
COMPUTER SC I ENCE
S E D G E W I C K / W A Y N E

http://introcs.cs.princeton.edu

R O B E R T S E D G E W I C K
K E V I N W A Y N E

C
om

puter Science

Computer
Science

An Interdisciplinary Approach

19. Intractability

Section 7.4

Intractability

2

Fundamental questions

• What is a general-purpose computer?

• Are there limits on the power of digital computers?

• Are there limits on the power of machines we can build?

Kurt Gödel
1909�1994

Asked the question
in a "lost letter" to

von Neumann

Answer still unknown

✓
✓

Asked THE question

Steve CookDick KarpMichael Rabin Dana Scott

Introduced the critical concept
of nondeterminism

focus of today's lecture

John Nash

Asked the question
in a "lost letter" to

the NSA

COMPUTER SC I ENCE
S E D G E W I C K / W A Y N E

19. Intractability

•Reasonable questions
•P and NP
•Poly-time reductions from SAT
•NP-completeness
•Living with intractability

CS.19.A.Intractability.Questions

A difficult problem

Traveling salesperson problem (TSP)

• Given: A set of N cities, distances between each pair of cities, and a distance M.

• Problem: Is there a tour through all the cities of length less than or equal to M ?

4

Exhaustive search. Try all N ! orderings of the cities to look for a tour of length less than M .

How difficult can it be?

Excerpts from a recent blog...

If one took the 100 largest cities in the US and wanted to travel them all, what is the distance of the
shortest route? I'm sure there's a simple answer. Anyone wanna help? A quick google revealed nothing.

I don't think there's any substitute for doing it manually. Google the cities, then pull out your map and
get to work. It shouldn't take longer than an hour.

Writing a program to solve the problem would take 5 or 10 minutes for an average programmer.
However, the amount of time the program would need to run is, well, a LONG LONG LONG time.

My Garmin could probably solve this for you.

Someone needs to write a distributed computing program to solve this IMO.

5

Edit: I didn't realize this was a standardized problem.

 Edit: probably not.

How difficult can it be?

Imagine an UBERcomputer (a giant computing device)…

• With as many processors as electrons in the universe…

• Each processor having the power of today's supercomputers…

• Each processor working for the lifetime of the universe…

6

quantity value
(conservative estimate)

electrons in universe 1079

supercomputer instructions per second 1013

age of universe in seconds 1017

Q. Could the UBERcomputer solve the TSP for 100 cities with the brute force algorithm?

A. Not even close. 100! > 10157 >> 107910131017 = 10109 Would need 1048 UBERcomputers

Lesson. Exponential growth dwarfs technological change.

Reasonable questions about algorithms

Q. Which algorithms are useful in practice?

7

Def (in the context of this lecture). An algorithm is efficient if it is poly-time for all inputs.

Model of computation

• Running time: Number of steps as a function of input length N.

• Poly-time: Running time less than aNb for some constants a and b.

• Definitely not poly-time: Running time ~cN for any constant c >1.

• Specific computer generally not relevant (simulation uses only a polynomial factor).

Q. Can we find efficient algorithms for the practical problems that we face?

outside this lecture: "guaranteed polynomial time"

"Extended Church-Turing thesis"

Reasonable questions about problems

Q. Which problems can we solve in practice?

A. Those for which we know efficient (guaranteed poly-time) algorithms.

8

Example 1: Sorting. Not intractable. (Insertion sort takes time proportional to N 2.)

Example 2: TSP. ??? (No efficient algorithm known, but no proof that none exists.)

Q. Is there an easy way to tell whether a problem is intractable?

A. Good question! Focus of today's lecture. Existence of a faster algorithm
like mergesort is not relevant

to this discussion

Definition. A problem is intractable if no efficient algorithm exists to solve it.

9

Four fundamental problems

LSOLVE

• Solve simultaneous linear equations.

• Variables are real numbers.

48x0 + 16x1 + 119x2 ≤ 88
5x0 + 4x1 + 35x2 ≥ 13

15x0 4x1 + 20x2 ≥ 23
x0 , x1 , x2 ≥ 0

x0 = 1
x1 = 1
x2 = 0.2

LP

• Solve simultaneous linear inequalities.

• Variables are real numbers.

x1 + x2 ≥ 1
x0 + x2 ≥ 1
x0 + x1 + x2 ≤ 2

x0 = 0
x1 = 1
x2 = 1

ILP

• Solve simultaneous linear inequalities.

• Variables are 0 or 1.

¬x1 ⋁ x2 = true
¬x0 ⋁ ¬x1 ⋁ ¬x2 = true

x1 ⋁ ¬x2 = true

x0 = false
x1 = true
x2 = true

SAT

• Solve simultaneous boolean sums.

• Variables are true or false

x1 + x2 = 1
2x0 + 4x1 � 2x2 = 1

3x1 + 15x2 = 9

Example of an instance

x0 = � .25
x1 = .5
x2 = .5

A solution

Reasonable questions

10

Q. Do we have efficient algorithms for solving them?

A. Difficult to discern, despite similarities (!)

LSOLVE. Yes. Gaussian elimination.
 LP. Yes. Ellipsoid algorithm.
 IP. No polynomial-time algorithm known.
 SAT. No polynomial-time algorithm known.

?
?

Q. Can we find efficient algorithms for IP and SAT?

Q. Can we prove that no such algorithms exist?

LSOLVE, LP, ILP, and SAT are all important problem-
solving models with countless practical applications.

solves N-by-N systems in time proportional to N3✓
A tour de force invention after problem was open for decades✓

Intractability

11

Definition. An algorithm is efficient if it is polynomial time for all inputs.

Definition. A problem is intractable if no efficient algorithm exists to solve it.

decidable : undecidable :: tractable : intractable

Turing taught us something fundamental about computation by

• Identifying a problem that we might want to solve.

• Showing that it is not possible to solve it.
A reasonable question: Can we do something similar for intractability?

Definition. A problem is tractable if it solvable by an efficient algorithm.

Q. We do not know efficient algorithms for a large class of important problems.
 Can prove one of them to be intractable?

COMPUTER SC I ENCE
S E D G E W I C K / W A Y N E

19. Intractability

•Reasonable questions
•P and NP
•Poly-time reductions from SAT
•NP-completeness
•Living with intractability

CS.19.B.Intractability.PandNP

Search problems

Search problem. Any problem for which an efficient algorithm exists to certify solutions.

13

Example: TSP.

Certify solution by
adding distances and
checking that the total
is less than M

Problem instance:
 Set of cities, pairwise distances, and threshold M.

Solution: Permutation of the cities.

NP

14

problem description instance I solution S certification method

TSP (S, M) Find a tour of cities in S of
length < M

Add up distances and check
that the total is less than M

ILP (A, b)
Find a binary vector x that

satisfies Ax ≤ b
plug in values and check

each equation

SAT (⇥, b) Find a boolean vector x that
satisfies Ax = b

plug in values and check
each equation

FACTOR (x) Find a nontrivial factor
of the integer x

147573952589676412927 193707721 long division

Definition. NP is the class of all search problems.

Significance. Problems that scientists, engineers, and applications programmers aspire to solve.

Brute force search

15

problem description number of possibilities

TSP (S, M) Find a tour of cities in S of length < M N ! (N is the number of cities)

ILP (A, b) Find a binary vector x that satisfies Ax ≤ b 2N

SAT (⇥, b) Find a boolean vector x that satisfies Ax = b 2N

FACTOR (x) Find a nontrivial factor of the integer x 10N (N is the number of digits in x)

Brute-force search. Given a search problem, find a solution by checking all possibilities.

Challenge. Brute-force search is easy to implement, but not efficient.

P

16

problem description efficient algorithm

SORT (S)
Find a permutation that puts the

items in S in order
Insertion sort, Mergesort

3-SUM (S) Find a triple in S that sums to 0 Triple loop

LSOLVE (A, b) Find a vector x that satisfies Ax = b Gaussian elimination

LP (A, b) Find a vector x that satisfies Ax ≤ b Ellipsoid

Definition. P is the class of all tractable search problems.

Significance. Problems that scientists, engineers and applications programmers do solve.

solvable by an efficient
(guaranteed poly-time) algorithm

Note. All of these problems are also in NP.

Types of problems

17

Search problem. Find a solution.
Decision problem. Does there exist a solution?
Optimization problem. Find the best solution.

Some problems are more naturally formulated in one regime than another.

Note. Classic definitions of P and NP are in terms of decision problems.

The regimes are not technically equivalent, but conclusions that we draw apply to all three.

Example: TSP is usually
formulated as an

optimzation problem.

"Find the shortest tour
connecting all the cities."

The central question

18

NP. Class of all search problems, some of which seem solvable only by brute force.

 P. Class of search problems solvable in poly-time.

The question: Is P = NP ?

P ≠ NP

• Intractable search problems exist.

• Brute force search may be the best
we can do for some problems.

P = NP

• No intractable search problems exist.

• Efficient algorithms exist for IP, SAT,
FACTOR ... all problems in NP.

P = NPP

NP

Intractable
problems

Frustrating situation. Researchers believe that P ≠ NP but no one has been able to prove it (! !)

Nondeterminism: another way to view the situation

19

A nondeterministic machine can choose among multiple options at each step
 and can guess the option that leads to the solution.

Example: Java. Example: Turing machine.

either x[0] = 0; or x[0] = 1;
either x[1] = 0; or x[1] = 1;
either x[2] = 0; or x[2] = 1;

Seems like a fantasy, but...

P ≠ NP

• Intractable search problems exist.

• Nondeterministic machines would
admit efficient algorithms.

P = NP

• No intractable search problems exist.

• Nondeterministic machines would be
of no help!

Frustrating situation. No one has been able to prove that nondeterminism would help (! !)

solves ILP L

#:1

0:0

0:1
two

choices

Creativity: another way to view the situation

20

Creative genius versus ordinary appreciation of creativity.

Computational analog. P vs NP.

Examples

• Mozart composes a piece of music; the audience appreciates it.

• Wiles proves a deep theorem; a colleague checks it.

• Boeing designs an efficient airfoil; a simulator verifies it.

• Einstein proposes a theory; an experimentalist validates it.

Frustrating situation. No one has been able to prove that creating a solution to a problem
 is more difficult than checking that it is correct.

Ordinary appreciation

Creative genius

COMPUTER SC I ENCE
S E D G E W I C K / W A Y N E

19. Intractability

•Reasonable questions
•P and NP
•Poly-time reductions from SAT
•NP-completeness
•Living with intractability

CS.19.C.Intractability.Reductions

Classifying problems

22

Q. Which problems are in P?
A. The ones that we're solving with provably efficient algorithms.

Possible starting point: Assume that SAT is intractable (and hence P ≠ NP)

• Brute-force algorithm finds solution for any SAT instance.

• No known efficient algorithm does so.
A reasonable assumption.

Next. Proving relationships among problems.

Q. If P ≠ NP which problems are in NP but not in P (intractable)?

A. Difficult to know (no one has found even one such problem).

Q. If P ≠ NP and SAT is intractable, which other problems are intractable?

Can I solve it on my
cellphone or do I need
1048 UBERcomputers??

Poly-time reduction

23

Definition. Problem X poly-time reduces to problem Y if you can use an
 efficient solution to Y to develop an efficient solution to X.

Typical reduction: Given an efficient solution to Y, solve X by

• Using an efficient method to transform the instance of X to an instance of Y.

• Calling the efficient method that solves Y.

• Using an efficient method to transform the solution of Y to an solution of X.
Similar to using a library method in modular programming.

 Method for solving X

 Method for solving Y

instance
of X

Transform
input instance

of Y

Transform
resultsolution

of Y
solution

of X

Note. Many ways to extend. (Example: Use a polynomial number of instances of Y.)

X→Y

Key point: poly-time reduction is transitive

24

If X poly-time reduces to Y and Y poly-time reduces to Z, then X poly-time reduces to Z.

 Method for solving X

 Method for solving Y

instance
of X

Transform
input

Transform
resultinstance

of Y
solution

of Y
solution

of X

 Method for solving Y

 Method for solving Z

instance
of Y

Transform
input

Transform
resultinstance

of Z
solution

of Z
solution

of Y

If X→Y and Y→Z then X→Z

Two ways to exploit reduction

25

To design an algorithm to solve a new problem X

• Find a problem Y with a known efficient algorithm that solves it.

• Poly-time reduce X to Y.
The efficient algorithm for Y gives an efficient algorithm for X.

 Method for solving X

 Method for solving Y

instance
of X

Transform
input

Transform
resultinstance

of Y
instance

of Y
solution

to X

To establish intractability of a new problem Y (assuming SAT is intractable)

• Find a problem X with a known poly-time reduction from SAT.

• Poly-time reduce X to Y.
An efficient algorithm for Y would imply an efficient algorithm for X (and SAT).

Not emphasized in this lecture.
Interested in details? Take a
course in algorithms.

Critical tool

for this lecture.

Example: SAT poly-time reduces to ILP

26

SAT

• Solve simultaneous boolean sums.

• Variables are true or false

ILP

• Solve simultaneous linear inequalities.

• Variables are 0 or 1.

¬x0 ⋁ x1 ⋁ x2 = true

x0 ⋁ ¬x1 ⋁ x2 = true

¬x0 ⋁ ¬x1 ⋁ ¬x2 = true

¬x0 ⋁ ¬x1 ⋁ x3 = true

An instance of SAT

(1 � t0) + t1 + t2 ≥ 1

t0 + (1 � t1) + t2 ≥ 1

(1 � t0) + (1 � t1) + (1 � t2) ≥ 1

(1 � t0) + (1 � t1) + t3 ≥ 1

Poly-time reduction to an instance of ILP

ti = 0 iff xi = false
ti = 1 iff xi = true

t0 = 0

t1 = 1

t2 = 1

t3 = 0

A solution

x0 = false

x1 = true

x2 = true

x3 = false

A solution

Implication. If SAT is intractable, so is ILP.

KNAPSACK BIN PACKING

PARTITION

SUBSET SUM

CLIQUE

SAT

ILP

HAMILTON CYCLEEXACT COVER

More poly-time reductions from SAT

27

Dick Karp
1985 Turing Award

Reasonable assumption. SAT is intractable.
Implication. All of these problems are intractable.

3-COLOR VERTEX COVER

INDEPENDENT SET TSP

Still more poly-time reductions from SAT

28

field of study typical problem known to be intractable if SAT is intractable

Aerospace engineering Optimal mesh partitioning for finite elements
Biology Phylogeny reconstruction

Chemical engineering Heat exchanger network synthesis
Chemistry Protein folding

Civil engineering Equilibrium of urban traffic flow
Economics Computation of arbitrage in financial markets with friction

Electrical engineering VLSI layout
Environmental engineering Optimal placement of contaminant sensors

Financial engineering Minimum risk portfolio of given return
Game theory Nash equilibrium that maximizes social welfare

Mechanical engineering Structure of turbulence in sheared flows
Medicine Reconstructing 3d shape from biplane angiocardiogram

Operations research Traveling salesperson problem, integer programming
Physics Partition function of 3d Ising model
Politics Shapley-Shubik voting power

Pop culture Versions of Sudoko, Checkers, Minesweeper, Tetris
Statistics Optimal experimental design

Reasonable assumption. SAT is intractable.
Implication. All of these problems are intractable.

6,000+ scientific
papers per year.

COMPUTER SC I ENCE
S E D G E W I C K / W A Y N E

19. Intractability

•Reasonable questions
•P and NP
•Poly-time reductions from SAT
•NP-completeness
•Living with intractability

CS.19.D.Intractability.NPcomplete

NP-completeness

30

Definition. An NP problem is NP-complete if all problems in NP poly-time reduce to it.

Corollary. SAT is tractable if and only if P = NP.

Theorem (Cook, 1971). SAT is NP-complete.

Extremely brief proof sketch

• Convert non-deterministic TM notation to SAT notation.

• An efficient solution to SAT gives an efficient solution to
any problem in NP.

Nondeterministic
Turing machine

SAT
instance

Equivalent. Assuming that SAT is intractable is the same as assuming that P ≠ NP.

KNAPSACK BIN PACKING

PARTITION

SUBSET SUM

3-COLOR VERTEX COVER

CLIQUE

SAT

ILP

TSPINDEPENDENT SET

HAMILTON CYCLEEXACT COVER

Cook's theorem

31

Steve Cook
1982 Turing Award

All problems in NP poly-time reduce to SAT.
KNAPSACK BIN PACKING

PARTITION

SUBSET SUM

3-COLOR VERTEX COVER

CLIQUE

SAT

ILP

TSPINDEPENDENT SET

HAMILTON CYCLEEXACT COVER

Karp + Cook

32

Dick KarpSteve Cook

All of these problems are NP-complete.

A provably efficient algorithm for any one of them would
yield a provably efficient algorithm for all of them

Two possible universes

33

P ≠ NP

• Intractable search problems exist.

• Nondeterminism would help.

• Computing an answer is more difficult
than correctly guessing it.

• Can prove a problem to be intractable by
poly-time reduction from an NP-complete
problem.

P = NP

• No intractable search problems exist.

• Nondeterminism is no help.

• Finding an answer is just as easy as
correctly guessing an answer.

• Guaranteed poly-time algorithms exist for
all problems in NP.

P = NP = NPCP NP-complete

NP

Frustrating situation. No progress on resolving the question despite 40+ years of research.

Summary

34

 NP. Class of all search problems, some of which seem solvable only by brute force.

 P. Class of search problems solvable in poly-time.

 NP-complete. "Hardest" problems in NP.

 Intractable. Search problems not in P (if P ≠ NP).

Use theory as a guide

• An efficient algorithm for an NP-complete problem
would be a stunning scientific breakthrough (a proof that P = NP)

• You will confront NP-complete problems in your career.

• It is safe to assume that P ≠ NP and that such problems are intractable.

• Identify these situations and proceed accordingly.

TSP, SAT, ILP, and thousands of other problems are NP-complete.

35

Princeton CS building, west wall Princeton CS building, west wall (closeup)

36

0
1

1
0

0

0

01
1

0
1

0

1

11
0

1
1

1

0

00
1

1
0

0

0

01
1

0
1

1

1

1

char ASCII binary

P 80 1010000
= 61 0111101
N 78 1001110
P 80 1010000
? 63 0111111

COMPUTER SC I ENCE
S E D G E W I C K / W A Y N E

19. Intractability

•Reasonable questions
•P and NP
•Poly-time reductions from SAT
•NP-completeness
•Living with intractability

CS.19.D.Intractability.NPcomplete

COMPUTER SC I ENCE
S E D G E W I C K / W A Y N E

19. Intractability

•Reasonable questions
•P and NP
•Poly-time reductions from SAT
•NP-completeness
•Living with intractability

CS.19.E.Intractability.Living

Living with intractability

When you encounter an NP-complete problem

• It is safe to assume that it is intractable.

• What to do?

39

Four successful approaches

• Don't try to solve intractable problems.

• Try to solve real-world problem instances.

• Look for approximate solutions (not discussed in this lecture).

• Exploit intractability.

Understanding intractability: An example from statistical physics

40

1926: Ising introduces a mathematical model for ferromagnetism.

1930s: Closed form solution is a holy grail of statistical mechanics.

1950s: Feynman and others seek closed form solution to 3D version.

2000: Istrail shows that 3D-ISING is NP-complete.

Bottom line. Search for a closed formula seems futile.

1944: Onsager finds closed form solution to 2D version in tour de force.

SAT

• Chaff solves real-world instances with 10,000+ variables.

• Princeton senior independent work (!) in 2000.

Living with intractability: look for solutions to real-world problem instances

41

Observations

• Worst-case inputs may not occur for practical problems.

• Instances that do occur in practice may be easier to solve.
Reasonable approach: relax the condition of guaranteed poly-time algorithms.

TSP

• Concorde routinely solves large real-world instances.

• 85,900-city instance solved in 2006.

ILP

• CPLEX routinely solves large real-world instances.

• Routinely used in scientific and commercial applications.

TSP solution for 13,509 US cities

Exploiting intractability: RSA cryptosystem

42

Modern cryptography applications

• Electronic banking.

• Credit card transactions with online merchants.

• Secure communications.

• [very long list]

RSA cryptosystem exploits intractability

• To use: Multiply/divide two N-digit integers (easy).

• To break: Factor a 2N-digit integer (intractable?).

761838257287 * 193707721 147573952589676412927

Multiply (easy)

Factor (difficult)

Len AdelmanAdi ShamirRon Rivest

Exploiting intractability: RSA cryptosystem

43

RSA cryptosystem exploits intractability

• To use: Multiply/divide two N-digit integers (easy).

• To break: Solve FACTOR for a 2N-digit integer (difficult).

Q. Is FACTOR intractable?

A. Unknown. It is in NP, but no reduction from SAT is known.

Q. Is it safe to assume that FACTOR is intractable?

A. Maybe, but not as safe an assumption as for an NP-complete problem.

74037563479561712828046796097429573142593188889231289
08493623263897276503402826627689199641962511784399589
43305021275853701189680982867331732731089309005525051
16877063299072396380786710086096962537934650563796359

Example: Factor this
212-digit integer

Fame and fortune through intractability

44

74037563479561712828046796097429573142593188889231289
08493623263897276503402826627689199641962511784399589
43305021275853701189680982867331732731089309005525051
16877063299072396380786710086096962537934650563796359

Factor this
212-digit integer

$30,000 prize
claimed in July, 2012

Create an e-commerce
company based on the
difficulty of factoring

RSA sold to EMC
for $2.1 billion in 2006

$1 million prize
unclaimed since 2000

plus untold riches for breaking
e-commerce if P=NP

or... sell T-shirts

Resolve P vs. NP

A final thought

45

Q. Is FACTOR intractable?

A. Unknown. It is in NP, but no reduction from SAT is known.

Q. Is it safe to assume that FACTOR is intractable?

A. Maybe, but not as safe an assumption as for an NP-complete problem.

Theorem (Shor, 1994). An N-bit integer can be factored in
 N3 steps on a quantum computer.

Q. Do we still believe in the Extended Church-Turing thesis?

Q. What else might go wrong?

Running time on all computers
within a polynomial factor of one another

COMPUTER SC I ENCE
S E D G E W I C K / W A Y N E

http://introcs.cs.princeton.edu

R O B E R T S E D G E W I C K
K E V I N W A Y N E

C
om

puter Science

Computer
Science

An Interdisciplinary Approach

19. Intractability

Section 7.4

