
COMPUTER SC I ENCE
S E D G E W I C K / W A Y N E

http://introcs.cs.princeton.edu

R O B E R T S E D G E W I C K
K E V I N W A Y N E

C
om

puter Science

Computer
Science

An Interdisciplinary Approach

17. Introduction to
Theoretical CS

Section 7.2

Introduction to theoretical computer science

2

Fundamental questions

• What can a computer do?

• What can a computer do with limited resources?

General approach

• Don't talk about specific machines or problems.

• Consider minimal abstract machines.

• Consider general classes of problems.

Surprising outcome. Sweeping and relevant statements about all computers.

NO

YES

Why study theory?

3

In theory...

• Deeper understanding of computation.

• Foundation of all modern computers.

• Pure science.

• Philosophical implications.

In practice...

• Web search: theory of pattern matching.

• Sequential circuits: theory of finite state automata.

• Compilers: theory of context free grammars.

• Cryptography: theory of computational complexity.

• Data compression: theory of information.

• ...

 — Yogi Berra

" In theory there is no difference
 between theory and practice.

 In practice there is. "

COMPUTER SC I ENCE
S E D G E W I C K / W A Y N E

17. Introduction to Theoreticaal CS

•Regular expressions
•DFAs
•Applications
•Limitations

CS.17.A.Theory.REs

Pattern matching

5

Pattern matching problem. Is a given string a member of a given set of strings?

Example 1 (from genomics)

A Fragile X Syndrome pattern is a genome having an occurrence of gcg, followed
by any number of cgg or agg triplets, followed by ctg.

Q. Does this genome contain a such a pattern?

 gcggcgtgtgtgcgagagagtgggtttaaagctggcgcggaggcggctggcgcggaggctg

A. Yes.

Note. The number of triplets correlates with Fragile X Syndrome, a common cause of mental retardation.

gcgcggaggcggctg

ctg end markgcg start mark

sequence of
cgg and agg

triplets

A genome is a string of nucleic acids.

A nucleic acid is represented by one of the letters a, c, t, or g.

A C2H2-type zinc finger domain signature is

• C followed by 2, 3, or 4 amino acids, followed by

• C followed by 3 amino acids, followed by

• L, I, V, M, F, Y, W, C, or X followed by 8 amino acids, followed by

• H followed by 3, 4, or 5 amino acids, followed by

• H.

Pattern matching

6

Example 2 (from computational biochemistry)

Q. Is this protein in the C2H2-type zinc finger domain?

 C A A S C G G P Y A C G G W A G Y H A G W H

A. Yes.
HC

An amino acid is represented by one of the characters CAVLIMCRKHDENQSTYFWP .

A protein is a string of amino acids.

C Y H3 3 38

Pattern matching

7

Example 3 (from commercial computing)

Q. Which of the following are e-mail addresses? A.
rs@cs.princeton.edu ✓
not an e-mail address ✗

wayne@cs.princeton.edu ✓
eve@airport ✗

rs123@princeton.edu ✗

Challenge. Develop a precise description of the set of strings that are legal e-mail addresses.

An e-mail address is

• A sequence of letters, followed by

• the character "@", followed by

• the character "." , followed by a sequence of letters, followed by

• [any number of occurences of the previous pattern]

• "edu" or "com" (others omitted for brevity).

Ooops, need to fix description

Regular expressions

8

operation example RE matches
(IN the set)

does not match
(NOT in the set)

concatenation aabaab aabaab every other string

wildcard .u.u.u.
cumulus
jugulum

succubus
tumultuous

union aa | baab
aa

baab
every other string

closure ab*a
aa

abbba
ab

ababa

parentheses
a(a|b)aab

aaaab
abaab

every other string

parentheses
(ab)*a

a
ababababa

aa
abbba

A regular expression (RE) is a notation for specifying sets of strings.

An RE is

• A sequence of letters or "."

• The union of two REs

• The closure of an RE
(any number of occurences)

• May be delimited by ().

More examples of regular expressions

9

The notation is surprisingly expressive.

regular expression matches does not match

.*spb.*
contains the trigraph spb

raspberry
crispbread

subspace
subspecies

a* | (a*ba*ba*ba*)*
multiple of three b’s

bbb
aaa

bbbaababbaa

b
bb

baabbbaa

.*0....
fifth to last digit is 0

1000234
98701234

111111111
403982772

gcg(cgg|agg)*ctg
fragile X syndrome pattern

gcgctg
gcgcggctg

gcgcggaggctg

gcgcgg
cggcggcggctg
gcgcaggctg

Generalized regular expressions

10

Additional operations futher extend the utility of REs.

operation example RE matches does not match

one or more a(bc)+de
abcde

abcbcde
ade
bcde

character class [A-Za-z][a-z]*
lowercase

Capitalized
camelCase
4illegal

exactly k [0-9]{5}-[0-9]{4}
08540-1321
19072-5541

111111111
166-54-1111

negation [^aeiou]{6} rhythm decade

white space \s
any whitespace char

(space, tab, newline...) every other character

Note. These operations are all shorthand.
 They are very useful but not essential.

RE: (a|b|c|d|e)(a|b|c|d|e)*
shorthand: (a-e)+

A C2H2-type zinc finger domain signature is

• C followed by 2, 3, or 4 amino acids, followed by

• C followed by 3 amino acids, followed by

• L, I, V, M, F, Y, W, C, or X followed by 8 amino acids, followed by

• H followed by 3, 4, or 5 amino acids, followed by

• H.

Example of describing a pattern with a generalized RE

11

Q. Give a generalized RE for all such signatures.

HC C Y H

C A A S C G G P Y A C G G W A G Y H A G W HA. C.{2,4}C...[LIVMFYWCX].{8}H.{3,5}H

3 3 38"Wildcard" matches any of the letters
CAVLIMCRKHDENQSTYFWP

Example of a real-world RE application: PROSITE

12

Type an RE here

Another example of describing a pattern with a generalized RE

13

Q. Give a generalized RE for e-mail addresses.

A. [a-z]+@([a-z]+\.)+(edu|com)

An e-mail address is

• A sequence of letters, followed by

• the character "@", followed by

• the character "." , followed by a sequence of letters, followed by

• [any number of occurences of the previous pattern]

• "edu" or "com" (others omitted for brevity).

Exercise. Extend to handle rs123@princeton.edu, more suffixes such as .org,
 and any other extensions you can think of.

Next. Determining whether a given string matches a given RE.

Self-assessment 1 on REs

Q. Which of the following strings match the RE a*bb(ab|ba)* ?

14

1. abb

2. aaba

3. abba

4. bbbaab

5. cbb

6. bbababbab

is in the set
it describes

Self-assessment 2 on REs

15

Q. Give an RE for genes

• Characters are a, c, t or g.

• Starts with atg (a start codon).

• Length is a multiple of 3.

• Ends with tag, taa, or ttg (a stop codon).

COMPUTER SC I ENCE
S E D G E W I C K / W A Y N E

17. Introduction to Theoreticaal CS

•Regular expressions
•DFAs
•Applications
•Limitations

CS.17.B.Theory.DFAs

Deterministic finite state automata (DFA)

A DFA is an abstract machine that solves a pattern matching problem.

• A string is specified on an input tape (no limit on its length).

• The DFA reads each character on input tape once, moving left to right.

• The DFA lights "YES" if it recognizes the string, "NO" otherwise.
Each DFA defines a set of strings (all the strings that it recognizes).

17

YES

b b a a b b a b b

YES

NO

Deterministic finite state automata details and example

A DFA is an abstract machine with a finite number states, each labeled Y or N, and
transitions between states, each labelled with a symbol. One state is the start state.

• Begin in the start state (denoted by an arrow from nowhere).

• Read an input symbol and move to the indicated state.

• Repeat until the last input symbol has been read.

• Turn on the "YES" or "NO" light according to the label on the current state.

18

YES

b b a a b b a b b

YES

NO

YES

Y N Nb b

a a a

b

Does this DFA recognize
this string?

Deterministic finite state automata details and example

A DFA is an abstract machine with a finite number states, each labeled Y or N and
transitions between states, each labelled with a symbol. One state is the start state.

• Begin in the start state.

• Read an input symbol and move to the indicated state.

• Repeat until the last input symbol has been read.

• Turn on the "YES" or "NO" light according to the label on the current state.

19

Does this DFA recognize
this string?

YES

b b a a b b a b

Y N Nb b

a a a

b
YES

NONO

Simulating the operation of a DFA

20

public class DFA
{
 private int state;
 private int start;
 private String[] action;
 private ST<Character, Integer>[] next;

 public DFA(In in)
 { /* Fill in data structures */ }

 public String simulate(String input)
 {
 state = start;
 for (int i = 0; i < input.length(); i++)
 state = next[state].get(input.charAt(i));
 return action[state];
 }

 public static void main(String[] args)
 {
 DFA dfa = new DFA(new In(args[0]));
 while (!StdIn.isEmpty())
 {
 input = StdIn.readString();
 StdOut.println(dfa.simulate(input));
 }
 }
}

Y N Nb b
a a a

b

% more b3.txt
3
ab
0
Yes 0 1
No 1 2
No 2 0

% java DFA b3.txt
bababa
Yes
bb
No
abbabbababbbabaaa
Yes
abbabbababbba
No

0

1

2

Yes

No

No

action[]

a b

0

1

2

0 1

1 2

2 0

next[]

symbol table to map
chars a, b, ... to next

state 0, 1, ...

states
alphabet

start state

0 1 2

1. Bitstrings that end in 1

2. Bitstrings with an equal number of occurrences of 01 and 10

3. Bitstrings with more 1s than 0s

4. Bitstrings with an equal number of occurrences of 0 and 1

5. Bitstrings with at least one 1

Self-assessment 1 on DFAs

Q. Which of the following strings does this DFA accept?

21

N Y1

0 0

1

1. Bitstrings that end in 1

2. Bitstrings with an equal number of occurrences of 01 and 10

3. Bitstrings with more 1s than 0s

4. Bitstrings with an equal number of occurrences of 0 and 1

5. Bitstrings with at least one 1

Self-assessment 2 on DFAs

Q. Which of the following strings does this DFA accept?

22

1. Bitstrings with at least one 1

2. Bitstrings with an equal number of occurrences of 01 and 10

3. Bitstrings with more 1s than 0s

4. Bitstrings with an equal number of occurrences of 0 and 1

5. Bitstrings that end in 1

N Y
0

1

1

0

Kleene's theorem

23

Equivalence theorem (Kleene)
Given any RE, there exists a DFA that accepts the same set of strings.
Given any DFA, there exists an RE that matches the same set of strings.

Remarkable fact. DFAs and REs are equivalent.

Two ways to define a set of strings

• Regular expressions (REs).

• Deterministic finite automata (DFAs). Y N Nb b
a a a

b

DFA for S

S ≡ the set of ab strings where the number
of occurrences of b is a multiple of 3

a* | (a*ba*ba*ba*)*RE for S

Consequence: A way to solve the RE pattern matching problem

• Build the DFA corresponding to the given RE.

• Simulate the operation of the DFA.

Steven Kleene
1909−1994

COMPUTER SC I ENCE
S E D G E W I C K / W A Y N E

17. Introduction to Theoreticaal CS

•Regular expressions
•DFAs
•Applications
•Limitations

CS.17.C.Theory.Applications

An algorithm for the RE pattern matching problem?

• Build the DFA corresponding to the given RE.

• Simulate the operation of the DFA.

GREP: a solution to the RE pattern matching problem

"GREP" (Generalized Regular Expression Pattern matcher).

• Developed by Ken Thompson, who designed and implemented Unix.

• Indispensible programming tool for decades.

• Found in most development environments, including Java.

25

Ken Thompson
1983 Turing Award

Practical difficulty: The DFA might have exponentially many states.

A more efficient algorithm: use Nondeterministic Finite Automata (NFA)

• Build the NFA corresponding to the given RE.

• Simulate the operation of the NFA.

Interested in
details? Take a
course in
algorithms.

public class Stringpublic class String

 ...

 boolean matches(String re) does this string match the given RE?

 ...

REs in Java

Java's String class implements GREP.

26

String re = "C.{2,4}C...[LIVMFYWC].{8}H.{3,5}H";
String zincFinger = "CAASCGGPYACGGAAGYHAGAH";
boolean test = zincFinger.matches(re);

HC C Y H

C A A S C G G P Y A C G G W A G Y H A G W H

3 3 38
true!

27

Java RE client example: Validation

public class Validate
{
 public static void main(String[] args)
 {
 String re = args[0];
 while (!StdIn.isEmpty())
 {
 String input = StdIn.readString();
 StdOut.println(input.matches(re));
 }
 }
} % java Validate "C.{2,4}C...[LIVMFYWC].{8}H.{3,5}H"

CAASCGGPYACGGAAGYHAGAH
true
CAASCGGPYACGGAAGYHGAH
false

% java Validate "[$_A-Za-z][$_A-Za-z0-9]*"
ident123
true
123ident
false

% java Validate "[a-z]+@([a-z]+\.)+(edu|com)"
wayne@cs.princeton.edu
true
eve@airport
false

Does a given string match a given RE?

• Take RE from command line.

• Take strings from StdIn.

Applications

• Scientific research.

• Compilers and interpreters.

• Internet commerce.

• ...

C2H2 type zinc finger domain

legal Java identifier

valid email address (simplified)

need quotes to
"escape" the shell

public class Stringpublic class String

 ...

 String replaceAll(String re, String to) replace all occurrences of substrings matching RE with to

String[] split(String re) split the string around matches of the given RE

 ...

Beyond matching

Java's String class contains other useful RE-related methods.

• RE search and replace

• RE delimited parsing

28

String s = StdIn.readAll();
s = s.replaceAll("\\s+", " ");

Replace each sequence of at least one
whitespace character with a single space.

Examples using the RE "\\s+" (matches one or more whitespace characters).

Tricky notation (typical in string processing): \ signals "special character" so "\\" means "\"

and "\\s" means "\s"

String s = StdIn.readAll();
String[] words = s.split("\\s+");

Create an array of the words in StdIn
(basis for StdIn.readAllStrings() method)

Way beyond matching

Java's Pattern and Matcher classes give fine control over the GREP implementation.

29

 public class Pattern public class Pattern

 ...

static Pattern compile(String re) parse the re to construct a Pattern

 Matcher matcher(String input) create a Matcher that can find substrings
matching the pattern in the given input string

 ...

 public class Matcher public class Matcher

 ...

 boolean find() set internal variable match to the next substring that matches
the RE in the input. If none, return false, else return true

 String group() return match

 String group(int k) return the kth group (identified by parens within RE) in match

 ...

[A sophisticated interface designed for pros, but very useful for everyone.]

Why not a constructor?
Good question.

30

Java pattern matcher client example: Harvester

import java.util.regex.Pattern;
import java.util.regex.Matcher;

public class Harvester
{
 public static void main(String[] args)
 {
 String re = args[0];
 In in = new In(args[1]);
 String input = in.readAll();
 Pattern pattern = Pattern.compile(re);
 Matcher matcher = pattern.matcher(input);
 while (matcher.find())
 StdOut.println(matcher.group());

 }
} % java Harvester "gcg(cgg|agg)*ctg" chromosomeX.txt

gcgcggcggcggcggcggctg
gcgctg
gcgctg
gcgcggcggcggaggcggaggcggctg

% java Harvester "[a-z]+@([a-z]+\.)+(edu|com)" http://www.cs.princeton.edu/people/faculty
...
rs@cs.princeton.edu
...
wayne@cs.princeton.edu
...

Harvest information from input stream

• Take RE from command line.

• Take input from file or web page.

• Print all substrings matching RE.

harvest patterns from DNA

harvest email addresses from web for spam campaign.

LOCUS AC146846 128142 bp DNA linear HTG 13-NOV-2003
DEFINITION Ornithorhynchus anatinus clone CLM1-393H9,
ACCESSION AC146846
VERSION AC146846.2 GI:38304214
KEYWORDS HTG; HTGS_PHASE2; HTGS_DRAFT.
SOURCE Ornithorhynchus anatinus (platypus)
ORIGIN
 1 tgtatttcat ttgaccgtgc tgttttttcc cggtttttca gtacggtgtt agggagccac
 61 gtgattctgt ttgttttatg ctgccgaata gctgctcgat gaatctctgc atagacagct // a comment
 121 gccgcaggga gaaatgacca gtttgtgatg acaaaatgta ggaaagctgt ttcttcataa
 ...
128101 ggaaatgcga cccccacgct aatgtacagc ttctttagat tg
//

31

Java pattern matcher real-world example: Parsing a data file

A typical situation

• An institution publishes data on the web to be shared by all.

• The data is published in human-readable form.

• You want to strip out everything but the raw data in order to process it.

Example: National Center for Biotechnology Information genome data

header information

line
numbers

spaces

don't want
this "a"

32

Java pattern matcher real-world example: Parsing a data file

LOCUS AC146846 128142 bp DNA linear HTG 13-NOV-2003
DEFINITION Ornithorhynchus anatinus clone CLM1-393H9,
ACCESSION AC146846
VERSION AC146846.2 GI:38304214
KEYWORDS HTG; HTGS_PHASE2; HTGS_DRAFT.
SOURCE Ornithorhynchus anatinus (platypus)
ORIGIN
 1 tgtatttcat ttgaccgtgc tgttttttcc cggtttttca gtacggtgtt agggagccac
 61 gtgattctgt ttgttttatg ctgccgaata gctgctcgat gaatctctgc atagacagct // a comment
 121 gccgcaggga gaaatgacca gtttgtgatg acaaaatgta ggaaagctgt ttcttcataa
 ...
128101 ggaaatgcga cccccacgct aatgtacagc ttctttagat tg
//

Key challenge: Develop an appropriate RE.

[]*[0-9]+([actg]*).*
Slight glitch: Need to

remove spaces afterwards.

first (only) group
in 2nd match1st

match

Parens identify a group that includes
only the data (a, c, t, g, or spaces).

Extract data after spaces
followed by a line number.

Ignore everything else

33

Java pattern matcher real-world example: Parsing a data file

import java.util.regex.Pattern;
import java.util.regex.Matcher;

public class ParseNCBI
{
 public static void main(String[] args)
 {
 String re = "[]*[0-9]+([actg]*).*";
 Pattern pattern = Pattern.compile(re);
 In in = new In(args[0]);
 while (in.hasNext Line())
 {
 String line = in.readLine();
 Matcher matcher = pattern.matcher(line);
 if (matcher.find())
 StdOut.print(matcher.group(1).replaceAll(" ", ""));
 }
 StdOut.println();
 }
}

% java ParseNCBI platypus.txt
tgtatttcatttgaccgtgctgttttttcccgg
tttttcagtacggtgttagggagccacgtgatt
ctgtttgttttatgctgccgaatagctgctcga
tgaatctctgcatagacagctgccgcagggaga
aatgaccagtttgtgatgacaaaatgtaggaaa
gctgtttcttcataa...

remove the spaces

GREP and related facilities are built in to Java, Unix shell, PERL, Python ...

34

Applications of REs

Pattern matching and beyond.

• Compile a Java program.

• Scan for virus signatures.

• Crawl and index the Web.

• Process natural language.

• Access information in digital libraries.

• Search-and-replace in a word processors.

• Process NCBI and other scientific data files.

• Filter text (spam, NetNanny, ads, Carnivore, malware).

• Validate data-entry fields (dates, email, URL, credit card).

• Search for markers in human genome using PROSITE patterns.

• Automatically create Java documentation from Javadoc comments.

virtually every computing environment

35
http://xkcd.com/208/

COMPUTER SC I ENCE
S E D G E W I C K / W A Y N E

17. Introduction to Theoreticaal CS

•Regular expressions
•DFAs
•Applications
•Limitations

CS.17.D.Theory.Limitations

37

Summary

Programmers

• Regular expressions are a powerful pattern matching tool.

• Equivalent DFA/NFA paradigm facilitates implementation.

• Combination greatly facilitates real-world string data processing.

Theoreticians

• REs provide compact descriptions of sets of strings.

• DFAs are abstract machines with equivalent descriptive power.

• Are there languages and machines with more descriptive power?

You

• CS core principles provide useful tools that you can exploit now.

• REs and DFAs provide an introduction to theoretical CS.

38

Basic questions

Q. Are there sets of strings that cannot be described by any RE?
A. Yes.

• Bitstrings with equal number of 0s and 1s.

• Strings that represent legal REs.

• Decimal strings that represent prime numbers.

• DNA strings that are Watson-Crick complemented palindromes.

• ...

Q. Are there sets of strings that cannot be described by any DFA?
A. Yes.

• Bit strings with equal number of 0s and 1s.

• Strings that represent legal REs.

• Decimal strings that represent prime numbers.

• DNA strings that are Watson-Crick complemented palindromes.

• ...

The same question,
by Kleene's theorem

39

A limit on the power of REs and DFAs

Proposition. There exists a set of strings that cannot be described by any RE or DFA.

Proof sketch. No DFA can recignize the set of bitstrings with equal number of 0s and 1s.

• Assume that you have such a DFA, with N states.

• It recognizes the string with N + 1 0s followed by N + 1 1s.

• Some state is revisited when recognizing that string.

• Delete the substring between visits.

• DFA recognizes that string, too.

• It does not have equal number of 0s and 1s.

• Proof by contradiction: the assumption that such a DFA exists must be false.

0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1

0 3 5 9 8 7 5 . . .

0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1

0 3 5 . . .

Ex. N = 10

40

Another basic question

Q. Are there abstract machines that are more powerful than DFAs?
A. Yes. A 1-stack DFA can recognize

• Bitstrings with equal number of 0s and 1s.

• Strings that represent legal REs.

YES

0 0 1 1 1 1 1 0 0 0

YES

NO

Proof. [details omitted]

can recognize more sets of strings

0
0
1
1
1

YES

41

Yet another basic question

Q. Are there abstract machines that are more powerful than a 1-stack DFA?
A. Yes. A 2-stack DFA can recognize

• Decimal strings that represent prime numbers.

• Strings that represent legal Java programs.

• ...

YES

0 0 1 1 1 1 1 0 0 0

YES

NO

[stay tuned for next lecture]

42

One last basic question

Q. Are there machines that are more powerful than a 2-stack DFA?
A. No! Not even a roomful of supercomputers (! ! !)

[stay tuned for next lecture]

NO

YES

COMPUTER SC I ENCE
S E D G E W I C K / W A Y N E

http://introcs.cs.princeton.edu

R O B E R T S E D G E W I C K
K E V I N W A Y N E

C
om

puter Science

Computer
Science

An Interdisciplinary Approach

17. Introduction to
Theoretical CS

Section 7.2

