
Statistics by Line:
 Bytes Location
 1 toosmall.c:5
 -1 toosmall.c:8
 0 TOTAL
Statistics by Compilation Unit:
 0 toosmall.c
 0 TOTAL

27

Appendix 2: Meminfo

Meminfo caveats:

•  Don’t mix .o files built with gcc217 and gcc217m

• meminfo*.out files can be large
•  Should delete frequently

•  Programs built with gcc217m run slower than those built with
gcc217
•  Don’t build with gcc217m when doing timing tests

28

Appendix 3: Valgrind
Valgrind can detect memory leaks:

$ gcc217v leak.c -o leak
$ valgrind leak
==31921== Memcheck, a memory error detector
==31921== Copyright (C) 2002-2012, and GNU GPL'd, by Julian Seward et al.
==31921== Using Valgrind-3.8.1 and LibVEX; rerun with -h for copyright info
==31921== Command: leak
==31921==
5
6
==31921==
==31921== HEAP SUMMARY:
==31921== in use at exit: 4 bytes in 1 blocks
==31921== total heap usage: 2 allocs, 1 frees, 8 bytes allocated
==31921==
==31921== LEAK SUMMARY:
==31921== definitely lost: 4 bytes in 1 blocks
==31921== indirectly lost: 0 bytes in 0 blocks
==31921== possibly lost: 0 bytes in 0 blocks
==31921== still reachable: 0 bytes in 0 blocks
==31921== suppressed: 0 bytes in 0 blocks
==31921== Rerun with --leak-check=full to see details of leaked memory
==31921==
==31921== For counts of detected and suppressed errors, rerun with: -v
==31921== ERROR SUMMARY: 0 errors from 0 contexts (suppressed: 6 from 6)

29

Appendix 3: Valgrind
Valgrind can detect memory leaks:

$ valgrind --leak-check=full leak
==476== Memcheck, a memory error detector
==476== Copyright (C) 2002-2012, and GNU GPL'd, by Julian Seward et al.
==476== Using Valgrind-3.8.1 and LibVEX; rerun with -h for copyright info
==476== Command: leak
==476==
5
6
==476==
==476== HEAP SUMMARY:
==476== in use at exit: 4 bytes in 1 blocks
==476== total heap usage: 2 allocs, 1 frees, 8 bytes allocated
==476==
==476== 4 bytes in 1 blocks are definitely lost in loss record 1 of 1
==476== at 0x4A069EE: malloc (vg_replace_malloc.c:270)
==476== by 0x400565: main (leak.c:5)
==476==
==476== LEAK SUMMARY:
==476== definitely lost: 4 bytes in 1 blocks
==476== indirectly lost: 0 bytes in 0 blocks
==476== possibly lost: 0 bytes in 0 blocks
==476== still reachable: 0 bytes in 0 blocks
==476== suppressed: 0 bytes in 0 blocks
==476==
==476== For counts of detected and suppressed errors, rerun with: -v
==476== ERROR SUMMARY: 1 errors from 1 contexts (suppressed: 6 from 6) 30

Appendix 3: Valgrind
Valgrind can detect multiple frees:

$ gcc217v doublefree.c -o doublefree
$ valgrind doublefree
==31951== Memcheck, a memory error detector
==31951== Copyright (C) 2002-2012, and GNU GPL'd, by Julian Seward et al.
==31951== Using Valgrind-3.8.1 and LibVEX; rerun with -h for copyright info
==31951== Command: doublefree
==31951==
5
==31951== Invalid free() / delete / delete[] / realloc()
==31951== at 0x4A063F0: free (vg_replace_malloc.c:446)
==31951== by 0x4005A5: main (doublefree.c:9)
==31951== Address 0x4c2a040 is 0 bytes inside a block of size 4 free'd
==31951== at 0x4A063F0: free (vg_replace_malloc.c:446)
==31951== by 0x400599: main (doublefree.c:8)
==31951==
==31951==
==31951== HEAP SUMMARY:
==31951== in use at exit: 0 bytes in 0 blocks
==31951== total heap usage: 1 allocs, 2 frees, 4 bytes allocated
==31951==
==31951== All heap blocks were freed -- no leaks are possible
==31951==
==31951== For counts of detected and suppressed errors, rerun with: -v
==31951== ERROR SUMMARY: 1 errors from 1 contexts (suppressed: 6 from 6)

31

Appendix 3: Valgrind
Valgrind can detect dereferences of dangling pointers:

$ gcc217v danglingptr.c -o danglingptr
$ valgrind danglingptr
==336== Memcheck, a memory error detector
==336== Copyright (C) 2002-2012, and GNU GPL'd, by Julian Seward et al.
==336== Using Valgrind-3.8.1 and LibVEX; rerun with -h for copyright info
==336== Command: danglingptr
==336==
5
==336== Invalid read of size 4
==336== at 0x40059E: main (danglingptr.c:9)
==336== Address 0x4c2a040 is 0 bytes inside a block of size 4 free'd
==336== at 0x4A063F0: free (vg_replace_malloc.c:446)
==336== by 0x400599: main (danglingptr.c:8)
==336==
5
==336==
==336== HEAP SUMMARY:
==336== in use at exit: 0 bytes in 0 blocks
==336== total heap usage: 1 allocs, 1 frees, 4 bytes allocated
==336==
==336== All heap blocks were freed -- no leaks are possible
==336==
==336== For counts of detected and suppressed errors, rerun with: -v
==336== ERROR SUMMARY: 1 errors from 1 contexts (suppressed: 6 from 6)

32

Appendix 3: Valgrind
Valgrind can detect memory corruption:

$ gcc217v toosmall.c -o toosmall
$ valgrind toosmall
==436== Memcheck, a memory error detector
==436== Copyright (C) 2002-2012, and GNU GPL'd, by Julian Seward et al.
==436== Using Valgrind-3.8.1 and LibVEX; rerun with -h for copyright info
==436== Command: toosmall
==436==
==436== Invalid write of size 4
==436== at 0x40056E: main (toosmall.c:6)
==436== Address 0x4c2a040 is 0 bytes inside a block of size 1 alloc'd
==436== at 0x4A069EE: malloc (vg_replace_malloc.c:270)
==436== by 0x400565: main (toosmall.c:5)
==436==
==436== Invalid read of size 4
==436== at 0x400578: main (toosmall.c:7)
==436== Address 0x4c2a040 is 0 bytes inside a block of size 1 alloc'd
==436== at 0x4A069EE: malloc (vg_replace_malloc.c:270)
==436== by 0x400565: main (toosmall.c:5)
==436==
5

Continued on next slide
33

Appendix 3: Valgrind
Valgrind can detect memory corruption (cont.):

==436==
==436== HEAP SUMMARY:
==436== in use at exit: 0 bytes in 0 blocks
==436== total heap usage: 1 allocs, 1 frees, 1 bytes allocated
==436==
==436== All heap blocks were freed -- no leaks are possible
==436==
==436== For counts of detected and suppressed errors, rerun with: -v
==436== ERROR SUMMARY: 2 errors from 2 contexts (suppressed: 6 from 6)

Continued from previous slide

34

Appendix 3: Valgrind

Valgrind caveats:

•  Don’t mix .o files built with gcc217 and gcc217v

•  Not intended for programmers who are new to C
•  Messages may be cryptic

•  Suggestion:
•  Observe line numbers referenced by messages
•  Study code at those lines
•  Infer meanings of messages

35

