
COMPUTER SC I ENCE
S E D G E W I C K / W A Y N E

http://introcs.cs.princeton.edu

R O B E R T S E D G E W I C K
K E V I N W A Y N E

C
om

puter Science

Computer
Science

An Interdisciplinary Approach

20. Combinational Circuits

Section 6.1

Combinational circuits

Q. What is a combinational circuit?

A. A digital circuit (all signals are 0 or 1) with no feedback (no loops).

2

Q. Why combinational circuits?

A. Accurate, reliable, general purpose, fast, cheap.

Applications. Smartphone, tablet, game controller, antilock brakes, microprocessor, …

Basic abstractions

• On and off.

• Wire: propagates on/off value.

• Switch: controls propagation of on/off values through wires.

analog circuit: signals vary continuously sequential circuit: loops allowed (stay tuned)

COMPUTER SC I ENCE
S E D G E W I C K / W A Y N E

20. Combinational Circuits

•Building blocks
•Boolean algebra
•Digital circuits
•Adder

CS.20.A.Circuits.Basics

4

Wires

Wires propagate on/off values
• ON (1): connected to power.
• OFF (0): not connected to power.
• Any wire connected to a wire that is ON is also ON.
• Drawing convention: "flow" from top, left to bottom, right.

power
connection

1

thick wires are ON

1

1

thin wires are OFF

0

5

Switches control propagation of on/off values through wires.
• Simplest case involves two connections: control (input) and output.
• control OFF: output ON
• control ON: output OFF

Controlled Switch

control input OFF

output ON

control input ON

output OFF

6

Switches control propagation of on/off values through wires.
• General case involves three connections: control input, data input and output.
• control OFF: output is connected to input
• control ON: output is disconnected from input

Controlled Switch

control input OFF

control input OFF

control input ON

control input ON

data input OFF output OFF

data input ON output ON

data input OFF output OFF

data input ON output OFF

Idealized model of pass transistors found in real integrated circuits.

7

A relay is a physical device that controls a switch with a magnet
• 3 connections: input, output, control.
• Magnetic force pulls on a contact that cuts electrical flow.

Controlled switch: example implementation

schematicschematicschematicschematic control off control on

contact
connection

broken

magnet on
pulls

contact up
magnet

(off)

spring

First level of abstraction

Switches and wires model provides separation
between physical world and logical world.
• We assume that switches operate as specified.
• That is the only assumption.
• Physical realization of switch is irrelevant to design.

Physical realization dictates performance
• Size.
• Speed.
• Power.

New technology immediately gives new computer.

Better switch? Better computer.

Basis of Moore's law.

8

all built with
"switches and wires"

Switches and wires: a first level of abstraction

9

technology “information” switch

pneumatic air pressure

fluid
water

pressure

relay
electric

potential

Amusing attempts that do not
scale but prove the point

technology switch

relay

vacuum tube

transistor

“pass transistor” in
integrated circuit

atom-thick
transistor

Real-world examples that prove the point

Switches and wires: a first level of abstraction

VLSI = Very Large Scale Integration

Technology
 Deposit materials on substrate.

Key properties
 Lines are wires.
 Certain crossing lines are controlled switches.

Key challenge in physical world
 Fabricating physical circuits with
 billions of wires and controlled switches

Key challenge in “abstract” world
 Understanding behavior of circuits with
 billions of wires and controlled switches

Bottom line. Circuit = Drawing (!)

10

11

Circuit anatomy

Need more levels of abstraction
to understand circuit behavior

COMPUTER SC I ENCE
S E D G E W I C K / W A Y N E

20. Combinational Circuits

•Building blocks
•Boolean algebra
•Digital circuits
•Adder

CS.20.B.Circuits.Algebra

Boolean algebra

Developed by George Boole in 1840s to study logic problems
• Variables represent true or false (1 or 0 for short).
• Basic operations are AND, OR, and NOT (see table below).

Widely used in mathematics, logic and computer science.

13

George Boole
1815−1864

operation Java notation logic notation circuit design
(this lecture)

AND x && y x⋀y xy

OR x || y x⋁y x + y

NOT ! x ¬x x'

Relevance to circuits. Basis for next level of abstraction.

various notations
in common use

(xy) ' = (x ' + y ')
(x + y) ' = x'y'

Example: (stay tuned for proof)

DeMorgan's Laws

Copyright 2004, Sidney Harris
http://www.sciencecartoonsplus.com

14

Truth tables

A truth table is a systematic way to define a Boolean function
• One row for each possible set of argument values.
• Each row gives the function value for the specified argument values.
• N inputs: 2N rows needed.

AND

x y xy

0 0 0

0 1 0

1 0 0

1 1 1

OR

x y x + y

0 0 0

0 1 1

1 0 1

1 1 1

XOR

x y XOR

0 0 0

0 1 1

1 0 1

1 1 0

NOR

x y NOR

0 0 1

0 1 0

1 0 0

1 1 0

NOT

x x'

0 1

1 0

15

Truth table proofs

Truth tables are convenient for establishing identities in Boolean logic
• One row for each possibility.
• Identity established if columns match.

x y xy (xy) '

0 0 0 1

0 1 0 1

1 0 0 1

1 1 1 0

x y x' y' x ' + y '

0 0 1 1 1

0 1 1 0 1

1 0 0 1 1

1 1 0 0 0

Proofs of DeMorgan's laws

x y x + y (x + y) '

0 0 0 1

0 1 1 0

1 0 1 0

1 1 1 0

x y x' y' x 'y '

0 0 1 1 1

0 1 1 0 0

1 0 0 1 0

1 1 0 0 0

(xy) ' = (x ' + y ') (x + y) ' = x'y'

NOR NOR

16

All Boolean functions of two variables

x y ZERO AND x y XOR OR NOR EQ ¬y ¬x NAND ONE

0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

0 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1

1 0 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1

1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

Q. How many Boolean functions of two variables?

A. 16 (all possibilities for the 4 bits in the truth table column).

Truth tables for all Boolean functions of 2 variables

17

Functions of three and more variables

x y z AND OR NOR MAJ ODD

0 0 0 0 0 1 0 0

0 0 1 0 1 0 0 1

0 1 0 0 1 0 0 1

0 1 1 0 1 0 1 0

1 0 0 0 1 0 0 1

1 0 1 0 1 0 1 0

1 1 0 0 1 0 1 0

1 1 1 1 1 0 1 1

Q. How many Boolean functions of three variables?

A. 256 (all possibilities for the 8 bits in the truth table column).

Q. How many Boolean functions of N variables?

Some Boolean functions of 3 variables

N number of Boolean functions with N variables

2 24 = 16
3 28 = 256
4 216 = 65,536
5 232 = 4,294,967,296
6 264 = 18,446,744,073,709,551,616

AND logical AND 0 iff any inputs is 0 (1 iff all inputs 1)

OR logical OR 1 iff any input is 1 (0 iff all inputs 0)

NOR logical NOR 0 iff any input is 1 (1 iff all inputs 0)

MAJ majority 1 iff more inputs are 1 than 0

ODD odd parity 1 iff an odd number of inputs are 1

A. 22N

Examples
all extend to N variables

18

Universality of AND, OR and NOT

Every Boolean function can be represented as a sum of products
• Form an AND term for each 1 in Boolean function.
• OR all the terms together.

x y z MAJ x'yz xy'z xyz' xyz

0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0

0 1 1 1 1 0 0 0 1

1 0 0 0 0 0 0 0 0

1 0 1 1 0 1 0 0 1

1 1 0 1 0 0 1 0 1

1 1 1 1 0 0 0 1 1

Expressing MAJ as a sum of products

Fact. { AND, OR, NOT } is universal.

Def. A set of operations is universal if
every Boolean function can be expressed
using just those operations.

x'yz + xy'z + xyz' + xyz = MAJ

COMPUTER SC I ENCE
S E D G E W I C K / W A Y N E

20. Combinational Circuits

•Building blocks
•Boolean algebra
•Digital circuits
•Adder

CS.20.C.Circuits.Digital

A basis for digital devices

Claude Shannon connected circuit design with boolean algebra in 1937.

20

Claude Shannon
1916−2001“ Possibly the most important, and also the most

famous, master's thesis of the [20th] century.”

− Howard Gardner

Key idea. Can use boolean algebra to
systematically analyze circuit behavior.

21

x y NOR
0 0 1
0 1 0
1 0 0
1 1 0

x y OR
0 0 0
0 1 1
1 0 1
1 1 1

x y AND
0 0 0
0 1 0
1 0 0
1 1 1

x x'
0 1
1 0

truth table

NOT

boolean
function notation

x '

NOR (x + y)'

OR x + y

AND xy

under the cover
circuit (gate)

proof

1 iff x is 0

1 iff x and y
are both 0

A second level of abstraction: logic gates

x+y = ((x + y)')'

 NOR ¬

xy = (x ' + y ')'

 NOR

¬ ¬

classic
symbol our symbol

¬x x'

AND

x y

xy

 OR

x y
x+y

 NOR

x y
(x+y)'(x+y)'

22

Gates with arbitrarily many inputs

Multiway gates.
• OR: 1 if any input is 1; 0 if all inputs are 0.
• NOR: 0 if any input is 1; 1 if all inputs are 0.
• Generalized: Negate some inputs.

u v w x y z

(u+v+w+x+y+z) ' = u'v 'w 'x 'y 'z '

multiway
NOR gate

1 if all inputs are 0;
0 if any input is 1

classic symbol
u v w x y z

u+v+w+x+y+z

multiway
OR gate

0 if all inputs are 0;
1 if any input is 1

under the cover
u v w x y z

our symbol

u+v+w+x+y+z
u v w x y z

 OR

generalized

u v w x y zu v w x y z

 NOR
u'v 'w 'x 'y 'z '

u 'vwx 'y 'z

u v w x y z

 NOR

¬ ¬ ¬

(u+v '+w'+x+y+z ') ' = u'vwx'y 'z

u v w x y z

1 iff u, x, and y are 0
and v, w, and z are 1

u v w x y z 0 1 1 0 0 0

0 1 1 0 0 0

example
0 1 1 0 0 0

23

Generalized NOR gate application: Decoder

A decoder uses a binary address to switch on a
single output line
• n address inputs, 2n outputs.
• Uses all 2n different generalized NOR gates.
• Addressed output line is 1; all others are 0.

x y z
a0 a1 a2 a3 a4 a5 a6 a7

x y z
x'y'z' x'y'z x'yz' x'yz xy'z' xy'z xyz' xyz

(x+y+z)' (x+y+z')' (x+y'+z)' (x+y'+z')' (x'+y+z)' (x+y'+z)' (x'+y'+z)' (x'+y'+z')'

0 0 0 1 0 0 0 0 0 0 0
0 0 1 0 1 0 0 0 0 0 0
0 1 0 0 0 1 0 0 0 0 0
0 1 1 0 0 0 1 0 0 0 0
1 0 0 0 0 0 0 1 0 0 0
1 0 1 0 0 0 0 0 1 0 0
1 1 0 0 0 0 0 0 0 1 0
1 1 1 0 0 0 0 0 0 0 1

Next. Circuits for any boolean function.

0

1

2

3

4

5

6

7

example

110 = 6

6 is hot

24

Creating a digital circuit that computes a boolean function: majority

Use the truth table
• Identify rows where the function is 1.
• Use a generalized NOR gate for each.
• OR the results together.

x y z MAJ

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 1

1 1 1 1

MAJ = x'yz + xy'z + xyz' + xyz

x'yz = (x + y' + z')'NOR
¬ ¬

xy'z = (x' + y + z')'NOR
¬ ¬

xyz' = (x' + y' + z)'NOR
¬ ¬

xyz = (x' + y' + z')'
NOR
¬ ¬ ¬

Example 1: Majority function
MAJ

xyz

NOR
¬ ¬

NOR
¬ ¬

NOR
¬ ¬

NOR
¬ ¬ ¬

OR

MAJ

xyz

majority circuit

generalized NORs
implement AND terms
in sum-of -products

example

110

MAJ is 1

25

Creating a digital circuit that computes a boolean function: odd parity

Use the truth table
• Identify rows where the function is 1.
• Use a generalized NOR gate for each.
• OR the results together.

x y z ODD

0 0 0 0

0 0 1 1

0 1 0 1

0 1 1 0

1 0 0 1

1 0 1 0

1 1 0 0

1 1 1 1

ODD = x'y'z + x'yz' + xy'z' + xyz

xyz = (x' + y' + z')'
NOR
¬ ¬ ¬

Example 2: Odd parity function ODD

xyz

xy'z' = (x' + y + z)'¬
NOR

x'y'z = (x + y + z')'NOR
¬

x'yz' = (x' + y' + z)'NOR
¬

NOR
¬ ¬ ¬

OR

ODD

xyz

¬
NOR

NOR
¬

NOR
¬

odd parity circuit

110

example
ODD is 0

26

Combinational circuit design: Summary

Problem: Design a circuit that computes a given boolean function.

Ingredients
• OR gates.
• NOT gates.
• NOR gates.
• Wire.

Method
• Step 1: Represent input and output with Boolean variables.
• Step 2: Construct truth table to define the function.
• Step 3: Identify rows where the function is 1.
• Step 4: Use a generalized NOR for each and OR the results.

Bottom line (profound idea): Yields a circuit for ANY function.
Caveat (stay tuned): Circuit might be huge.

x y z ODD

0 0 0 0

0 0 1 1

0 1 0 1

0 1 1 0

1 0 0 1

1 0 1 0

1 1 0 0

1 1 1 1

x y z MAJ

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 1

1 1 1 1

MAJ

xyz

MAJ

ODD

xyz

ODD

27

Self-assessment on combinational circuit design

Q. Design a circuit to implement XOR(x, y).

28

Encapsulation

Encapsulation in hardware design mirrors familiar principles in software design
• Building a circuit from wires and switches is the implementation.
• Define a circuit by its inputs and outputs is the API.
• We control complexity by encapsulating circuits as we do with ADTs.

XOR

xy

ODD

xyz

MAJ

xyz

¬

AND

 OR

 NOR

COMPUTER SC I ENCE
S E D G E W I C K / W A Y N E

20. Combinational Circuits

•Building blocks
•Boolean algebra
•Digital circuits
•Adder

CS.20.D.Circuits.Adder

30

Let's make an adder circuit

Goal. x + y = z for 4-bit binary integers.
• 4-bit adder: 9 inputs, 5 outputs.
• Each output is a boolean function of the inputs.

same ideas scale to 64-bit
adder in your computer

1 0 0 1

2 4 7 7

+ 9 5 1 9

1 1 9 9 6

 1 1 0 0

0 0 1 0

+ 0 1 1 1

 1 0 0 1

x3 y3 x2 y2 x1 y1 x0 y0

z3 z2 z1 z0

carry out

carry in

ADD
c4 c3 c2 c1 c0

x3 x2 x1 x0

+ y3 y2 y1 y0

 z3 z2 z1 z0

carry incarry out

31

Let's make an adder circuit

Goal: x + y = z for 4-bit integers.

Strawman solution: Build truth tables for each output bit.

4-bit adder
truth table

c0 x3 x2 x1 x0 y3 y2 y1 y0 c4 z3 z2 z1 z0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 0 1

0 0 0 0 0 0 0 1 0 0 0 0 1 0

0 0 0 0 0 0 0 1 1 0 0 0 1 1

. . .

1 1 1 1 1 1 1 1 0 1 1 1 1 0

1 1 1 1 1 1 1 1 1 1 1 1 1 1

c4 c3 c2 c1 c0

x3 x2 x1 x0

+ y3 y2 y1 y0

 z3 z2 z1 z0

Q. Why is this a bad idea?

A. 128-bit adder: 2256+1 rows >> # electrons in universe!

28+1 = 512 rows!

32

Let's make an adder circuit

Goal: x + y = z for 4-bit integers.

Do one bit at a time.
• Build truth table for carry bit.
• Build truth table for sum bit.

c4 c3 c2 c1 c0

x3 x2 x1 x0

+ y3 y2 y1 y0

 z3 z2 z1 z0

xi yi ci ci+1

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 1

1 1 1 1

carry bit

xi yi ci zi

0 0 0 0

0 0 1 1

0 1 0 1

0 1 1 0

1 0 0 1

1 0 1 0

1 1 0 0

1 1 1 1

sum bit

MAJ

0

0

0

1

0

1

1

1

ODD

0

1

1

0

1

0

0

1

A surprise!
• Carry bit is MAJ.
• Sum bit is ODD.

MAJ

x0 y0

c0

ODD

z0

c1

33

Let's make an adder circuit

Goal: x + y = z for 4-bit integers.

Do one bit at a time.
• Use MAJ and ODD circuits.
• Chain together 1-bit adders to

"ripple" carries.

c4 c3 c2 c1 c0

x3 x2 x1 x0

+ y3 y2 y1 y0

 z3 z2 z1 z0

MAJ

x1 y1

ODD

z1

c2

MAJ

x2 y2

ODD

z2

c3

c4

MAJ

x3 y3

ODD

z3

c4

34

Adder example (8-bit)

0 1 0 0 1 0 0 0 = 72

0 0 0 0 0 1 1 1 = 23

0 0 1 1 0 0 0 1 = 49

35

Adder interface (4-bit)

A bus is a group of wires
that connect components
(carrying data values).

c4 c3 c2 c1 c0

x3 x2 x1 x0

+ y3 y2 y1 y0

 z3 z2 z1 z0

MAJ
carry in

ODD

MAJ

ODD

MAJ

ODD

MAJ

ODD
carry out

x0
x1
x2
x3
y0
y1
y2
y3

z0
z1
z2
z3

input
busses

output
bus

ADD

36

Adder component-level view (4-bit)

c4 c3 c2 c1 c0

x3 x2 x1 x0

+ y3 y2 y1 y0

 z3 z2 z1 z0

MAJ
carry in

ODD

MAJ

ODD

MAJ

ODD

MAJ

ODD
carry out

x0
x1
x2
x3
y0
y1
y2
y3

z0
z1
z2
z3

ADD

input
busses

output
bus

37

Adder switch-level view (4-bit)

c4 c3 c2 c1 c0

x3 x2 x1 x0

+ y3 y2 y1 y0

 z3 z2 z1 z0

MAJ
carry in

ODD

MAJ

ODD

MAJ

ODD

MAJ

ODD
carry out

x0
x1
x2
x3
y0
y1
y2
y3

z0
z1
z2
z3

input
busses

output
bus

ADD

38

Summary

Lessons for software design apply to hardware!
• Interface describes behavior of circuit.
• Implementation gives details of how to build it.
• Boolean logic gives understanding of behavior.

Layers of abstraction apply with a vengeance!
• On/off.
• Controlled switch. [relay, pass transistor]
• Gates. [NOT, NOR, OR, AND]
• Boolean functions. [MAJ, ODD]
• Adder.
• ...
• Arithmetic/Logic unit (ALU).
• …
• TOY machine (stay tuned).
• Your computer.

MAJ

xyz

MAJ

ODD

xyz

ODD

¬ AND OR NOR

COMPUTER SC I ENCE
S E D G E W I C K / W A Y N E

http://introcs.cs.princeton.edu

R O B E R T S E D G E W I C K
K E V I N W A Y N E

C
om

puter Science

Computer
Science

An Interdisciplinary Approach

20. Combinational Circuits

Section 6.1

