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Intractability 
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Fundamental questions 

• What is a general-purpose computer?

• Are there limits on the power of digital computers?

• Are there limits on the power of machines we can build?

Kurt Gödel 
1909�1994

Asked the question 
in a "lost letter" to 

von Neumann

Answer still unknown

✓
✓

Asked THE question

Steve CookDick KarpMichael Rabin Dana Scott

Introduced the critical concept
of nondeterminism

focus of today's lecture

John Nash

Asked the question 
in a "lost letter" to 

the NSA
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A difficult problem

Traveling salesperson problem (TSP)

• Given:  A set of N cities, distances between each pair of cities, and a distance M.

• Problem:  Is there a tour through all the cities of length less than or equal to M ?
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Exhaustive search. Try all N ! orderings of the cities to look for a tour of length less than M .



How difficult can it be?

Excerpts from a recent blog...

If one took the 100 largest cities in the US and wanted to travel them all, what is the distance of the 
shortest route? I'm sure there's a simple answer. Anyone wanna help? A quick google revealed nothing. 

I don't think there's any substitute for doing it manually. Google the cities, then pull out your map and 
get to work. It shouldn't take longer than an hour.  

Writing a program to solve the problem would take 5 or 10 minutes for an average programmer. 
However, the amount of time the program would need to run is, well, a LONG LONG LONG time. 

My Garmin could probably solve this for you.

Someone needs to write a distributed computing program to solve this IMO.
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Edit: I didn't realize this was a standardized problem.

 Edit: probably not.

How difficult can it be?

Imagine an UBERcomputer (a giant computing device)…

• With as many processors as electrons in the universe…

• Each processor having the power of today's supercomputers…

• Each processor working for the lifetime of the universe…
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quantity value
(conservative estimate)

electrons in universe 1079

supercomputer instructions per second 1013

age of universe in seconds 1017

Q. Could the UBERcomputer solve the TSP for 100 cities with the brute force algorithm?

A. Not even close. 100! > 10157 >> 107910131017 = 10109 Would need 1048 UBERcomputers

Lesson. Exponential growth dwarfs technological change.

Reasonable questions about algorithms

Q. Which algorithms are useful in practice?
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Def (in the context of this lecture). An algorithm is efficient if it is poly-time for all inputs.

Model of computation

• Running time: Number of steps as a function of input length N. 

• Poly-time: Running time less than aNb for some constants a and b.

• Definitely not poly-time: Running time ~cN for any constant c >1.

• Specific computer generally not relevant (simulation uses only a polynomial factor).

Q. Can we find efficient algorithms for the practical problems that we face?

outside this lecture: "guaranteed polynomial time"

"Extended Church-Turing thesis"

Reasonable questions about problems

Q. Which problems can we solve in practice?

A. Those for which we know efficient (guaranteed poly-time) algorithms.
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Example 1: Sorting. Not intractable. (Insertion sort takes time proportional to N 2.)

Example 2: TSP. ??? (No efficient algorithm known, but no proof that none exists.)

Q. Is there an easy way to tell whether a problem is intractable?

A. Good question! Focus of today's lecture. Existence of a faster algorithm 
like mergesort is not relevant 

to this discussion

Definition. A problem is intractable if no efficient algorithm exists to solve it.
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Four fundamental problems

LSOLVE

• Solve simultaneous linear equations. 

• Variables are real numbers.

48x0 + 16x1 + 119x2 ≤ 88
5x0 + 4x1 + 35x2 ≥ 13

15x0 4x1 + 20x2 ≥ 23
x0 , x1 , x2 ≥ 0

x0 = 1
x1 = 1
x2 = 0.2

LP

• Solve simultaneous linear inequalities. 

• Variables are real numbers.

x1 + x2 ≥ 1
x0   + x2 ≥ 1
x0 + x1 + x2 ≤ 2

x0 = 0
x1 = 1
x2 = 1

ILP

• Solve simultaneous linear inequalities. 

• Variables are 0 or 1.

¬x1 ⋁ x2 = true
¬x0 ⋁ ¬x1 ⋁ ¬x2 = true

x1 ⋁ ¬x2 = true

x0 = false
x1 = true
x2 = true

SAT

• Solve simultaneous boolean sums. 

• Variables are true or false

x1 + x2 = 1
2x0 + 4x1 � 2x2 = 1

3x1 + 15x2 = 9

Example of an instance

x0 = � .25
x1 = .5
x2 = .5

A solution

Reasonable questions
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Q. Do we have efficient algorithms for solving them?

A. Difficult to discern, despite similarities (!)

LSOLVE. Yes. Gaussian elimination. 
       LP. Yes. Ellipsoid algorithm.
       IP.  No polynomial-time algorithm known.
     SAT. No polynomial-time algorithm known.

?
?

Q. Can we find efficient algorithms for IP and SAT? 

Q. Can we prove that no such algorithms exist?

LSOLVE, LP, ILP, and SAT are all important problem-
solving models with countless practical applications.

solves N-by-N systems in time proportional to N3✓
A tour de force invention after problem was open for decades✓

Intractability
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Definition. An algorithm is efficient if it is polynomial time for all inputs.

Definition. A problem is intractable if no efficient algorithm exists to solve it.

decidable : undecidable :: tractable : intractable

Turing taught us something fundamental about computation by

• Identifying a problem that we might want to solve.

• Showing that it is not possible to solve it.
A reasonable question: Can we do something similar for intractability?

Definition. A problem is tractable if it solvable by an efficient algorithm.

Q. We do not know efficient algorithms for a large class of important problems.
    Can prove one of them to be intractable?
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Search problems

Search problem.  Any problem for which an efficient algorithm exists to certify solutions.
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Example: TSP.

Certify solution by 
adding distances and 
checking that the total 
is less than M

Problem instance: 
       Set of cities, pairwise distances, and threshold M.

Solution: Permutation of the cities.

NP
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problem description instance I solution S certification method

TSP ( S, M ) Find a tour of cities in S of 
length < M

Add up distances and check 
that the total is less than M

ILP ( A, b )
Find a binary vector x that 

satisfies Ax ≤ b
plug in values and check 

each equation

SAT ( ⇥, b ) Find a boolean vector x that 
satisfies Ax = b

plug in values and check 
each equation

FACTOR ( x ) Find a nontrivial factor
of the integer x

147573952589676412927 193707721 long division

Definition. NP is the class of all search problems.

Significance. Problems that scientists, engineers, and applications programmers aspire to solve.

Brute force search
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problem description number of possibilities

TSP ( S, M ) Find a tour of cities in S of length < M N ! (N is the number of cities)

ILP ( A, b ) Find a binary vector x that satisfies Ax ≤ b 2N

SAT ( ⇥, b ) Find a boolean vector x that satisfies Ax = b 2N

FACTOR ( x ) Find a nontrivial factor of the integer x 10N  (N is the number of digits in x)

Brute-force search. Given a search problem, find a solution by checking all possibilities.

Challenge. Brute-force search is easy to implement, but not efficient.

P
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problem description efficient algorithm

SORT ( S )
Find a permutation that puts the 

items in S in order
Insertion sort, Mergesort

3-SUM ( S ) Find a triple in S that sums to 0 Triple loop

LSOLVE ( A, b ) Find a vector x that satisfies Ax = b Gaussian elimination

LP ( A, b ) Find a vector x that satisfies Ax ≤ b Ellipsoid

Definition. P is the class of all tractable search problems.

Significance. Problems that scientists, engineers and applications programmers do solve.

solvable by an efficient
(guaranteed poly-time) algorithm

Note. All of these problems are also in NP.



Types of problems
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Search problem. Find a solution.
Decision problem. Does there exist a solution?
Optimization problem. Find the best solution.

Some problems are more naturally formulated in one regime than another.

Note. Classic definitions of P and NP are in terms of decision problems.

The regimes are not technically equivalent, but conclusions that we draw apply to all three.

Example: TSP is usually 
formulated as an 

optimzation problem.

"Find the shortest tour 
connecting all the cities."

The central question
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NP.  Class of all search problems, some of which seem solvable only by brute force.

  P.  Class of search problems solvable in poly-time.

The question: Is P = NP ?

P ≠ NP

• Intractable search problems exist.

• Brute force search may be the best 
we can do for some problems.

P = NP

• No intractable search problems exist.

• Efficient algorithms exist for IP, SAT, 
FACTOR ... all problems in NP.

P = NPP

NP

Intractable
problems

Frustrating situation. Researchers believe that P ≠ NP but no one has been able to prove it  ( ! ! )

Nondeterminism: another way to view the situation

19

A nondeterministic machine can choose among multiple options at each step
                                     and can guess the option that leads to the solution.

Example: Java. Example: Turing machine.

either x[0] = 0; or x[0] = 1;
either x[1] = 0; or x[1] = 1;
either x[2] = 0; or x[2] = 1;

Seems like a fantasy, but...

P ≠ NP

• Intractable search problems exist.

• Nondeterministic machines would 
admit efficient algorithms.

P = NP

• No intractable search problems exist.

• Nondeterministic machines would be 
of no help!

Frustrating situation. No one has been able to prove that nondeterminism would help  ( ! ! )

solves ILP L

#:1

0:0

0:1
two 

choices

Creativity: another way to view the situation
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Creative genius versus ordinary appreciation of creativity. 

Computational analog. P vs NP.

Examples

• Mozart composes a piece of music; the audience appreciates it. 

• Wiles proves a deep theorem; a colleague checks it. 

• Boeing designs an efficient airfoil; a simulator verifies it. 

• Einstein proposes a theory; an experimentalist validates it.

Frustrating situation. No one has been able to prove that creating a solution to a problem
                                is more difficult than checking that it is correct.

Ordinary appreciation

Creative genius
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Classifying problems
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Q. Which problems are in P?
A. The ones that we're solving with provably efficient algorithms.

Possible starting point: Assume that SAT is intractable (and hence P ≠ NP)

• Brute-force algorithm finds solution for any SAT instance.

• No known efficient algorithm does so.
A reasonable assumption.

Next. Proving relationships among problems.

Q. If P ≠ NP which problems are in NP but not in P (intractable)?

A. Difficult to know (no one has found even one such problem).

Q. If P ≠ NP and SAT is intractable, which other problems are intractable?

Can I solve it on my 
cellphone or do I need
1048 UBERcomputers??

Poly-time reduction
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Definition. Problem X poly-time reduces to problem Y if you can use an
                 efficient solution to Y to develop an efficient solution to X.

Typical reduction: Given an efficient solution to Y, solve X by

• Using an efficient method to transform the instance of X to an instance of Y.

• Calling the efficient method that solves Y.

• Using an efficient method to transform the solution of Y to an solution of X.
Similar to using a library method in modular programming.

 Method for solving X

 Method for solving Y

instance 
of X

Transform 
input instance 

of Y

Transform 
resultsolution 

of Y
solution 

of X

Note. Many ways to extend. (Example: Use a polynomial number of instances of Y.)

X→Y

Key point: poly-time reduction is transitive
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If X poly-time reduces to Y and Y poly-time reduces to Z, then X poly-time reduces to Z.

 Method for solving X

 Method for solving Y

instance 
of X

Transform 
input

Transform 
resultinstance 

of Y
solution 

of Y
solution 

of X

 Method for solving Y

 Method for solving Z

instance 
of Y

Transform 
input

Transform 
resultinstance 

of Z
solution 

of Z
solution 

of Y

If X→Y and Y→Z then X→Z



Two ways to exploit reduction
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To design an algorithm to solve a new problem X

• Find a problem Y with a known efficient algorithm that solves it.

• Poly-time reduce X to Y.
The efficient algorithm for Y gives an efficient algorithm for X.

 Method for solving X

 Method for solving Y

instance 
of X

Transform 
input

Transform 
resultinstance 

of Y
instance 

of Y
solution 

to X

To establish intractability of a new problem Y (assuming SAT is intractable)

• Find a problem X with a known poly-time reduction from SAT.

• Poly-time reduce X to Y.
An efficient algorithm for Y would imply an efficient algorithm for X (and SAT).

Not emphasized in this lecture. 
Interested in details? Take a 
course in algorithms.

Critical tool

for this lecture. 

Example: SAT poly-time reduces to ILP
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SAT

• Solve simultaneous boolean sums. 

• Variables are true or false

ILP

• Solve simultaneous linear inequalities. 

• Variables are 0 or 1.

¬x0 ⋁ x1 ⋁ x2 = true

x0 ⋁ ¬x1 ⋁ x2 = true

¬x0 ⋁ ¬x1 ⋁ ¬x2 = true

¬x0 ⋁ ¬x1 ⋁ x3 = true

An instance of SAT

(1 � t0) + t1 + t2 ≥ 1

t0 + (1 � t1) + t2 ≥ 1

(1 � t0) + (1 � t1) + (1 � t2) ≥ 1

(1 � t0) + (1 � t1) + t3 ≥ 1

Poly-time reduction to an instance of ILP

ti = 0 iff xi = false 
ti = 1 iff xi = true 

t0 = 0

t1 = 1

t2 = 1

t3 = 0

A solution

x0 = false

x1 = true

x2 = true

x3 = false

A solution

Implication. If SAT is intractable, so is ILP.

KNAPSACK BIN PACKING

PARTITION

SUBSET SUM

CLIQUE

SAT

ILP

HAMILTON CYCLEEXACT COVER

More poly-time reductions from SAT
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Dick Karp
1985 Turing Award

Reasonable assumption. SAT is intractable.
Implication. All of these problems are intractable.

3-COLOR VERTEX COVER

INDEPENDENT SET TSP

Still more poly-time reductions from SAT
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field  of  study typical problem known to be intractable if SAT is intractable

Aerospace engineering Optimal mesh partitioning for finite elements
Biology Phylogeny reconstruction

Chemical engineering Heat exchanger network synthesis
Chemistry Protein folding

Civil engineering Equilibrium of urban traffic flow
Economics Computation of arbitrage in financial markets with friction

Electrical engineering VLSI layout
Environmental engineering Optimal placement of contaminant sensors

Financial engineering Minimum risk portfolio of given return
Game theory Nash equilibrium that maximizes social welfare

Mechanical engineering Structure of turbulence in sheared flows
Medicine  Reconstructing 3d shape from biplane angiocardiogram

Operations research Traveling salesperson problem, integer programming
Physics Partition function of 3d Ising model
Politics Shapley-Shubik voting power

Pop culture Versions of Sudoko, Checkers, Minesweeper, Tetris
Statistics Optimal experimental design

Reasonable assumption. SAT is intractable.
Implication. All of these problems are intractable.

6,000+ scientific 
papers per year.
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NP-completeness
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Definition. An NP problem is NP-complete if all problems in NP poly-time reduce to it.

Corollary. SAT is tractable if and only if P = NP.

Theorem (Cook, 1971). SAT is NP-complete.

Extremely brief proof sketch

• Convert non-deterministic TM notation to SAT notation.

• An efficient solution to SAT gives an efficient solution to 
any problem in NP.

Nondeterministic 
Turing machine

SAT
instance

Equivalent. Assuming that SAT is intractable is the same as assuming that P ≠ NP.

KNAPSACK BIN PACKING

PARTITION

SUBSET SUM

3-COLOR VERTEX COVER

CLIQUE

SAT

ILP

TSPINDEPENDENT SET

HAMILTON CYCLEEXACT COVER

Cook's theorem
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Steve Cook
1982 Turing Award

All problems in NP poly-time reduce to SAT.
KNAPSACK BIN PACKING

PARTITION

SUBSET SUM

3-COLOR VERTEX COVER

CLIQUE

SAT

ILP

TSPINDEPENDENT SET

HAMILTON CYCLEEXACT COVER

Karp + Cook
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Dick KarpSteve Cook

All of these problems are NP-complete.

A provably efficient algorithm for any one of them would 
yield a provably efficient algorithm for all of them



Two possible universes
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P ≠ NP

• Intractable search problems exist.

• Nondeterminism would help.

• Computing an answer is more difficult 
than correctly guessing it.

• Can prove a problem to be intractable by 
poly-time reduction from an NP-complete 
problem.

P = NP

• No intractable search problems exist.

• Nondeterminism is no help.

• Finding an answer is just as easy as 
correctly guessing an answer.

• Guaranteed poly-time algorithms exist for 
all problems in NP.

P = NP = NPCP NP-complete

NP

Frustrating situation. No progress on resolving the question despite 40+ years of research.

Summary
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              NP.  Class of all search problems, some of which seem solvable only by brute force.

             P.  Class of search problems solvable in poly-time.

 NP-complete. "Hardest" problems in NP.

    Intractable. Search problems not in P (if P ≠ NP).

Use theory as a guide

• An efficient algorithm for an NP-complete problem
would be a stunning scientific breakthrough (a proof that P = NP)

• You will confront NP-complete problems in your career.

• It is safe to assume that P ≠ NP and that such problems are intractable.

• Identify these situations and proceed accordingly. 

TSP, SAT, ILP, and thousands of other problems are NP-complete.
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Princeton CS building, west wall Princeton CS building, west wall (closeup)
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char ASCII binary

P 80 1010000
= 61 0111101
N 78 1001110
P 80 1010000
? 63 0111111
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Living with intractability

When you encounter an NP-complete problem

• It is safe to assume that it is intractable.

• What to do?

39

Four successful approaches

• Don't try to solve intractable problems.

• Try to solve real-world problem instances. 

• Look for approximate solutions (not discussed in this lecture).

• Exploit intractability.

Understanding intractability: An example from statistical physics

40

1926: Ising introduces a mathematical model for ferromagnetism.

1930s: Closed form solution is a holy grail of statistical mechanics.

1950s: Feynman and others seek closed form solution to 3D version.

2000:  Istrail shows that 3D-ISING is NP-complete.

Bottom line. Search for a closed formula seems futile. 

1944: Onsager finds closed form solution to 2D version in tour de force.



SAT

• Chaff solves real-world instances with 10,000+ variables.

• Princeton senior independent work (!) in 2000.

Living with intractability: look for solutions to real-world problem instances
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Observations

• Worst-case inputs may not occur for practical problems.

• Instances that do occur in practice may be easier to solve.
Reasonable approach: relax the condition of guaranteed poly-time algorithms.

TSP

• Concorde routinely solves large real-world instances.

• 85,900-city instance solved in 2006.

ILP

• CPLEX routinely solves large real-world instances.

• Routinely used in scientific and commercial applications.

TSP solution for 13,509 US cities

Exploiting intractability: RSA cryptosystem
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Modern cryptography applications

• Electronic banking.

• Credit card transactions with online merchants.

• Secure communications.

• [very long list]

RSA cryptosystem exploits intractability

• To use: Multiply/divide two N-digit integers (easy).

• To break: Factor a 2N-digit integer (intractable?).

761838257287 * 193707721 147573952589676412927

Multiply (easy)

Factor (difficult)

Len AdelmanAdi ShamirRon Rivest

Exploiting intractability: RSA cryptosystem
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RSA cryptosystem exploits intractability

• To use: Multiply/divide two N-digit integers (easy).

• To break: Solve FACTOR for a 2N-digit integer (difficult).

Q. Is FACTOR intractable?

A. Unknown. It is in NP, but no reduction from SAT is known.

Q. Is it safe to assume that FACTOR is intractable?

A. Maybe, but not as safe an assumption as for an NP-complete problem.

74037563479561712828046796097429573142593188889231289
08493623263897276503402826627689199641962511784399589
43305021275853701189680982867331732731089309005525051
16877063299072396380786710086096962537934650563796359

Example: Factor this 
212-digit integer

Fame and fortune through intractability
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74037563479561712828046796097429573142593188889231289
08493623263897276503402826627689199641962511784399589
43305021275853701189680982867331732731089309005525051
16877063299072396380786710086096962537934650563796359

Factor this
212-digit integer

$30,000 prize
claimed in July, 2012

Create an e-commerce 
company based on the 
difficulty of factoring

RSA sold to EMC
for $2.1 billion in 2006

$1 million prize
unclaimed since 2000

plus untold riches for breaking 
e-commerce if P=NP

or... sell T-shirts

Resolve P vs. NP



A final thought
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Q. Is FACTOR intractable?

A. Unknown. It is in NP, but no reduction from SAT is known.

Q. Is it safe to assume that FACTOR is intractable?

A. Maybe, but not as safe an assumption as for an NP-complete problem.

Theorem (Shor, 1994). An N-bit integer can be factored in
                                     N3 steps on a quantum computer.

Q. Do we still believe in the Extended Church-Turing thesis?

Q. What else might go wrong?

Running time on all computers
within a polynomial factor of one another
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