
COMPUTER SC I ENCE
S E D G E W I C K / W A Y N E

http://introcs.cs.princeton.edu

R O B E R T S E D G E W I C K
K E V I N W A Y N E

C
om

puter Science

Computer
Science

An Interdisciplinary Approach

21. Central Processing Unit

Sections 6.2-3

COMPUTER SC I ENCE
S E D G E W I C K / W A Y N E

21. CPU

•Overview
•Bits, registers, and memory
•Program counter
•Components and connections

CS.21.A.CPU.Overview

Let's build a computer!

CPU = Central Processing Unit

Computer
 Display
 Touchpad
 Battery
 Keyboard
 ...
 CPU (difference between a TV set and a computer)

Previous lecture
 Combinational circuits
 ALU (calculator)

This lecture
 Sequential circuits with memory
 CPU (computer)

3

CPU

A smaller computing machine: TinyTOY

TOY instruction-set architecture.

• 256 16-bit words of memory.

• 16 16-bit registers.

• 1 8-bit program counter.

• 2 instruction types

• 16 instructions.

TinyTOY instruction-set architecture.

• 32 8-bit words of memory.

• 1 8-bit register.

• 1 5-bit program counter.

• 1 instruction type

• 8 instructions.

4

4 bits to specify
one of 16 registers

8 bits to specify one
of 256 memory words

Type 1 instruction
opcodeopcodeopcodeopcode RdRdRdRd RsRsRsRs RtRtRtRt

Type 2 instruction
opcodeopcodeopcodeopcode RdRdRdRd addraddraddraddraddraddraddraddr

Purpose of TinyTOY. Illustrate CPU circuit design for a "typical" computer.

5 bits to specify one
of 32 memory words

TinyTOY instruction
opcodeopcodeopcode addraddraddraddr

TinyTOY instruction set architecture

TinyTOY instructions.

• Halt

• Add

• AND

• XOR

• LOAD ADDRESS

• LOAD

• STORE

• BRANCH NEGATIVE

5

5 bits to specify one
of 32 memory words

4 bits and 16 words
in prototype machine

TinyTOY instruction
opcodeopcodeopcode addraddraddraddr

TinyTOY instruction-set architecture.

• 16 8-bit words of memory (expandable to 32).

• 1 8-bit register (R0).

• 1 4-bit program counter (expandable to 5).

• 8 instructions (only one type).

6

Review: the state of the machine

Contents of memory, registers, and PC at a particular time

• Provide a record of what a program has done.

• Completely determines what the machine will do.

Memory Registers

PC

IR

ALU

ALU and IR hold
intermediate states

of computation

Goal. Complete CPU circuit for TinyTOY (same design extends to TOY and to your computer).

CPU circuit components for TinyTOY

TinyTOY CPU

• ALU (adder, AND, XOR)

• Memory

• Register (R0)

• PC (with incrementer)

• IR

• MUXes (switch circuits)
• Control
• Clock

7

MAIN MEMORY
16 8-bit words

(expandable to 32)

ALU

R0
8 bits

IR
8 bits

PC
4 bits

CONTROL

R0 MUX
3-way

Address MUX
2-way

stay tuned
(this lecture)

Perspective

Q. Why TinyTOY?

A. TOY circuit width would be about 5 times TinyTOY circuit width.

8

TOY

TinyTOY

Sobering fact. The circuit for your computer is hundreds to thousands of times wider.

Reassuring fact. Design of all three is based on the same fundamental ideas.

COMPUTER SC I ENCE
S E D G E W I C K / W A Y N E

21. CPU

•Overview
•Bits, registers, and memory
•Program counter
•Connections

CS.21.B.CPU.Memory

Sequential circuits

Q. What is a sequential circuit?

A. A digital circuit (all signals are 0 or 1) with feedback (loops).

10

Q. Why sequential circuits?

A. Memory (difference between a DFA and a Turing machine).

Basic abstractions

• On and off.

• Wire: Propagates an on/off value.

• Switch: Controls propagation of on/off values through wires.

• Flip-flop: Remembers a value.

11

Simple circuits with feedback

Loops in circuits lead to time-varying behavior

• Sequence of switch operation matters.

• Need tight control (see next slide).

a "buzzer"

Example 1. Two switches, each blocked by the other.

• State determined by whichever switches first.

• Stable (once set, state never changes).

• Basic building block for memory circuits.

Example 2. Three switches, blocked in a cycle.

• State determined by whichever switches first.

• Not stable (cycles through states).

12

A new ingredient: Circuits with memory

An SR flip-flop controls feedback.

• Add control lines to switches
in simple feedback loop.

• R (reset) sets state to 0.
• S (set) sets state to 1.

• Q (state) is always available.

 NOR

S

Q

component level

 NOR

R

Caveat. Timing of switch vs. propagation delay.

stays 0 stays 1 unused

SR

Q
output
value
(state)

QR

S

classic notation

"cross-coupled NOR gates"

examples
R: set to 0 S: set to 1

looks
like "1"

gratuitous
addition:

looks like "0"

13

One bit in a register

Add logic to an SR flip-flop for more precise control

• Provide data value on an input wire instead of using S and R controls.

• Use enable write signal to control timing of write.

• Flip-flop value is always available.

value (set to input
if write enable)

input (ignored if
not write enable)

looks like "0"

stays "1"

write enable off

stays "0"

write enable off

1
write

enable

set to 1 S

set to 0

0write
enable

R

14

Registers

Register

• Holds W bits.

• Input and output on W-wire busses.

• Register contents always available on output bus.

• Enable write puts W input bits into register.

under the cover
circuit (gate)

component
level

input
bus

input
bus

enable
write

output
bus

TinyTOY registers

• PC holds 4-bit address.

• IR holds 8-bit instruction.

• R0 holds 8-bit data value.

examples

write
not

enabled

input
ignored

write
enabled

0
1
0
1

1 1 0 0 = 12

0 1 0 1 = 5

15

One bit in main memory

Add a selection mechanism

• Flip-flop value is not always available.

• Use select for read signal to make it available.

• "1-hot" OR to collect the one bit value that is selected.

value (set to input
if write enable)

collect in (set to 1
if read select)

input

collect
out

read
select

write
enable

16

Main memory: interface

Main memory.

• N words; each stores W bits.

• Read and write data to one of N words.

• Address inputs select one word.

• Addressed word always on output bus.

• When write enabled, W input bits are
copied into addressed word.

number of
words

bits per
word

address
bits

this slide 4 6 2

tinyTOY 16 or 32 8 4 or 5

TOY 256 16 8

your computer 1 billion 64 32

interface
(four 6-bit words)

17

Main memory bank: component level

Main memory.

• N words; each stores W bits.

• Read and write data to one of N words.

• Address inputs select one word.

• Addressed word always on output bus.

• When write enabled, W input bits are
copied into addressed word.

component-level implementation (four six-bit words)

Basic mechanisms

• A decoder uses address to switch on
one line (through the addressed word)

• "1-hot" OR gates at each bit position
take word contents to the output bus.

1
0Example: Read word 2 (10)

18

Main memory bank: switch level

Main memory.

• N words; each stores W bits.

• Read and write data to one of N words.

• Address inputs select one word.

• Addressed word always on output bus.

• When write enabled, W input bits are
copied into addressed word.

switch-level implementation
(four 6-bit words)

MEMORY
16 8-bit words

(expandable to 32)

TinyTOY main memory bank

Interface

• Input bus for "store"

• Output bus for "load"

• Address bits to select a word

• Enable write control signal

19

Connections

• Input bus from registers

• Output bus to IR and R0

• Address bits from PC, IR, R0

• Enable write from "control"

interface
input bus

output bus

enable
write

address
bits

switch level

COMPUTER SC I ENCE
S E D G E W I C K / W A Y N E

21. CPU

•Overview
•Bits, registers, and memory
•Program counter
•Components and connections

CS.21.C.CPU.PC

21

Designing a digital circuit: overview

Steps to design a digital (sequential) circuit

• Design interface: input busses, output busses, control signals.

• Determine components.

• Determine datapath requirements: "flow" of bits.

• Establish control sequence.

Warmup. Design TinyTOY program counter (PC). Three components and three control signals

Another useful combinational circuit: Multiplexer

Bus multiplexer (MUX).

• Combinational circuit to select among input buses.

• Exactly one select line i is activated.

• Puts bit values from input bus i onto output bus.

22

Typical use. Connect a component in different ways at different times.

Note: MUX in text takes binary select specification

0
1
2

 3 4-bit input busses

0

1

2

selection
lines

example

select 0 is hot

 output is value of
selected input (bus 0)

23

Counter interface

A Counter holds a value and supports 3 control signals:
• Increment. Add 1 to value.
• Load. Set value from input bus.
• Enable write. Make value available on output bus.

TinyTOY PC: 4-bit counter

Components inside

• Register.

• Incrementer (add 1).

• 2-way MUX.

COUNTER

output bus

input bus

load

increment

enable
write

24

Counter layout and implementation

Layout and connections establish

• data paths (busses)

• control signals

component
level

INCREMENTER

2-WAY
BUS MUX

REGISTER
enable
write

increment

load

switch level implementation

enable
write

increment

load

simplified adder
with y = 0001

=

INCREMENTER

25

Counter operation

load (from IR)

2-WAY
BUS MUX

REGISTER
enable
write

increment

load

INCREMENTER

2-WAY
BUS MUX

REGISTER
enable
write

increment

load

increment

Important note: Enable write is a pulse, to avoid feedback (stay tuned)
26

Summary of TinyTOY PC (counter) circuit

The PC is three components and supports three control signals:

• Load, then enable write. Set value from input bus (example: branch instruction).

• Increment, then enable write. Add one to value.
Value is written to the PC and available on output bus in both cases.

Next. CPU circuit (10 components, 20+ control signals).

component
level

INCREMENTER

2-WAY
BUS MUX

REGISTER
enable
write

increment

load

interface circuit

enable
write

increment

load

COMPUTER SC I ENCE
S E D G E W I C K / W A Y N E

21. CPU

•Overview
•Bits, registers, and memory
•Program counter
•Components and connections

CS.21.D.CPU.Components

CPU is a circuit inside the machine

Interface to outside world

• Switches and lights

• ON/OFF

• RUN

Connections to outside (omitted)

• ADDR to PC

• DATA to memory bank input bus

• Buttons to control lines that
activate memory load/store

TinyTOY: Interface

28

TinyTOY
A computing machine

Review: CPU circuit components for TinyTOY

TinyTOY CPU

• ALU (adder, AND, XOR)

• Memory

• Register (R0)

• PC (with incrementer)

• IR

• MUXes (switch circuits)

• Control
• Clock

29

MAIN MEMORY
16 8-bit words

(expandable to 32)

ALU

R0
8 bits

IR
8 bits

PC
4 bits

CONTROL

R0 MUX
3-way

Address MUX
2-way

Review: Program counter and instruction register

30

Fetch-increment-execute cycle

• Fetch: Get instruction from memory into IR.

• Increment: Update PC to point to next instruction.

• Execute: Move data to or from memory, change PC,
or perform calculations, as specified by IR.

FETCH

INCREMENT
EXECUTE

Critical abstractions in making this happen

• Program Counter (PC). Memory address of next instruction.

• Instruction Register (IR). Instruction being executed.

TOY operates by executing a sequence of instructions.

TinyToy data paths and control lines

31

control

MAIN MEMORY
16 8-bit words

(expandable to 32)

ALU

R0
8 bits

IR
8 bits

PC
4 bits

R0 MUX
3-way

Address MUX
2-way

PC MUX
2-way

INCREMENTER

CONTROL

Fetch (every instruction)

32

MAIN MEMORY
16 8-bit words

IR
8 bits

PC
4 bits

Data paths

• PC to Address MUX

• Address MUX to memory

• Memory to IR

Control signals

• Address MUX select 1

• IR Write Enable

Address MUX
2-way

Increment (review)

33

PC
4 bits

Data paths

• PC to Incrementer

• Incrementer to PC MUX

• PC MUX to PC

Control signals

• PC MUX select 0

• PC write enable

INCREMENTER

PC MUX
2-way

Note: Occurs during execution of every instruction (except branch).

Add instruction

34

MAIN MEMORY
16 8-bit words

IR
8 bits

Data paths

• IR to Address MUX

• Address MUX to memory

• Memory to ALU

• R0 to ALU

• ALU to R0 MUX

• R0 MUX to R0

Control signals

• ALU Select ADD

• Address MUX select 0

• R0 MUX Select 0

• R0 Write Enable

Address MUX
2-way

R0
8 bits

R0 MUX
3-way

ALU

Clock

A CLOCK provides a regular ON-OFF pulse.

35

Q. How to implement a clock?

A. Use an external device.

A. Use a buzzer circuit.

Requirement. Clock cycle longer than max switching time.

36

TinyTOY clock

Two-cycle design. Each control signal is in one of four epochs.

10 2 3

3 2 1 0

epoch name example

0 fetch set MA from PC

1 fetch/write load IR from memory

2 execute set ALU inputs

3 execute/write load R0 from ALU

3 2 1 0

Key feature. A sequence of signals.

37

One final combinational circuit: Control

Control. Circuit that determines control line sequencing.

Control line sequencing

• Clock cycles through four epochs,
raising one line at a time

• Determines sequence of at most 4 sets
of control lines for each instruction

example: ADD instruction during epoch 3

Key feature. A simple combinatorial circuit.

Tick-Tock

CPU is a circuit, driven by a clock.

Initalize via console switches.

Press RUN: clock starts ticking

• PC to mem addr MUX
• IR enable write
• PC increment
• PC enable write

.

.

.
[details of instruction execution differ]
.
.
.

Faster clock? Faster computer!

38
And THAT . . . is how your computer works!

FETCH

INCREMENT
EXECUTE

TinyTOY
A computing machine

RUN

39

TOY "Classic", back-of-envelope design (circa 2005) TinyTOY CPU

40

PC bus mux (2-way)

MA bus mux (2-way)

PC increment

PC

Memory

IR

R0

ALU

R0 mux (3-way)

control

41

A real microprocessor (MIPS R10000) COMPUTER SC I ENCE
S E D G E W I C K / W A Y N E

http://introcs.cs.princeton.edu

R O B E R T S E D G E W I C K
K E V I N W A Y N E

C
om

puter Science

Computer
Science

An Interdisciplinary Approach

21. Central Processing Unit

Sections 6.2-3

