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Debugging (Part 2) 



“Programming in the Large” Steps 
Design & Implement 

•  Program & programming style  (done) 
•  Common data structures and algorithms 
•  Modularity 
•  Building techniques & tools  (done) 

Test 
•  Testing techniques  (done) 

Debug 
•  Debugging techniques & tools  <-- we are still here 

Maintain 
•  Performance improvement techniques & tools 
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Goals of this Lecture 
Help you learn about: 

•  Debugging strategies & tools related to dynamic memory 
management (DMM) * 

Why? 
•  Many bugs occur in code that does DMM 
•  DMM errors can be difficult to find 

•  DMM error in one area can manifest itself in a distant area 
•  A power programmer knows a wide variety of DMM debugging 

strategies 
•  A power programmer knows about tools that facilitate DMM 

debugging 

* Management of heap memory via malloc(), calloc(), 
realloc(), and free()  
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Agenda 
(9) Look for common DMM bugs 

(10) Diagnose seg faults using gdb 

(11) Manually inspect malloc calls 

(12) Hard-code malloc calls 

(13) Comment-out free calls 

(14) Use Meminfo 

(15) Use Valgrind  
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Look for Common DMM Bugs 
Some of our favorites: 

int *p; /* value of p undefined */ 
… 
*p = somevalue; 

char *p; /* value of p undefined */ 
… 
fgets(p, 1024, stdin); 

int *p; 
… 
p = (int*)malloc(sizeof(int)); 
… 
*p = 5; 
… 
free(p); 
… 
*p = 6; 

What are 
the 
errors? 
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Look for Common DMM Bugs 
Some of our favorites: 

int *p; 
… 
p = (int*)malloc(sizeof(int)); 
… 
*p = 5; 
… 
p = (int*)malloc(sizeof(int)); 

int *p; 
… 
p = (int*)malloc(sizeof(int)); 
… 
*p = 5; 
… 
free(p); 
… 
free(p); 

What are 
the 
errors? 



7 

Agenda 
(9) Look for common DMM bugs 

(10) Diagnose seg faults using gdb 

(11) Manually inspect malloc calls 

(12) Hard-code malloc calls 

(13) Comment-out free calls 

(14) Use Meminfo 

(15) Use Valgrind  



Diagnose Seg Faults Using GDB 

Segmentation fault => make it happen in gdb 
•  Then issue the gdb where command 
•  Output will lead you to the line that caused the fault 

•  But that line may not be where the error resides! 
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Agenda 
(9) Look for common DMM bugs 

(10) Diagnose seg faults using gdb 

(11) Manually inspect malloc calls 

(12) Hard-code malloc calls 

(13) Comment-out free calls 

(14) Use Meminfo 

(15) Use Valgrind  
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Manually Inspect Malloc Calls 

Manually inspect each call of malloc() 
•  Make sure it allocates enough memory 

Do the same for calloc() and realloc() 
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Manually Inspect Malloc Calls 
Some of our favorites: 

char *s1 = "Hello"; 
char *s2; 
s2 = (char*)malloc(strlen(s1)); 
strcpy(s2, s1); 

double *p; 
p = (double*)malloc(sizeof(double*)); 

char *s1 = "Hello"; 
char *s2; 
s2 = (char*)malloc(sizeof(s1)); 
strcpy(s2, s1); 

double *p; 
p = (double*)malloc(sizeof(p)); 

What are 
the 
errors? 
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Agenda 
(9) Look for common DMM bugs 

(10) Diagnose seg faults using gdb 

(11) Manually inspect malloc calls 

(12) Hard-code malloc calls 

(13) Comment-out free calls 

(14) Use Meminfo 

(15) Use Valgrind  



Hard-Code Malloc Calls 

Temporarily change each call of malloc() to request a 
large number of bytes 
•  Say, 10000 bytes 
•  If the error disappears, then at least one of your calls is requesting 

too few bytes 

Then incrementally restore each call of malloc() to its 
previous form 
•  When the error reappears, you might have found the culprit 

Do the same for calloc() and realloc() 
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Agenda 
(9) Look for common DMM bugs 

(10) Diagnose seg faults using gdb 

(11) Manually inspect malloc calls 

(12) Hard-code malloc calls 

(13) Comment-out free calls 

(14) Use Meminfo 

(15) Use Valgrind  



Comment-Out Free Calls  

Temporarily comment-out every call of free() 
•  If the error disappears, then program is 

•  Freeing memory too soon, or 
•  Freeing memory that already has been freed, or 
•  Freeing memory that should not be freed, 
•  Etc. 

Then incrementally “comment-in” each call of free() 
•  When the error reappears, you might have found the culprit 
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Agenda 
(9) Look for common DMM bugs 

(10) Diagnose seg faults using gdb 

(11) Manually inspect malloc calls 

(12) Hard-code malloc calls 

(13) Comment-out free calls 

(14) Use Meminfo 

(15) Use Valgrind  



Use Meminfo 

Use the Meminfo tool 
•  Simple tool 
•  Initial version written by Dondero 
•  Current version written by COS 217 alumnus RJ Liljestrom 
•  Reports errors after program execution 

•  Memory leaks 
•  Some memory corruption 

•  User-friendly output 

Appendix 1 provides example buggy programs 

Appendix 2 provides Meminfo analyses 
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Agenda 
(9) Look for common DMM bugs 

(10) Diagnose seg faults using gdb 

(11) Manually inspect malloc calls 

(12) Hard-code malloc calls 

(13) Comment-out free calls 

(14) Use Meminfo 

(15) Use Valgrind  



Use Valgrind 

Use the Valgrind tool 
•  Complex tool 
•  Written by multiple developers, worldwide 

•  See www.valgrind.org 
•  Reports errors during program execution 

•  Memory leaks 
•  Multiple frees 
•  Dereferences of dangling pointers 
•  Memory corruption 

•  Comprehensive output 
•  But not always user-friendly 
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Use Valgrind 

Valgrind is new to COS 217 
•  Let instructors know if helpful (or not) 

Appendix 1 provides example buggy programs 

Appendix 3 provides Valgrind analyses 
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Summary 

Strategies and tools for debugging the DMM aspects of your 
code: 
•  Look for common DMM bugs 
•  Diagnose seg faults using gdb 
•  Manually inspect malloc calls 
•  Hard-code malloc calls 
•  Comment-out free calls 
•  Use Meminfo 
•  Use Valgrind  
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Appendix 1: Buggy Programs 
leak.c 

 1. #include <stdio.h> 
 2. #include <stdlib.h> 
 3. int main(void) 
 4. {  int *pi;   
 5.    pi = (int*)malloc(sizeof(int)); 
 6.    *pi = 5; 
 7.    printf("%d\n", *pi); 
 8.    pi = (int*)malloc(sizeof(int)); 
 9.    *pi = 6; 
10.    printf("%d\n", *pi); 
11.    free(pi); 
12.    return 0; 
13. } 
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Memory leak: 
 Memory allocated at line 5 is leaked 



Appendix 1: Buggy Programs 
doublefree.c 

 1. #include <stdio.h> 
 2. #include <stdlib.h> 
 3. int main(void) 
 4. {  int *pi; 
 5.    pi = (int*)malloc(sizeof(int)); 
 6.    *pi = 5; 
 7.    printf("%d\n", *pi); 
 8.    free(pi); 
 9.    free(pi); 
10.    return 0; 
11. } 
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Multiple free: 
 Memory allocated at line 5 is freed twice 



Appendix 1: Buggy Programs 
danglingptr.c 

 1. #include <stdio.h> 
 2. #include <stdlib.h> 
 3. int main(void) 
 4. {  int *pi; 
 5.    pi = (int*)malloc(sizeof(int)); 
 6.    *pi = 5; 
 7.    printf("%d\n", *pi); 
 8.    free(pi); 
 9.    printf("%d\n", *pi);  
10.    return 0; 
11. } 

24 

Dereference of dangling pointer: 
 Memory accessed at line 9 already was freed 



Appendix 1: Buggy Programs 
toosmall.c 

 1. #include <stdio.h> 
 2. #include <stdlib.h> 
 3. int main(void) 
 4. {  int *pi;  
 5.    pi = (int*)malloc(1);   
 6.    *pi = 5; 
 7.    printf("%d\n", *pi); 
 8.    free(pi); 
 9.    return 0; 
10. } 

25 

Memory corruption: 
 Too little memory is allocated at line 5 
 Line 6 corrupts memory 



Appendix 2: Meminfo 
Meminfo can detect memory leaks: 

$ gcc217m leak.c -o leak 
$ leak 
5 
6 
$ ls 
.  ..  leak.c  leak  meminfo30462.out   
$ meminforeport meminfo30462.out  
Errors: 
   ** 4 un-freed bytes (1 block) allocated at leak.c:5 
Summary Statistics: 
   Maximum bytes allocated at once: 8 
   Total number of allocated bytes: 8 
Statistics by Line: 
          Bytes   Location 
             -4   leak.c:11 
              4   leak.c:5 
              4   leak.c:8 
              4   TOTAL 
Statistics by Compilation Unit: 
              4   leak.c 
              4   TOTAL 
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Appendix 2: Meminfo 
Meminfo can detect memory corruption: 

$ gcc217m toosmall.c -o toosmall 
$ toosmall 
5 
$ ls 
.  ..  toosmall.c  toosmall  meminfo31891.out   
$ meminforeport meminfo31891.out  
Errors: 
   ** Underflow detected at toosmall.c:8 for memory allocated at toosmall.c:5 
Summary Statistics: 
   Maximum bytes allocated at once: 1 
   Total number of allocated bytes: 1 
Statistics by Line: 
          Bytes   Location 
              1   toosmall.c:5 
             -1   toosmall.c:8 
              0   TOTAL 
Statistics by Compilation Unit: 
              0   toosmall.c 
              0   TOTAL 
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Appendix 2: Meminfo 

Meminfo caveats: 

•  Don’t mix .o files built with gcc217 and gcc217m 

• meminfo*.out files can be large 
•  Should delete frequently 

•  Programs built with gcc217m run slower than those built with 
gcc217 
•  Don’t build with gcc217m when doing timing tests 
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Appendix 3: Valgrind 
Valgrind can detect memory leaks: 

$ gcc217v leak.c -o leak 
$ valgrind leak 
==31921== Memcheck, a memory error detector 
==31921== Copyright (C) 2002-2012, and GNU GPL'd, by Julian Seward et al. 
==31921== Using Valgrind-3.8.1 and LibVEX; rerun with -h for copyright info 
==31921== Command: leak 
==31921==  
5 
6 
==31921==  
==31921== HEAP SUMMARY: 
==31921==     in use at exit: 4 bytes in 1 blocks 
==31921==   total heap usage: 2 allocs, 1 frees, 8 bytes allocated 
==31921==  
==31921== LEAK SUMMARY: 
==31921==    definitely lost: 4 bytes in 1 blocks 
==31921==    indirectly lost: 0 bytes in 0 blocks 
==31921==      possibly lost: 0 bytes in 0 blocks 
==31921==    still reachable: 0 bytes in 0 blocks 
==31921==         suppressed: 0 bytes in 0 blocks 
==31921== Rerun with --leak-check=full to see details of leaked memory 
==31921==  
==31921== For counts of detected and suppressed errors, rerun with: -v 
==31921== ERROR SUMMARY: 0 errors from 0 contexts (suppressed: 6 from 6) 
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Appendix 3: Valgrind 
Valgrind can detect memory leaks: 

$ valgrind --leak-check=full leak 
==476== Memcheck, a memory error detector 
==476== Copyright (C) 2002-2012, and GNU GPL'd, by Julian Seward et al. 
==476== Using Valgrind-3.8.1 and LibVEX; rerun with -h for copyright info 
==476== Command: leak 
==476==  
5 
6 
==476==  
==476== HEAP SUMMARY: 
==476==     in use at exit: 4 bytes in 1 blocks 
==476==   total heap usage: 2 allocs, 1 frees, 8 bytes allocated 
==476==  
==476== 4 bytes in 1 blocks are definitely lost in loss record 1 of 1 
==476==    at 0x4A069EE: malloc (vg_replace_malloc.c:270) 
==476==    by 0x400565: main (leak.c:5) 
==476==  
==476== LEAK SUMMARY: 
==476==    definitely lost: 4 bytes in 1 blocks 
==476==    indirectly lost: 0 bytes in 0 blocks 
==476==      possibly lost: 0 bytes in 0 blocks 
==476==    still reachable: 0 bytes in 0 blocks 
==476==         suppressed: 0 bytes in 0 blocks 
==476==  
==476== For counts of detected and suppressed errors, rerun with: -v 
==476== ERROR SUMMARY: 1 errors from 1 contexts (suppressed: 6 from 6) 30 



Appendix 3: Valgrind 
Valgrind can detect multiple frees: 

$ gcc217v doublefree.c -o doublefree 
$ valgrind doublefree 
==31951== Memcheck, a memory error detector 
==31951== Copyright (C) 2002-2012, and GNU GPL'd, by Julian Seward et al. 
==31951== Using Valgrind-3.8.1 and LibVEX; rerun with -h for copyright info 
==31951== Command: doublefree 
==31951==  
5 
==31951== Invalid free() / delete / delete[] / realloc() 
==31951==    at 0x4A063F0: free (vg_replace_malloc.c:446) 
==31951==    by 0x4005A5: main (doublefree.c:9) 
==31951==  Address 0x4c2a040 is 0 bytes inside a block of size 4 free'd 
==31951==    at 0x4A063F0: free (vg_replace_malloc.c:446) 
==31951==    by 0x400599: main (doublefree.c:8) 
==31951==  
==31951==  
==31951== HEAP SUMMARY: 
==31951==     in use at exit: 0 bytes in 0 blocks 
==31951==   total heap usage: 1 allocs, 2 frees, 4 bytes allocated 
==31951==  
==31951== All heap blocks were freed -- no leaks are possible 
==31951==  
==31951== For counts of detected and suppressed errors, rerun with: -v 
==31951== ERROR SUMMARY: 1 errors from 1 contexts (suppressed: 6 from 6) 
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Appendix 3: Valgrind 
Valgrind can detect dereferences of dangling pointers: 

$ gcc217v danglingptr.c -o danglingptr 
$ valgrind danglingptr 
==336== Memcheck, a memory error detector 
==336== Copyright (C) 2002-2012, and GNU GPL'd, by Julian Seward et al. 
==336== Using Valgrind-3.8.1 and LibVEX; rerun with -h for copyright info 
==336== Command: danglingptr 
==336==  
5 
==336== Invalid read of size 4 
==336==    at 0x40059E: main (danglingptr.c:9) 
==336==  Address 0x4c2a040 is 0 bytes inside a block of size 4 free'd 
==336==    at 0x4A063F0: free (vg_replace_malloc.c:446) 
==336==    by 0x400599: main (danglingptr.c:8) 
==336==  
5 
==336==  
==336== HEAP SUMMARY: 
==336==     in use at exit: 0 bytes in 0 blocks 
==336==   total heap usage: 1 allocs, 1 frees, 4 bytes allocated 
==336==  
==336== All heap blocks were freed -- no leaks are possible 
==336==  
==336== For counts of detected and suppressed errors, rerun with: -v 
==336== ERROR SUMMARY: 1 errors from 1 contexts (suppressed: 6 from 6) 
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Appendix 3: Valgrind 
Valgrind can detect memory corruption: 

$ gcc217v toosmall.c -o toosmall 
$ valgrind toosmall 
==436== Memcheck, a memory error detector 
==436== Copyright (C) 2002-2012, and GNU GPL'd, by Julian Seward et al. 
==436== Using Valgrind-3.8.1 and LibVEX; rerun with -h for copyright info 
==436== Command: toosmall 
==436==  
==436== Invalid write of size 4 
==436==    at 0x40056E: main (toosmall.c:6) 
==436==  Address 0x4c2a040 is 0 bytes inside a block of size 1 alloc'd 
==436==    at 0x4A069EE: malloc (vg_replace_malloc.c:270) 
==436==    by 0x400565: main (toosmall.c:5) 
==436==  
==436== Invalid read of size 4 
==436==    at 0x400578: main (toosmall.c:7) 
==436==  Address 0x4c2a040 is 0 bytes inside a block of size 1 alloc'd 
==436==    at 0x4A069EE: malloc (vg_replace_malloc.c:270) 
==436==    by 0x400565: main (toosmall.c:5) 
==436==  
5 

Continued on next slide 
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Appendix 3: Valgrind 
Valgrind can detect memory corruption (cont.): 

==436==  
==436== HEAP SUMMARY: 
==436==     in use at exit: 0 bytes in 0 blocks 
==436==   total heap usage: 1 allocs, 1 frees, 1 bytes allocated 
==436==  
==436== All heap blocks were freed -- no leaks are possible 
==436==  
==436== For counts of detected and suppressed errors, rerun with: -v 
==436== ERROR SUMMARY: 2 errors from 2 contexts (suppressed: 6 from 6) 

Continued from previous slide 
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Appendix 3: Valgrind 

Valgrind caveats: 

•  Don’t mix .o files built with gcc217 and gcc217v 

•  Not intended for programmers who are new to C 
•  Messages may be cryptic 

•  Suggestion: 
•  Observe line numbers referenced by messages 
•  Study code at those lines 
•  Infer meanings of messages 
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